
Ant Search Strategies for Planning Optimization

M. Baioletti, A. Milani, V. Poggioni, F. Rossi
Dipartimento Matematica e Informatica

Universita di Perugia, ITALY
email: {baioletti, milani, poggioni, rossi}@dipmat.unipg.it

Abstract

In this paper a planning framework based on Ant
Colony Optimization techniques is presented. It is well
known that finding optimal solutions to planning prob-
lems is a very hard computational problem. Stochastic
methods do not guarantee either optimality or complete-
ness, but it has been proved that in many applications
they are able to find very good, often optimal, solutions.
We propose several approaches based both on backward
and forward search over the state space, using several
heuristics and testing different pheromone models in or-
der to solve sequential optimization planning problems.

Introduction

Optimal sequential planning is a very hard task which con-
sists on searching for solution plans with minimal length or
minimal total cost. The cost of a plan is an important feature
in many domains because high cost plans can be useless,
almost like non executable plans. Several approaches to op-
timization planning have been recently proposed (Helmert,
Do, and Refanidis 2008).

The main contribution of our work consists in investi-
gating the application of the well known Ant Colony Opti-
mization (ACO) meta–heuristic (Dorigo and Stuetzle 2004;
Dorigo and Gambardella 1997) to optimal propositional
planning. ACO is a meta–heuristic inspired by the behaviour
of a natural ants colony that has been successfully applied to
many Combinatorial Optimization problems. The first ap-
plication of ACO to planning has been proposed very re-
cently (Baioletti et al. 2009). The approach, although still
preliminary, seems promising since it has been shown that
stochastic approaches to planning can perform very well
(Gerevini and Serina 2002). ACO seems suitable for plan-
ning because there is a strong analogy between the con-
struction solution process of ACO and planning as progres-
sive/regressive search in the state space. The basic idea is to
use a probabilistic model of ants, in which each ant incre-
mentally builds a solution to the problem by randomly se-
lecting actions according to the pheromone values deposited
by the previous generations of ants and to a heuristic func-
tion.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this work we extend (Baioletti et al. 2009) by propos-
ing several pheromone models for planning and different
pheromone updating strategies. We also investigate an orig-
inal extension of ACO-based backward techniques to plan-
ning. Moreover the integration of known planning heuris-
tics in the ACO model are proposed. The forward ACO
model employs the Fast Forward (FF) heuristic (Hoffmann
and Nebel 2001), while in the backward version the heuristic
h2 in the hm family (Haslum, Bonet, and Geffner 2005) is
used. Implementations of proposed models have been tested
in order to understand how the performance varies with re-
spect to different domain classes.

Ant Colony Optimization

Ant Colony Optimization (ACO) is a meta–heuristic used
to solve combinatorial optimization problems, introduced
in the early 90s by (Dorigo and Stuetzle 2004), whose in-
spiration comes from the foraging behavior of natural ant
colonies.

ACO uses a colony of artificial ants, which move on
the search space and build solutions by composing discrete
components. The construction of a solution is incremental:
each ant randomly chooses a component to add to the partial
solution built so far, according to the problem constraints.
The random choice is biased by the pheromone value τ re-
lated to each component and by a heuristic function η. Both
terms evaluate the appropriateness of the component. The
probability that an ant will choose the component c is

p(c) =
[τ(c)]α[η(c)]β∑
x[τ(x)]α[η(x)]β

(1)

where the sum on x ranges on all the components which can
be chosen, and α and β are tuning parameters for pheromone
and heuristic contributions.

The pheromone values represent a kind of memory shared
by the ant colony and are subject to updating and evapora-
tion. In particular, the pheromone can be updated at each
construction step or for complete solutions (either all or the
best ones) in the current iteration, possibly considering also
the best solution of the previous iterations. The update phase
is usually performed by adding to the pheromone values as-
sociated to components of the solution s an increment Δ(s)

334

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling



which depends on a solution quality function F (s). 1

The pheromone evaporation has the purpose of avoiding
a premature convergence towards not optimal solutions and
it is simulated by multiplying the pheromone value τ by a
factor 1 − ρ, where 0 < ρ < 1 is the evaporation rate.

The simulation of the ant colony is iterated until a satis-
factory solution is found, an unsuccessful condition is met
or after a given number of iterations.

ACO has been used to solve several combinatorial opti-
mization problems, reaching in many cases state of the art
performance, as shown in (Dorigo and Stuetzle 2004).

ACO and Planning

In this section we describe two different search algorithms
which use ACO methodologies to solve optimization prob-
lems for propositional planning.

Forward Ants

In this first approach, ants are used to perform a forward
search through the state space. The ants build a plan starting
from the initial state s0 executing actions step by step. Each
ant draws the next action to execute in the current state from
the set of executable actions. The choice is made by tak-
ing into account the pheromone value τ(a) and the heuristic
value η(a) for each candidate action a with a formula sim-
ilar to (1). Once an action a is selected, the current state is
updated by means of the effects of a.

Choosing always only executable actions means that the
entire plan is executable in the initial state. The construction
phase stops when a solution is found (the goals are true in
the current state), a dead end is encountered (no action is
executable) or an upper bound Lmax for the the length of
action sequence is reached.

Pheromone models The first choice is what is a solution
component in terms of pheromone values. While it is clear
that actions take surely part of components, it would be
worth to add further information in order to perform a more
informed choice. Therefore the function τ(a) can also de-
pend on other data locally available to the ant.

However we have also studied a simple pheromone
model, called Action, in which τ depends only on the action
and nothing else.

We have designed and implemented four different
pheromone models.

In the State–Action model τ also depends on the current
state s. This is by far the most expensive pheromone model,
because the number of possible components is exponential
with respect to the problem size. On the other hand, the
pheromone values have a straightforward interpretation as
a policy (although in terms of a preference policy): τ(a, s)
represents how much it is desirable (or better, it has been
useful) to execute a in the state s.
In the Level–Action model τ also depends on the time step
in which the action will be executed. This model is clearly

1For minimization problem whose objective function is f , F (s)
is a decreasing function of f .

more parsimonious then the state–action, but its interpreta-
tion is less clear. A drawback is that the desirability of an
action at a time step t is unrelated to the values for close
time steps, while if an action is desirable at time 2, i.e. at an
early planning stage, it could also be desirable at time 1 and
3.
To solve this problem we introduce the Fuzzy level–Action
model which is the fuzzified version of the previous model:
the pheromone used for the action a to be executed at time t
can be seen as the weighted average of the pheromone val-
ues τ(a, t′) for a and for t′ = t − W, . . . , t + W computed
with the level–action model. The weights and the time win-
dow W can be tuned by experimental results.
In the Action–Action model the pheromone also depends on
the last executed action. This is the simplest way in which
the action choice can be directly influenced by the previ-
ous choices: using just the last choice is a sort of first order
Markov property.

As we will discuss in the conclusion, this list of
pheromone models is by no means exhaustive and many
other pheromone models could be invented and tested.

Heuristic function The function η(a) is computed as fol-
lows. First, we compute the state s′ resulting from the exe-
cution of a in the current state s. Then the heuristic function
hFF (s′), defined in the FF planner (Hoffmann and Nebel
2001), is computed as a distance between the state s′ and
the goals. Therefore we set

η(a) =
1

hFF (s′)

The computation of hFF (s′) can also give a further infor-
mation, a set H of helpful actions, i.e. actions which can be
considered as more promising. For the actions in H we use
a larger value of η, defining

η(a) =
1

(1 − k)hFF (s′)

where k ∈ [0, 1].

Plan evaluation Plans are evaluated with respect to two
different parameters. Let π a plan with length L and Sπ =<
s0, s1, . . . , sL > the sequence of all the states reached by π,
then

hmin(π) = min{hFF (si) : si ∈ Sπ}

and

tmin(π) = min{i : hFF (si) = hmin(π)}

hmin(π) is the distance (estimated by the heuristic func-
tion) between the goals and the state closest to the goals.

tmin(π) is the time step at which the minimum distance
is firstly obtained.

Note that, for a solution plan, hmin(π) = 0 and tmin(π)
corresponds to the length of π.

A possible synthesis of these two parameters is given by

P (π) = tmin(π) + Whmin(π)

where W > 1 is a weight which gives a large penality to
non valid plans and then drives the search process towards
valid plans.

335



Pheromone updating We have implemented a Rank Ant
System pheromone update method (Bullnheimer, Hartl, and
Strauss 1999), which operates as follows.

The updating process is performed only at the end of each
iteration. First, all the pheromone values are evaporated by
a given rate ρ; then, the solutions in the current iteration are
sorted in the decreasing order with respect to P .

Let π2, . . . , πσ the σ−1 best solutions found in the current
iteration and let π1 the best solution found so far, then the
pheromone value τ(c) for the component c is increased by
the value Δ(c) =

∑σ

i=1(σ + 1 − i)Δi(c) where

Δi(c) =

{
1

P (πi)
if c takes part in πi

0 otherwise

The algorithm The optimization process continues for a
given number N of iterations. In each of them na ants build
plans with a maximum number of actions Lmax. c is the ini-
tial value for pheromone. The pseudo code of the resulting
algorithm is shown in Algorithm 1.

Algorithm 1 The algorithm ACOPlan-F

1: πbest ← ∅
2: InitPheromone(c)
3: for g ← 1 to N do
4: for m ← 1 to na do
5: πm ← ∅
6: state ←initial state of the problem
7: for i ← 1 to Lmax and state is not final do
8: Ai ← feasible actions on state
9: ak ← ChooseAction(Ai)

10: extend πm with ak

11: update state
12: end for
13: end for
14: Update(πbest)
15: Sort(π1, . . . , πna

)
16: UpdatePheromone(πbest, π1, . . . , πσ−1, ρ)
17: end for

Backward Ants

The other possibility is to use backward ants. The construc-
tion phase operates in a backward direction: the ants start
from the goals and, at each time step, they choose an ac-
tion among those which reaches at least one current subgoal,
without deleting any other subgoal. After having chosen an
action a, the current subgoal set is updated by regression
with respect to a.

In this way, the created sequences are always compatible
with all the subgoals. The construction phase stops when a
solution is found (all the current subgoals are true in the ini-
tial state), a dead end is encountered (no action is compatible
with subgoals) or the upper bound Lmax is reached.

Pheromone models The same considerations seen for the
pheromone models of forward ants can also be reformu-
lated for backward ants. We thus propose five differ-
ent pheromone models. The models Action, Level–Action,

Fuzzy Level–Action and Action–Action are similar to those
defined for forward ants. The only difference is that the level
number is counted from the goal, instead of the initial state.

While the State–Action model cannot be defined in this
framework, as subgoals are not complete states, it is possible
to define a new model, called Goal–Action in which τ also
depends on the goal which is reached by a. This model has
a nice interpretation in that τ(a, g) quantifies how much it is
promising to reach the goal g by executing a.

Heuristic function The heuristic value for an action a is
computed by means of the function h2

HSP , described in
(Haslum, Bonet, and Geffner 2005), which estimates the dis-
tance between the initial state and the subgoals g′, obtained
by regression of the current subgoals with respect to a.

Besides the fact that h2
HSP is suited for a backward

search, it is important to note that most of the operations
needed to compute it are performed only once, at the begin-
ning of the search process. Moreover it is worth to notice
that h2

HSP can be easily adapted to planning problems in
which actions can have a non fixed cost.

Plan evaluation and pheromone update The plans are
evaluated in a similar way as done for forward ants, ex-
cept that hmin is defined in terms of the sequence Gπ =<
g0, g1, . . . , gL > of subgoal sets generated by π.

Also the pheromone update process is exactly the same.
Note that, also in this case, hmin(π) = 0 if and only if π is
a valid plan and thus, for valid plans, P (π) reduces to the
length of π.

The algorithm The algorithm, called ACOPlan–B, is very
similar to ACOPlan–F and will not be reported. The only
relevant difference is that the state is replaced by the sub-
goals set.

Experimental results

We chose to compare ACOPlan with the LPG system
(Gerevini and Serina 2002). The choice is twice motivated:
LPG is a stochastic planner and it is very efficient from both
a computational and a solution quality point of view. In
fact, when it runs with particular settings 2, it gives solu-
tion plans with, in general, a number of actions very close to
the optimum (often it can find solutions with the optimum
number of actions). The test are running in two parallel
tracks, the first one for ACOPlan–F and the second one for
ACOPlan–B. The focus of this section is on the first track,
because the results for the second track are too preliminar
to be presented and many aspects of the implementation are
under revision. The first track evaluates the performance of
ACOPlan–F with respect to the different pheromone models
using some domains taken from the International Planning
Competitions (IPC).

So far we have run a set of systematics tests over the do-
mains Rovers, Driverlog and Satellite from IPC3 and the
domains Openstacks, Parcprinter and Pegsol from IPC6.
These domains have been chosen among the set of bench-

2In our experiments we used the -n modality with high values
of n.

336



Figure 1: Results collected for the domains DriverLog (DRV),Openstacks (OPN), ParcPrinter (PRC), Satellite (SAT), PegSol
(PEG) and Rover (RVR)

marks because they offer a good variety and the correspond-
ing results allow us interesting comments.

ACOPlan–F has many parameters that have to be chosen.
After systematic tests we decided to use this setting: 10 ants,
5000 iterations, α = 2, β = 5, ρ = 0.15, c = 1, k = 0.5.

Since both systems are non deterministic planners, the re-
sults collected here are the mean values obtained over 100
runs. Both the systems ran with the time-limits of 600 secs.

In Fig.1 we summarize the global results along three di-
mensions: the minimum and the average values of the so-
lution length, and the average CPU time spent to extract
the solution plan with minimum length in each run. The
histograms show the results for the comparison between
ACOPlan and LPG. Each graph collects the results along
one of the three dimensions (respectively minimum solution
length, average solution length and average CPU time) for
all the cited domains, representing with different coloration
the cases when ACOPLan is the winner, the cases when LPG
is the winner and the cases ended in a draw (represented by
Par in the graph).
The results we collected show that ACOPLan–F is compara-
ble with LPG both in terms of solution quality and in terms
of the computation time.

Conclusions and Future Works

In this paper we have described a planning framework based
on Ant Colony Optimization meta–heuristic to solve opti-
mal sequential planning problems. The preliminary empir-
ical tests have shown encouraging results and that this ap-
proach is a viable method for optimization in classical plan-
ning. For these reasons we are thinking to improve and ex-
tend this work in several directions.
We are planning to perform extensive sets of experiments
in order to compare the different pheromone models and to
contrast the difference between forward and backward ants.
Another possibility could be to define other pheromone
models and using different ACO techniques.
The heuristic function used for forward ants should be re-
placed with a heuristic function which can handle action

costs, following the approach proposed in the FF(ha) sys-
tem (Helmert, Do, and Refanidis 2008).

Finally, we are considering to apply ACO techniques
also to other types of planning. The extensions of classical
planning which appear to be appealing for ACO are plan-
ning with numerical fluents and planning with preferences,
which are optimization problems as well.

References
Baioletti, M.; Milani, A.; Poggioni, V.; and Rossi, F. 2009.
An aco approach to planning. In In Proc of the 9th Euro-
pean Conference on Evolutionary Computation in Combi-
natorial Optimisation, EVOCOP 2009.

Bullnheimer, B.; Hartl, R. F.; and Strauss, C. 1999. A
new rank based version of the ant system - a computational
study. Central European Journal for Operations Research
and Economics 7:25–38.

Dorigo, M., and Gambardella, L. M. 1997. Ant colony
system: A cooperative learning approach to the traveling
salesman problem. IEEE Transactions on Evolutionary
Computation 1(1):53–66.

Dorigo, M., and Stuetzle, T. 2004. Ant Colony Optimiza-
tion. Cambridge, MA, USA: MIT Press,.

Gerevini, A., and Serina, I. 2002. Lpg: a planner based
on local search for planning graphs. In Proceedings of
the Sixth International Conference on Artificial Intelli-
gence Planning and Scheduling (AIPS’02), AAAI Press,
Toulouse, France.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planning. In Proc.
of AAAI 2005), 1163–1168.

Helmert, M.; Do, M.; and Refanidis, I. 2008. Inter-
national planning competition ipc-2008, the deterministic
part. http://ipc.icaps-conference.org/.

Hoffmann, J., and Nebel, B. 2001. The ff planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253 – 302.

337


	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences




