
Planning for Concurrent Action Executions Under Action Duration
Uncertainty Using Dynamically Generated Bayesian Networks

Eric Beaudry and Froduald Kabanza and Francois Michaud
Universite de Sherbrooke

Sherbrooke, Quebec, Canada
eric.beaudry@usherbrooke.ca, kabanza@usherbrooke.ca, francois.michaud@usherbrooke.ca

Abstract

An interesting class of planning domains, including planning
for daily activities of Mars rovers, involves achievement of
goals with time constraints and concurrent actions with prob-
abilistic durations. Current probabilistic approaches, which
rely on a discrete time model, introduce a blow up in the
search state-space when the two factors of action concurrency
and action duration uncertainty are combined. Simulation-
based and sampling probabilistic planning approaches would
cope with this state explosion by avoiding storing all the ex-
plored states in memory, but they remain approximate so-
lution approaches. In this paper, we present an alternative
approach relying on a continuous time model which avoids
the state explosion caused by time stamping in the presence
of action concurrency and action duration uncertainty. Time
is represented as a continuous random variable. The depen-
dency between state time variables is conveyed by a Bayesian
network, which is dynamically generated by a state-based
forward-chaining search based on the action descriptions. A
generated plan is characterized by a probability of satisfying
a goal. The evaluation of this probability is done by making
a query the Bayesian network.

Introduction

Concurrent actions and time uncertainty - that is, uncertainty
related to the duration of actions and the occurrence of their
effects - are among the key factors of complexity in a num-
ber of planning domains. They are in particular important in
the Mars rovers planning domain which deals with the deci-
sion of daily activities for the rovers (Bresina et al. 2002). A
rover may be navigating to a given point to collect samples,
while at the same time initializing its sensors, or transmitting
data of previously analyzed samples. In general the time at
which the different effects of an operation occur is not pre-
determined. Navigation speed, for instance, is not constant.

Time uncertainty can in principle be dealt with using cur-
rent probabilistic planning approaches. In particular, Con-
current Markov Decision Processes (CoMDP) (Mausam and
Weld 2004) and Concurrent Probabilistic Temporal Plan-
ning (CPTP) (Mausam and Weld 2006) were designed to
deal with domains involving actions with probabilistic ef-
fects and actions concurrency. These approaches rely on a

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

discrete time model, so that the search space is a space of
world states extended with numeric time stamps. An action
having an effect with time uncertainty would be modeled by
nondeterministic effects, as many as the possible time points
at which the effect may occur. The application of an action
to a world state would result in each nondeterministic effect
yielding a corresponding time stamped state, resulting in a
combinatorial explosion in the search space.

We are currently investigating an alternative planning ap-
proach avoiding the combinatorial state explosion incurred
by the time stamping of states. We introduce a new approach
addressing uncertainty related to the duration of actions or
the occurrence of their effects. The search space is still mod-
eled as a space of world states, but time is modeled using a
set of continuous random variables instead of numeric time
stamps. Time random variables are associated to features of
states to track the time at which the assigned values become
valid. A Bayesian network is used to maintain the depen-
dency relationship between the time random variables. It is
dynamically generated by the forward-chaining state-space
search via the application of actions to world states. The
search process queries the Bayesian network to determine
the probability that the goal is achieved in a given state of
the state-space explored so far. It also estimates the expected
makespan of a plan. As a first step, our planner produces
non-conditional plans which are robust to uncertainty.

The attachment of time random variables to state features
and the inference in the Bayesian network to answer queries
by the search process introduce a new overhead. On the
other hand, we no longer have time stamps for all uncer-
tain time points for action effects. Our hypothesis is that,
for many interesting domains, the savings obtained by the
elimination of the combinatorial state explosion due to time
stamping outweighs the overhead incurred by the time track-
ing of state features. So far we validated this hypothesis on
the International Planning Competition (IPC) Transport and
Mars rovers domains, modified to introduce uncertainty on
action durations.

In the next section, we introduce basic concepts and def-
initions necessary for the description of the planning algo-
rithm. This is followed by the planning algorithm, experi-
ments, related work discussion, and a conclusion.

10

Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS 2010)

Basic Concepts and Definitions

State variables are used to describe state features (Nebel
2000). The set X = {x1, ..., xn} defines all state variables,
each one describing a particular feature of the world state.
A world state is an assignment of values to the state vari-
ables and action effects (state updates) are changes of vari-
able values. A state variable with a corresponding value is
also called a state feature. The domain of values for a vari-
able x is noted Dom(x). It is assumed that no exogenous
events are present; only planned actions cause state changes.

There are two kinds of continuous random variables for
representing uncertainty on time: time events (T) and action
durations (D). A time random variable t ∈ T marks the
occurrence of an event, occurring either at the start or at the
end of an action. An event represents a change of the values
of a set of state variables. The time random variable t0 ∈
T is reserved for the time of the initial world state. Each
action a has a duration represented by a random variable
da ∈ D. Each time random variable t ∈ T has an equation
which defines the time at which t occurs as a function of
other random variables. For instance, consider an action a
starting at time t0 and ending at time t1. Then, t1 is defined
by the equation t1 = t0 + da.

The set of action duration random variables is defined
by D = {da|a ∈ A} where A is the set of actions. The func-
tion PDFda

(u) : R
+ → R

+ gives the probability density
that the action a has a duration of u units of time. We make
the assumption that actions have independent durations. So
da and db are independent random variables if and only if
a �= b. Several executions of a same action are considered
to have the same duration. Executing action a twice has the
total duration 2da.

Hence a state is not associated with a fixed time stamp. It
rather describes the current world state using a set of state
features, that is, a set of value assignations for all state vari-
ables X . There is no uncertainty about the values being
assigned to state variables. The only uncertainty is about
when the assigned values of state variables become valid.
The function V (x) models this uncertainty by mapping each
state variable to a corresponding time random variable.

The specification of actions follows the extensions intro-
duced into PDDL 2.1 (Fox and Long 2003) for expressing
temporal planning domains. Roughly, an action a is a tu-
ple a=(name, cstart, coverall, estart, eend, da) where
cstart is the set of at start conditions that must be satisfied
at the beginning of the action, coverall is the set of persis-
tence conditions that must be satisfied over all the duration
of the action, and estart and eend are respectively the sets
of effects at start and at end of the action. The duration of
the action is probabilistically specified by the random vari-
able da ∈ D. The condition c is a boolean expression over
state variables. The expression vars(c) returns the set of
all state variables that are referenced by a condition c. An
effect e = (x, exp) specifies the assignation of the value
resulting from the evaluation of expression exp to the state
variable x. Expressions conds(a) and effects(a) return re-
spectively all conditions and all effects of action a. The set
of all actions is denoted by A.

An action a is applicable in a state s if and only if s satis-

fies all at start and over all conditions of a (denoted s |= a).
A condition c ∈ conds(a) is satisfied in state s if c is satis-
fied by the current assigned values of state variables of s.

A state s is defined by s = (U, V, P) where U is a to-
tal mapping function U(x) : X → Dom(x) that gives the
current assigned value for each state variable x; V is a to-
tal mapping function V (x) : X → T that gives the time at
which the assignation x = U(x) becomes valid; and P a
total mapping function P (x) : X → 2T that gives the set of
time random variables associated to persistence conditions
on x. Persistence conditions are used to track over all con-
ditions of actions. Each time random variable t ∈ P (x)
imposes that state variable x cannot be changed before time
t. Time t ∈ P (x) is also called the release time of a per-
sistence condition on x. A state variable x has always an
implicit persistence condition until its corresponding valid
time, i.e. V (x) ∈ P (x).

A goal G is a conjunction of timed goal state features.
A timed goal state feature g = (x, v, t) means that state
variable x has to be assigned the value v within t ∈ R

+

time. We use t = +∞ to specify the absence of a dead-
line for goal achievement. A planning problem is defined by
(A, s0, G,m) where A is the domain definition (set of ac-
tions in PDDL), s0 is the initial world state, G is the goal to
reach, and m is a metric function to optimize.

Consider the Transport planning domain in which trucks
have to deliver packages distributed over a map. We have
a set of n trucks R = {r1, ..., rn}, a set of m packages
P = {p1, ..., pm} and a map of k locations L = {l1, ..., lk}.
A package is either at a location or loaded onto a truck.
There is no limit on the number of packages a truck can
transport at the same time and on the number of trucks that
can be parked at the same location. The specification of
actions is given in Table 1. The action Goto(ri, la, lb) de-
scribes the moving of a truck ri from location la to loca-
tion lb. The duration of a Goto action is modeled using
a normal distribution where both the mean and the stan-
dard deviation are proportional to the distance to be trav-
eled. Load and Unload actions specify the loading and the
unloading of a package by a truck. The duration of these
actions is defined by a uniform distribution. The set of state
variables X = {C[r]|r ∈ R} ∪ {C[p]|p ∈ P} specifies
the current location of trucks and packages. The domain
of variables is defined as Dom(C[r]) = L (∀r ∈ R) and
Dom(C[p]) = L ∪ R (∀p ∈ P). A goal G is a conjunc-
tion of n subgoals (pk, lk, dtk) for 0 < k ≤ n where each
subgoal specifies that package pk ∈ P must be delivered to
location lk ∈ L before due time dtk ∈ R

+.

Planning Algorithm
The planning algorithm performs a forward-chaining search
in a space of states. The state-space explored at a given point
is a graph, with nodes corresponding to states and transitions
to actions. In addition to the search graph, the planner gen-
erates a Bayesian network to track the dependency relation-
ship between the random variables which define the time of
events and the duration of actions. This is a directed acyclic
graph B = (N, E) where N = T ∪ U is a set of random
variables and E is a set of edges representing dependencies

11

Goto(ri, la, lb)
cstart CurrentLocation[ri] = la
eend CurrentLocation[ri] = lb
duration Normal(dist/speed, 0.2 ∗ dist/speed)

Load(ri, pj , lk)
cstart CurrentLocation[pj] = lk
coverall CurrentLocation[ri] = lk
eend CurrentLocation[pj] = ri

duration Uniform(30, 60)
Unload(ri, pj , lk)
cstart CurrentLocation[pj] = ri

coverall CurrentLocation[ri] = lk
eend CurrentLocation[pj] = lk
duration Uniform(30, 60)

Table 1: Actions specification of Transport domain

between random variables. Dependencies in the Bayesian
network follow from the equations of the time random vari-
ables, which are derived by the application of an action to a
current state.

Figure 1 illustrates an example of a Bayesian network
composed of six random variables where the initial time is
denoted by t0 = 0. Random variables dGoto(r1,l1,l3) and
dGoto(r2,l2,l3) follow a normal distribution and represent the
duration of the corresponding actions. The time random
variables t1 and t2 specify the end time of two actions started
at t0. The time random variable t3 = max(t1, t2) defines
the earliest time at which both actions will be completed.

�� ���

�� ��������	
�
��������� ��

�	
�
��������� ���������

�� ������������

�	
�
����������� ���������

��������	
�
�����������

Figure 1: Sample Bayesian Network

The planning algorithm handles concurrency and de-
layed effects differently from a traditional model for con-
currency (Bacchus and Ady 2001). A delayed effect for an
action is one specified to hold at a given point of time after
the execution of an action. In a traditional implementation,
time is associated to states in the state-space. We have tran-
sitions along which time freezes to interleave simultaneous
actions; and transitions updating the time stamp. The search
process manages delayed effects by registering them in an
event queue attached to states. A special advance time ac-
tion activates the delayed effects whenever appropriate.

In our approach, time is not attached to state. It is rather
directly attached to state features; therefore there is no need
of a delayed effect queue and the special advance time ac-
tion. Time increment is tracked by the time variables at-

tached to time features. A time variable for a feature is up-
dated by the application of an action only if the effect of the
action changes the feature; the update reflects the delayed
effect on the feature.

Algorithm 1 shows the entry point of the planning algo-
rithm. The planner searches for a plan which, when executed
has a probability of success higher than a given threshold,
and which optimizes the metric m. The choice of an ac-
tion a at Line 5 is a backtrack choice point. Heuristics are
involved to guide the choice.

Algorithm 1 Plan

1. PLAN(s, G, A, m)
2. if Pb(s |= G) ≥ threshold
3. π ← ExtractPlan(s)
4. return π
5. nondeterministically choose a ∈ {a ∈ A | a |= s}
6. s′ ← Apply(s, a)
7. return a+Plan(s′, G, A, m)

Algorithm 2 Apply Action Function

1. function APPLY(s, a)
2. s′ ← s
3. tconds ← maxx∈vars(conds(a)) s.V (x)
4. trelease ← maxx∈vars(effects(a)) max(s.P (x))
5. tstart ← max(tconds, trelease)
6. tend ← tstart + da

7. for each c ∈ a.coverall
8. for each v ∈ vars(c)
9. s′.P (x) ← s′.P (x) ∪ {tend}

10. for each e ∈ a.estart
11. s′.U(e.x) ← eval(e.exp)
12. s′.V (e.x) ← tstart

13. s′.P (e.x) ← {tstart}
14. for each e ∈ a.eend
15. s′.U(e.x) ← eval(e.exp)
16. s′.V (e.x) ← tend

17. s′.P (e.x) ← {tend}
18. returns s′

The Apply function of Algorithm 2 details how a resulting
state s′ is obtained by the application of an action a in a state
s. The start time of an action is defined as the earliest time at
which its requirements are satisfied in the current state. Line
3 builds the time tconds which is the earliest time at which
all at start and over all conditions are satisfied. This time
corresponds to the maximum of all time random variables
associated to the state variables referenced in the action’s
conditions. Line 4 builds time trelease which is the earliest
time at which all persistence conditions are released on all
state variables modified by an effect. Then at Line 5, the
time random variable tstart is created. Indeed, its equation
is the max of all time random variables collected in Lines
3-4. Line 6 creates the time random variable tend with the
equation tend = tstart + da. Once created, the time random
variables tstart and tend are added to the Bayesian network
if they do not already exist. Lines 7-9 add a persistence con-

12

dition which expires at tend for each state variable involved
in an over all condition. Lines 10-17 process at start and at
end effects. For each effect on a state variable, they assign
this state variable a new value, set the valid time to tstart

and add tend to the set of persistence conditions.
Figure 2 illustrates an example of a partial search car-

ried out by Algorithm 1. Expanded states are shown in (a).
Each state has three state variables which represent respec-
tively the current location of trucks r1 and r2 and of package
p1. All state variables of the initial state s0 are associated
with the time random variable t0 which represents the ini-
tial time. Subfigure (b) shows the generated Bayesian net-
work; it shows the equations of time random variables and
the probability distributions followed by the action duration
random variables.

The state s1 is obtained by applying the action
Goto(r1, l1, l3) to state s0. The Apply function (see Algo-
rithm 2) works as follows. The action Goto(r1, l1, l3) has
the at start condition C[r1] = l1. Because C[r1] is asso-
ciated to t0, we have tconds = max(t0) = t0. Since the
action modifies C[r1], which is associated to trelease, time
trelease = max(t0) = t0. At Line 5, the action start time is
thus defined as tstart = max(tconds, trelease) = t0 which
already exists. Then at Line 6, the time random variable
tend = t0 + dGoto(r1,l1,l3) is created and added to the net-
work with the label t1. Next, Lines 13-16 apply effects by
performing the assignation C[r1] = l3 and by setting time
t1 as the valid time for C[r1].

Applying action Unload(r1, l3, p1) in state s3 creates
state s4. The action has two preconditions C[r1] = l3 and
C[p1] = r1, which are respectively associated to t1 and t0.
This, the start time of this action is max(t0, t1) which could
be simplified to t1 because t0 is an ancestor of t1. The end
time is specified by t3 = t1 + dUnload(r1,l3,p1). Since the
action has an over all condition, a persistence condition is
added on the state variable C[r1], which must hold until
the end time t3 (noted within [] in the figure). The action
Load(r2, l3, p1) has two at start conditions: C[r2] = l3 and
C[p1] = l3. Since state variables C[r2] and C[p1] are valid
at times t2 and t3 respectively, the action start time is defined
by a new time random variable t4 = max(t2, t3).

Bayesian Network Inference Algorithm

A Bayesian network inference algorithm is required to esti-
mate the probability of success and the expected makespan
of plans. The choice of an inference algorithm for Bayesian
networks is guided by the structure of the Bayesian network
and on the type of the random variables it includes (Dar-
wiche 2009). In our case, the Bayesian network has con-
tinuous random variables. In this case, analytical inference
methods are possible if one can impose some restrictions on
the allowed probability distributions. In particular, a nor-
mal distribution is often used because its definition by two
parameters (mean μ and standard deviation σ) makes it suit-
able for analytical approaches.

In our approach, the time random variables (T) cannot be
constrained to follow normal distributions since their equa-
tions may contain several instances of the maximum opera-
tor. Even if two random variables a and b were normally

distributed, the resulting random variable would not be a
normal distribution because of the manipulations involved
in the equations defining variables in our approach.

Our approach leads to arbitrary forms of probabilistic
distributions. Because there exists no exact and analytic
method for Bayesian networks having arbitrary types of dis-
tribution, approximate inference algorithms have to be used.
For this reason, we use a direct sampling algorithm for the
Bayesian network inferences (Darwiche 2009).

Using a Bayesian network inference algorithm introduces
an overhead. The direct sampling algorithm runs in O(n·m)
where n = |T |+ |D| is the number of nodes in the Bayesian
network, and m is the number of samples generated. The
estimation error is inversely proportional to the squared root
of the number of generated samples m.

Incremental Belief Evaluation The Bayesian network is
dynamically built during the search process. Its extensions
are made with Algorithm 2. Once a new time random vari-
able is created (see tstart and tend in the algorithm), it is
added to the Bayesian network and its belief is immediately
estimated. The belief on time random variables is required
by the heuristic function and to estimate the probability that
a plan satisfies time constraints.

Because the Bayesian network is dynamically generated,
we want to avoid evaluating the whole Bayesian network
each time a new random variable is added. In the worst
case, adopting this strategy would indeed require n(n−1)/2
evaluations for a network of n nodes. To reduce computation
time, the generated samples are kept into memory into an ar-
ray for each random variable. The ith samples of all random
variables correspond to a simulation of the whole Bayesian
network. When adding a new random variable, new samples
are generated by considering the samples of the parent vari-
ables. Thus the computation cost of incremental evaluation
of a Bayesian network is equivalent to one evaluation of the
entire network.

For small networks, keeping all samples in memory may
not be a problem. However, this is not the case for larger
networks. Therefore, we rather adopt a caching mechanism
that keeps the generated samples of the most recently ac-
cessed random variables. This strategy offers a good trade-
off between efficiency and memory requirement.

Heuristics

In order to be efficient, forward-chaining search based plan-
ners require heuristics. For instance, the Fast-Forward (FF)
planner introduced a domain independent and admissible
heuristic called Relaxed GraphPlan (RGP) (Hoffmann and
Nebel 2001). Basically, RGP generates a relaxed plan using
a simplified GraphPlan algorithm which ignores delete (neg-
ative) effects. The extracted plan is used to estimate a lower
bound on the number of actions (or the remaining cost) re-
quired to reach the goal. This heuristic has been adapted for
state-based temporal planners (Do and Kambhampati 2003).

We adapted the RGP heuristic to domains having action
concurrency and time uncertainty. Because our planner is
based on a state-variable representation, instead of tracking
minimal appearing time (cost) of each literal, the minimal

13

��

������	
���
�����	���
�����������

��������	��	
�

�

������	����

�����	
��

�����������

�

������	
���

�����	
��

�����������

��

������	
�����
�

�����	
��

������	
��

��

������	
�����
�

�����	
������

����������

��

������	����

�����	
������

����������

��

������	����

�����	���

�����������

�������	�	
� ��������	��	
�

�������	�	
�
��	�������	
���� �������	
���� ��������	
�	��

(a) State space

��

��

��

������������	
�	
��

�

�����������	
	
��

��������	
�	
��

������	����

�������	
	
��

������	����

���
���

������	���

��

�������
���

�����

������	����
��

���������

��

������������	
�	
��

��

������	���

��������	
�	
��

������	����

(b) Bayesian network

Figure 2: Sample Search

valid time (cost) of each possible assignment of each state
variable is tracked. This is stored into the mapping function
Mc(x, v) : (X, Dom(x)) → R. Algorithm 3 describes the
heuristic function which estimates a lower bound of the ex-
pected cost of a plan generated by a forward-search from a
state s.

Line 2 initializes the Mc function to +∞ over its domain.
Then at Lines 3-4, the minimum cost for the current value of
each state variable is set to its valid time. Line 6 loops on all
possible actions a ∈ A. If an action can reduce the minimum
cost of an assignment x = v then Mc(x, v) is updated. The
loop of Line 5 performs updates until there is no minimum
cost reduction or until the goal is satisfied. The SatisfiedCost
function returns a lower bound on the cost required to satisfy
G by considering Mc.

Algorithm 3 Evaluate Heuristic Function

1. function EVALUATE HEURISTIC(s, G)
2. Mc(., .) ← +∞
3. for each x ∈ X
4. Mc(x, A(x)) ← T (x)
5. while SatisfiedCost(Mc, G)= +∞
6. for each a ∈ A
7. s ← build a state s from Mc ⇒ a |= s
8. s′ ← Apply(s, a)
9. for each x ∈ vars(effects(a))

10. Mc(x, A(x)) ← min(Mc(x, A(x)), s′.T (x))
11. return SatisfiedCost(Mc, G)

To speed up the evaluation of the heuristic function in Al-
gorithm 3, random variables are not manipulated. All cal-
culations are done using scalar values which are initialized
to the expected value of their corresponding random vari-
ables in the Bayesian network. Because time is probabilistic,
the makespan (or other cost criteria) of a plan is also proba-
bilistic. Definition 1 revises the notion of admissibility of a
heuristic defined in a domain with time uncertainty.

Definition 1 A heuristic is probabilistically admissible if
and only if it does not overestimate the expected cost of the
optimal plan to reach the goal.

Theorem 1 The heuristic function presented in Algo-
rithm 3 is probabilistically admissible when random vari-
ables are replaced by their expected values.

Proof. The Algorithm 3 is an adaption of RGP heuristic
for the state-variable representation. For fully determinis-
tic planning domains, it has been proven that this kind of
heuristic never overestimates the optimal cost (Hoffmann
and Nebel 2001; Do and Kambhampati 2003). Because it
ignores delete (negative) effects, the generated relaxed plan
is a sub-set of the optimal plan.

Now consider time uncertainty. As previously said, the
heuristic function is evaluated using scalar values rather than
random variables. We have to make sure that this relax-
ation never overestimates the expected cost of an optimal
plan. Basically, time random variables (T) are expressed
using two operators: (1) the sum operator to compute the
end time of an action, and (2) the max operator to compute

14

the start time of an action. When a sequence of actions a1,
..., an is planned, a time random variable te(an) is created
with an equation equivalent to te(an) = Da1 + ... + Dan .
The expected sum of the duration of the actions is given by
E[te(an)] = E[Da1 + ...+Dan

] = E[Da1]+ ...+E[Dan
].

The evaluation of the heuristic function returns the exact
same duration because it sums up the expected values of
each duration: Heuristic(te(an)) = E[Da1]+...+E[Dan

].
Thus the evaluation of time random variables based on a sum
is correct.

When an action b requires the completion of other actions
a1, ..., an, the start time of the action b is defined by a ran-
dom variable ts(b) = max(a1, ..., an). Here the evaluation
of the heuristic cannot overestimate the real expected value
since Heuristic(ts(b)) = max(E[Da1], ..., E[Dan

]) ≤
E[ts(b)] = E[max(Da1 , ..., Dan

)] (Jensen’s inequality).
Because relaxing calculation does not overestimate the
expected value, the heuristic is probabilistically admissi-
ble.

Finding Equivalent Time Random Variables

A fundamental step in a forward-chaining search algorithm
in a state-space is the ability to test whether a state s has
already been visited. Recall that two states are equivalent
if their mapping functions U, V, P are the same. The func-
tions V and P involve time random variables. Two time ran-
dom variables are equivalent if their equations are the same.
However, two time random variables could also be equiva-
lent even if their equations are not the same.

Consider a situation where two actions a1 and a2 cannot
be executed concurrently, and thus have to be executed se-
quentially. Time t0 is the initial time. Executing a1 and a2

successively leads to times t1 and t3. The reverse order leads
to times t2 and t4. Figure 3 shows the Bayesian network for
this situation.

�� �� ��

�� ������� ��������� ������� �������

��� ���� �����

�	 ������� ������������
 ������� �����������

��� ���� �����

Figure 3: Sample Bayesian Network

To identify equivalent time random variables, equations
could be rewritten into another form using only random vari-
ables having no dependencies to other time random vari-
ables. Examples of this alternate representation are dis-
played in the third block of each random variable rectangle
in Figure 3. By normalizing the way equations are written
(e.g. by sorting terms) equation comparison can be made
more efficient. Because the rewritten equations of t3 and t4
are the same, the variable t4 can be replaced by t3.

Empirical Results
We experimented our planning algorithm on two planning
domains inspired from the International Planning Competi-
tion (IPC). To this end, we adapted the Transport and Rovers

domains by introducing uncertainty on the duration of ac-
tions. The Transport domain is presented in Table 1. The
Rovers domain models problems where many rovers must
acquire data using a special sensor at different sites of inter-
ests (SOI) within time-window constraints. Then, the sensed
data has to be transmitted to the base station using a wire-
less link. The experiments were made on a computer with
an Intel Core 2 Quad 2.4 GHz and 2 GB of RAM.

As previously said, to deal with time uncertainty, our
planning approach is based on a continuous time model:
random variables are used to represent time. This avoids
the state-space explosion of discrete time model based ap-
proaches. However, our approach introduces an overhead
because it uses a Bayesian network to estimate the belief of
the random variables. Our hypothesis is that this overhead
outweighs the state-space explosion caused by the use of a
discrete time stamp in states.

To validate this hypothesis, a comparison has to be made
with a discrete time-based planner. Since CPTP (Mausam
and Weld 2006) planner is not available , we decided to im-
plement our own discrete time-based planner. Because im-
plementing a full featured CPTP planner would require too
much effort, we have implemented a CoMDP-based planner
which uses a discrete time model. The planning of simulta-
neous actions is achieved by combining several actions to-
gether (Boutilier 1996; Mausam and Weld 2004).

Table 2 reports the empirical results. The first and sec-
ond columns show the size of problems, expressed in terms
of the number of trucks and packages for the Transport do-
main and the number of rovers and SOI for the Rovers do-
main. The columns under our planner detail the number of
states generated, the number of random variables added to
the Bayesian Network, the number of evaluations of random
variables, the CPU time (in seconds) and the estimated ex-
pected makespan of plans. The absolute error on the esti-
mated expected makespan is bellow 3 units of time for a
95 % confidence level. For estimating the belief of a ran-
dom variable of the Bayesian Network, 5000 samples are
generated. We keep arrays of samples in memory for at
most 1000 random variables. Columns under Concurrent
MDP give the number of states, the expected makespan and
the CPU time. These experiments validate our hypothesis
that the overhead of managing random variables is largely
compensated by the state-space reduction incurred. Indeed,
our approach avoids the state-space blow up caused by hav-
ing different time stamps for each duration unit. A few tests
failed because they ran out of memory or reached the al-
lowed CPU time limit (180 seconds).

Related Work
The framework of Markov Decision Process (MDP) (Bell-
man 1957) provides a basis for many probabilistic artificial
intelligence (AI) planning frameworks. In its basic formu-
lation, MDP naturally fits in with the process of making se-
quential decisions under uncertainty. The Concurrent MDP
(CoMDP) (Mausam and Weld 2004) approach is an exten-
sion of the MDP framework designed to deal with concur-
rent actions, by using MDP transitions corresponding to sets
of combined (simultaneous) actions. The combined effect of

15

Transport Problem Our Planner Discrete Time Planner
Trucks Packages States RanVars Evals CPU E[Makespan] States CPU E[Makespan]

1 2 71 118 118 0.150 1435 21,349 3.43 1,435
1 3 220 320 320 0.257 1871 127,964 42.2 1,871
2 2 216 179 179 0.255 986 21,459 2.11 986
2 3 237 170 170 0.238 987 451,363 220 1,021
2 4 24,772 7,810 11,276 9.06 1,666 Fail
3 3 673 254 254 0.399 984 266,617 162 984
3 6 61,665 6,582 7,818 12.66 1,340 Fail
4 6 Fail Fail
4 8 76,106 6253 7197 8.3 1,255 Fail

Rover Problem Our Planner Discrete Time Planner
Rovers Sites States RanVars Evals CPU E[Makespan] States CPU E[Makespan]

1 2 50 49 49 0.073 1,653 18,297 3.42 1,653
1 3 109 80 80 0.111 1,966 142,835 50.3 1,966
1 4 330 154 154 0.300 2,666 51,765 239 2,666
1 5 406 156 156 0.353 2,892 Fail
2 4 6,018 431 431 1.55 1,963 341,937 186 2,013
2 6 12,445 423 423 9.72 2,515 Fail
2 8 85,830 1,312 1,363 224 4,571 Fail

Table 2: Empirical results for Transport and Rovers domains

a simultaneous set of actions is obtained based upon a con-
flict analysis of the actions. This results in a potential expo-
nential explosion, given that the planner has to consider all
possible action combination subsets in each state. One of the
main contributions of CoMDP consists in pruning strategies
to avoid exploring action combinations naively.

Another limitation of CoMDP is that a set of simultaneous
actions is considered as a macro-action having unique time
duration. Consequently, model actions with interleaved ef-
fects cannot be modeled unless the smallest possible time
unit that can separate any two effects in the domain is
adopted. This, however, would exacerbate the state explo-
sion.

The problems caused by considering simultaneous sets
of actions as macro-actions are solved by adopting an in-
terwoven epoch search space, similar to (Bacchus and Ady
2001). Actions have delayed effects which are stored in the
states’ event queue. Introduced in the CoMDP framework,
this yielded the Concurrent Probabilistic Temporal Planning
(CPTP) (Mausam and Weld 2006). Although the CPTP ap-
proach produces plans with smaller makespan than CoMDP,
it still leaves a huge state-space because of the discrete time
representation.

Planning with concurrent actions under time uncertainty
can be done using the Generate, Test, and Debug (GTD)
framework (Younes and Simmons 2004). The idea is to in-
voke a deterministic planner to obtain a deterministic plan.
The generated plan is then simulated to identify potential
failure points before execution. The plan is then robustified
by generating contingencies (once again using the determin-
istic planner) to patch failure points 1.

1The expression ”plan robustification” is from (Drummond and
Bresina 1990). They introduced a planning approach for incre-
mentally making a plan more robust by adding branches to deal

The plans simulation meant to identify failures points in-
volves Monte Carlo simulations. Once the failure points
have been identified, many strategies can be used to robus-
tify the plan. In general, finding the best insertion point
for plan robustification is an NP-hard decision, so heuris-
tic strategies must be used. A naive approach consists of
creating a conditional branch at each identified failure point.
This, however, has little benefit, given that the failure may
only be a reflection of a decision made earlier on the current
execution path. The insertion points can be randomly cho-
sen (Younes and Simmons 2004) or selected using planning
graph analysis (Dearden et al. 2003).

One advantage of these approaches over CoMDP and
CPTP is that they can model time and resources as continu-
ous quantities and are thus not limited to discrete ones. This
reduces the number of states and requires significantly less
memory. The disadvantages are that these approaches do not
guarantee completeness (Mausam and Weld 2006).

The Factored Policy Gradient (FPG) (Buffet and Ab-
erdeen 2009) is another planning approach that deals with
both concurrency and uncertainty. It is based on policy-
gradient methods borrowed from reinforcement learn-
ing (Sutton et al. 1999). To reduce computation efforts for
solving a MDP, policy-gradient methods introduce an ap-
proximation function to estimate states’ value during pol-
icy generation. Gradients are evaluated using Monte Carlo
simulations. To enable concurrency, FPG generates a global
factorized policy composed by local policies, each one con-
trolling a specific action.

There exist other approaches including Prottle (Lit-
tle, Aberdeen, and Thiebaux 2005) which is based La-

with contingencies. Their approach is reminiscent of the approach
outlined here, albeit they relied on backtracking search to identify
points worth robustifying rather than simulating plan executions.

16

beled Real-Time Dynamic Programming (LRTDP) and
GSMDP (Rachelson et al. 2008).

Conclusion and Future Work

This paper presents a new planning approach that extends
the forward-chaining search for dealing with action concur-
rency under time uncertainty. Our main contribution is the
introduction of a new state representation based on a contin-
uous time model instead of a discrete one. Rather than rep-
resenting time with a numeric time stamp attached to each
state, we associate each state variable to a continuous time
random variable. Random variables define the start and the
end times of actions, and their duration. The random vari-
ables are organized into a Bayesian network. A direct sam-
pling algorithm is used to estimate the probability of success
and the expected makespan of plans. We also adapted the
Relaxed Graph Plan heuristic for domains with time uncer-
tainty. Empirical experiments on probabilistic versions of
the Transport and Rovers domains show that our planner is
able to deal efficiently with actions concurrency under time
uncertainty.

Our approach is orthogonal to GTD in the sense that
our focus is not the generation of contingencies to improve
plans. While GTD relies on a deterministic planner which
ignores uncertainty, our planner considers uncertainty dur-
ing the search process. As future work, it could be interest-
ing to combine both approaches. The GTD framework first
finds a weak plan (with low probability of success) and then
inserts conditional branches to robustify it. We believe that
our planner could be used in a GTD approach instead of a
deterministic planner. The framework would first compute a
strong plan (high probability of success) and add conditional
branches to reduce the expected makespan. Each conditional
branch would capture opportunities arising if tasks are exe-
cuted faster than expected. This extension will enable direct
comparisons with other approaches having contingency.

Although we dealt with time uncertainty, our approach
may be generalized to resources uncertainty by adding other
random variables to represent resources. For instance, it
could be possible to add uncertainty on the amount of fuel
consumed by the trucks and rovers. Future work will also
include dynamic programming and over MDP techniques to
evaluate the quality of plans.

Acknowledgements

The authors gratefully acknowledge the contribution of
the Natural Sciences and Engineering Research Council of
Canada (NSERC) and the Fonds qubcois de la recherche sur
la nature et les technologies (FQNRT).

References

Bacchus, F., and Ady, M. 2001. Planning with resources and
concurrency: a forward chaining approach. In Proc. Interna-
tional Joint Conference on Artificial Intelligence, 417–424.
Bellman, R. E. 1957. Dynamic Programming. Princeton
University Press, Princeton, NJ.

Boutilier, C. 1996. Planning, learning and coordination in
multiagent decision processes. In Proc. Conference on The-
oretical Aspects of Rationality and Knowledge, 195–201.
Bresina, J.; Dearden, R.; Meuleau, N.; Smith, D.; and Wash-
ington, R. 2002. Planning under continuous time and re-
source uncertainty: A challenge for AI. In Proc. Conference
on Uncertainty in AI, 77–84.
Buffet, O., and Aberdeen, D. 2009. The factored policy-
gradient planner. Artificial Intelligence 173(5-6):722–747.
Darwiche, A. 2009. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press.
Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D.; and
Washington, R. 2003. Incremental contingency planning. In
Proc. ICAPS Workshop on Planning under Uncertainty.
Do, M., and Kambhampati, S. 2003. SAPA: A scalable
multi-objective metric temporal planner. Journal of Artifi-
cial Intelligence Research 20:155–194.
Drummond, M., and Bresina, J. 1990. Anytime synthetic
projection: Maximizing the probability of goal satisfaction.
In Proc. National Conference on Artificial Intelligence, 138–
144.
Fox, M., and Long, D. 2003. PDDL 2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Little, I.; Aberdeen, D.; and Thiebaux, S. 2005. Prottle:
A probabilistic temporal planner. In Proc. National Confer-
ence on Artificial Intelligence.
Mausam, and Weld, D. S. 2004. Solving concurrent markov
decision processes. In Proc. National Conference on Artifi-
cial intelligence, 716–722.
Mausam, and Weld, D. S. 2006. Probabilistic temporal plan-
ning with uncertain durations. In Proc. National Conference
on Artificial Intelligence.
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. Journal of Artificial
Intelligence Research 12:271–315.
Rachelson, E.; Fabiani, P.; Garcia, F.; and Quesnel, G. 2008.
A simulation-based approach for solving temporal markov
problems. In Proc. European Conference on Artificial Intel-
ligence.
Sutton, R. S.; Mcallester, D.; Singh, S.; and Mansour, Y.
1999. Policy gradient methods for reinforcement learning
with function approximation. In Proc. of Advances in Neural
Information Processing Systems, 1057–1063. MIT Press.
Younes, H., and Simmons, R. 2004. Policy generation for
continuous-time stochastic domains with concurrency. In
Proc. International Conference on Automated Planning and
Scheduling.

17

