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Abstract

Goal utility dependencies arise when the utility of achieving
a goal depends on the other goals that are achieved with it.
This complicates the planning procedure because achieving
a new goal can potentially alter the utilities of all the other
goals currently achieved. In this paper, we present an encod-
ing procedure that enables general-purpose Max-SAT solvers
to be used to solve planning problems with goal utility depen-
dencies. We compare this approach to one using integer pro-
gramming via an empirical evaluation using benchmark prob-
lems from past international planning competitions. Our re-
sults indicate that this approach is competitive and sometimes
more successful than an integer programming one – solving
two to three times more subproblems in some domains, while
being outperformed by only a significantly smaller margin in
others.

Introduction

In a classical planning problem, valid plans must achieve ev-
ery goal; however, when faced with limited resources, it is
often useful to relax this constraint and allow the planner to
make a trade-off between the benefit and cost of achieving a
set of goals. Such planning problems are often called partial
satisfaction or oversubscription problems. There is a grow-
ing body of research concerning how to utilize concepts of
utility and preference from decision theory in the solution
of such problems. This has produced a renewed interest in
modeling problems as integer programs due to their facility
for explicitly expressing an optimization function over solu-
tions. Despite integer programming (IP) lagging behind sat-
isfiability in performance, the possibility of a satisfiability
approach to partial satisfaction problems in classical plan-
ning has largely been neglected.

In previous years, satisfiability approaches to planning
have enjoyed much success: in the 4th and 5th International
Planning Competition (IPC) SATPLAN (Kautz and Selman
1999; Kautz, Selman, and Hoffmann 2006) achieved first
and joint first prizes respectively for optimal planning in
propositional domains. In this context, an optimal plan is
one with the smallest number of discrete time steps, often
referred to as the plan’s makespan. This notion of optimal-
ity is not a particularly natural one; instead IPC-6 adopts a
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collection of different metrics for optimization: number of
actions, total action cost and net benefit, where the net ben-
efit of a plan is the total utility of the goals achieved minus
the cost of the executed actions. This raises the question of
how the total utility of a set of goals should be defined.

The partial satisfaction planning (PSP) net benefit metric
(van den Briel et al. 2004) assumes that each goal has an in-
dividual utility, and the total utility of a set of goals achieved
by a plan can be expressed simply as the sum of their in-
dividual utilities. This particular model is worth studying
because it is conceptually simple to state but can express a
variety of interesting problems: the class of Simple Prefer-
ences from PDDL3 – a recent version of the de facto stan-
dard for expressing planning problems in the AI community
– can be reduced to PSP (Benton, Do, and Kambhampati
2009).

There are scenarios where the utility of achieving a sin-
gle goal depends upon which other goals are co-achieved.
One such example arises in the IPC Rovers domain where
it seems desirable to achieve complementary goals, which
give good scientific coverage. For example, the utility of
taking an image and a rock sample from a single site should
be greater than the sum of the utilities of achieving either of
those tasks in isolation.

Groups of goals do not always interact positively, and
there are scenarios where jointly achieving two or more
goals has a reduced utility over achieving any one of them
in isolation. For a purchasing problem, the agent may want
a single set of chairs, but purchasing more than one set has
an adverse effect: the extra sets impair movement and in-
troduce additional hazards through overcrowding, which the
agent would rather avoid.

Do et al. (2007) described these types of problems as hav-
ing goal utility dependencies, and they presented a system-
atic approach for handling them using the Generalized Ad-
ditive Independence (GAI) model of utility and integer pro-
gramming. Their IPUD planner finds solutions with maxi-
mum net benefit for a bounded makespan horizon, but plans
may exist with larger makespans that have a greater net ben-
efit.

Thus, it seems that integer programming has received re-
newed interest for this type of planning because of its facil-
ity for explicitly expressing an optimization function. There
has been some work on handling preferences in SAT: SAT-
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PLAN has been extended to minimize the cost of executed
actions in planning within a bounded horizon (Giunchiglia
and Maratea 2007). In principle, it should be possible to ex-
tend this to solve PSP net benefit problems. However, max-
imum satisfiability (Max-SAT), in particular its weighted
variants, also offers a facility for explicitly defining an op-
timization function in a similar manner to integer program-
ming.

Max-SAT is the optimization variant of SAT. The problem
is to find a truth assignment to variables that maximizes the
number of satisfied clauses. Further variations can be made
on the problem, and one such variation that is of particu-
lar interest to us is the Weighted Partial Max-SAT problem
(WPMax-SAT). These problems can contain clauses of two
types: hard or soft. For our purposes, each soft clause has a
non-negative integer weight which is its violation cost. The
WPMax-SAT problem is to find a truth assignment to vari-
ables that satisfies all hard clauses and maximizes the sum
of the weights of the satisfied soft clauses.

To our knowledge a system for handling preferences us-
ing general-purpose WPMax-SAT solvers has not been ex-
plored, nor has a satisfiability approach to handling goal util-
ity preferences been investigated. In this paper we develop
these ideas. Our main contributions in this paper are:

• An encoding scheme for representing PSP net benefit
problems with goal utility dependencies in WPMax-SAT
together with a technical extension, which we call MSAT-
PLAN, to SATPLAN that implements this using a general-
purpose Max-SAT solver.

• A thorough empirical comparison between MSATPLAN
and IPUD, where we find that MSATPLAN has competi-
tive and often better performance than its IP counterpart.

Encoding Utilities

A classical planning problem is described by a 4-tuple
〈F , I,G,A〉 where F is a set of predicate symbols, I is a
set of ground predicates that are true in the initial state, G
is a set of ground predicates that must be true in the goal
state and A is a set of actions. Each action a ∈ A has a
precondition set Pre(a) of ground predicates that must all
be true for a to be applicable; it also has a set Add(a) of add
effects and a set Del(a) of delete effects that contain ground
predicates which are made true and false respectively if a
is executed. We define a plan P as an ordered sequence of
actions (a1, . . . , am) which achieve a subset of the ground
predicates in G when executed in order from the initial state
in which only the predicates in I are true.

For a nonempty set G ⊆ G of N ground predicates with
indexed elements {g1, . . . , gN} we will use pseudo-Boolean
functions of the form f : B

N → N0 where B = {1, 0} and
N0 = {0, 1, 2, . . . }. For a subset S ⊆ G of goals achieved
by a particular plan, we define a vector 1G

S = (x1, . . . , xN )
such that

xi =
{

1 if gi ∈ S

0 otherwise.

For a planning problem, we assume we are given a func-
tion u : B

|G| → N0 that specifies a utility for each possible

combination of goals we could achieve. In the worst case,
this will require space exponential in the number of goals to
describe u; however, we can achieve a more compact repre-
sentation if we assume that u can be factorized in some way.
The Generalized Additive Independence (GAI) model (Bac-
chus and Grove 1995) provides one such method for decom-
posing a utility function and is used by Do et al. (2007) in
their framework for handling goal utility dependencies. Let
us split G into k, not necessarily disjoint, nonempty subsets
G1, . . . , Gk such that

⋃
i=1,...,k Gi = G. The utility func-

tion u has an additive decomposition over G1, . . . , Gk if u
can be expressed as

u(1G
S) =

k∑
i=1

fi(1Gi

Gi∩S) (1)

for a collection of k functions fi : B
|Gi| → N0. Hopefully,

k and the size of each Gi will be sufficiently small to allow
us to represent the function using less space than a single
tabular representation of u over |G|, thus leading to a more
practical encoding.

The utility of a set of goals achieved by a plan is only one
aspect of its quality; there are often many different plans that
will achieve a particular set of goals. In order to distinguish
between them, we should include their execution cost in our
measure of plan quality. For each action a ∈ A we associate
a cost c(a) ∈ N0 for executing that action. By writing the
set of goals achieved by a plan P as Goals(P ), we can now
precisely define the most preferred plan P � as the plan that
maximizes the net benefit:

P � = argmax
valid plans

P=(a1,...,am)

(
u
(
1G

Goals(P )

)
−

m∑
i=1

c(ai)

)
. (2)

Weighted Partial Max-SAT (WPMax-SAT)

WPMax-SAT is the variation of Max-SAT that we use in
our encodings. A weighted clause is a disjunction of literals
�1, . . . , �q with an associated weight w ∈ N0 ∪ {�}, which
we write as

(�1 ∨ · · · ∨ �q)︸ ︷︷ ︸
w

. (3)

Weighted clauses are either hard or soft. A clause is hard
if its weight is the special element �; all other clauses are
soft. Let Φ be a conjunction of weighted clauses. A com-
plete truth assignment to the variables in Φ gives each vari-
able a truth value. A model for Φ is a complete truth assign-
ment to the variables in Φ that satisfies all hard clauses. The
cost of a model for Φ is the sum of the weights of the fal-
sified clauses in Φ produced by that truth assignment. The
WPMax-SAT problem is to find a model of minimum cost
for Φ. If Φ consists of only soft weighted clauses then we
have the weighted Max-SAT problem; if all clauses are soft
with weight 1 then we have the Max-SAT problem.

Plan Encoding

We extend the ‘thin-gp’ encoding from SATPLAN (Kautz,
Selman, and Hoffmann 2006) to create a formula ϕT

h in
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propositional logic with the property that a satisfying assign-
ment to it allows us to extract a plan with a makespan of at
most T from the truth assignment; however, since all goals
are soft, we do not include the clauses that force each goal
to be true at level T , and we add additional axioms, not in-
cluded in the original ‘thin-gp’ encoding, that ensure a goal
is not achieved by the extracted plan if it is false at level T .

Algorithm 1: Encoding the planning graph (ϕT
h ).

Result: ϕT
h encoding the planning problem.

begin1

ϕ ← true2

foreach ρ ∈ I do3

ϕ ← ϕ ∧ (Vpred(ρ, 0))4

for t ← 1 to T do5

foreach a ∈ A′ applicable at level t do6

foreach ρ ∈ Pre(a) do7

ϕ ← ϕ ∧ (¬Vact(a, t) ∨ Vpred(ρ, t − 1))8

foreach ρ ∈ F reachable at level t do9

C ← ¬Vpred(ρ, t)10

foreach a ∈ A′ applicable at level t such11

that ρ ∈ Add(a) do
C ← C ∨ Vact(a, t)12

ϕ ← ϕ ∧ C13

foreach a1, a2 ∈ A′ applicable at level t do14

if Mutex(a1,a2,t) then15

ϕ ← ϕ ∧ (¬Vact(a1, t) ∨ ¬Vact(a2, t))16

foreach ρ1, ρ2 ∈ F reachable at level t do17

if Mutex(ρ1,ρ2,t) then18

ϕ ← ϕ ∧ (¬Vpred(ρ1, t) ∨ ¬Vpred(ρ2, t))19

foreach g ∈ G reachable at level t do20

foreach a ∈ A′ applicable at level t such21

that g ∈ Add(a) do
ϕ ← ϕ ∧ (Vpred(g, t) ∨ ¬Vact(a, t))22

if g is reachable at level t − 1 then23

C ← Vpred(g, t) ∨ ¬Vpred(g, t − 1)24

foreach a ∈ A′ applicable at level t25

such that g ∈ Del(a) do
C ← C ∨ Vact(a, t)26

ϕ ← ϕ ∧ C27

ϕT
h ← ϕ28

end29

A summary of the steps involved in producing this encod-
ing can be found in Algorithm 1. Lines 3–19 are from the
original ‘thin-gp’ encoding; we write A′ to denote A ex-
tended to include NOOP actions for each ground predicate.
For more details the reader should refer to the above paper.

A planning graph (Blum and Furst 1997) of makespan T
is built from domain and problem PDDL files. For 0 ≤ t ≤
T , a binary variable Vpred(ρ, t) is created for each ground
predicate ρ that is reachable at time step t. For 1 ≤ t ≤ T ,
a binary variable Vact(a, t) is created for each action a that
has reachable and non-mutex preconditions at level t − 1.

A satisfying truth assignment, S, to the variables in ϕT
h

corresponds to a valid plan Plan(S); however, it is no longer
necessary for a valid plan to achieve all the goals in G. For
each goal predicate ρi ∈ G, if ρi is in the planning graph at
level T then the variable Vpred(ρi, T ) occurs in ϕT

h and we
say that ρi is coded for as a goal in ϕT

h . If ρi has been coded
for as a goal then ρi is achieved by executing Plan(S) from
the initial state iff S[Vpred(ρi, T )] is true; in all other cases,
including those for which ρi has not been coded for as a
goal, Plan(S) does not achieve ρi. The ‘only if’ condition
is ensured by the addition of the following axiom to the en-
coding:

¬Vpred(g, t) ⇒

⎛
⎜⎜⎝¬Vpred(g, t − 1) ∨

∨
a∈A

s.t. g∈Del(a)

Vact(a, t)

⎞
⎟⎟⎠∧

∧
a∈A

s.t. g∈Add(a)

¬Vact(a, t), (∀g ∈ G, 1 ≤ t ≤ T ), (4)

which produces the clauses as described in lines 20–27 in
Algorithm 1.

Optimization Function

So far, we have presented a method for creating a clausal
formula ϕT

h in propositional logic, consisting only of hard
clauses, from which we can extract a valid plan from any
satisfiable truth assignment to that formula. In order to
guide the search procedure to plans of high net benefit, we
need to specify an optimization function over solutions. Our
approach is to construct a clausal formula ϕT

s in proposi-
tional logic, consisting only of weighted soft clauses, with
the property that an optimal satisfiable truth assignment S�

to the WPMax-SAT formula ΦT = ϕT
h ∧ ϕT

s gives a plan
Plan(S�) of maximum net benefit over all possible plans of
makespan less than or equal to T .

We assume that our utility function u has an additive de-
composition over G1, . . . , Gk as given in Equation 1. We
introduce a measure which we call the residual utility result-
ing from a truth assignment to the arguments of a function
fi in the additive decomposition of u. The residual utility
is the amount of utility that we failed to secure by choosing
this truth assignment over one that would maximize the util-
ity for this factor. More precisely, let the maximum of the
function be

f̄i = max
v∈B|Gi|

fi(v). (5)

Define the function ri : B
|Gi| → N0 that calculates the resid-

ual utility of a truth assignment v ∈ B
|Gi| to the arguments

of fi as
ri(v) = f̄i − fi(v). (6)

Using this measure, and assuming that all predicates in G
are coded for as goals in ϕT

h , we construct ϕT
s such that it

satisfies the property that for every complete satisfiable as-
signment, S to ΦT , the following holds:

1. For each action a that is executed in Plan(S), a unique
clause is violated in ϕT

s with weight c(a).
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2. For each Gi in the additive decomposition of u, a unique
clause is violated in ϕT

s with weight ri(1Gi

Gi∩S) where S
is the set of goals achieved by Plan(S).

3. No other clauses are violated.

If ϕT
s satisfies this property, then the sum of weights of

violated clauses for such a truth assignment S will be given
by

k∑
i=1

ri

(
1Gi

Gi∩Goals(Plan(S))

)
+

m∑
i=1

c(ai), (7)

where Plan(S) = (a1, . . . , am). An optimal WPMax-SAT
solver applied to ΦT will find the truth assignment S� that
minimizes this quantity which is equivalent to maximizing
its negative. Therefore, S� is given by

S� = argmax
Satisfiable T.A.

S to ΦT

[
k∑

i=1

fi

(
1Gi

Gi∩Goals(Plan(S))

)
−

m∑
i=1

c(ai)

]
,

(8)
where the ai and m are dependent on S such that Plan(S) =
(a1, . . . , am). Note that the quantity being maximized is a
form of Equation 2; thus, a WPMax-SAT solver applied to
ΦT will find a valid plan that is optimal up to the makespan
T with regard to maximizing the net benefit metric.

Encoding the Optimization Function

We have seen that if ϕT
s satisfies the property we outlined

above, then the plans produced maximize net benefit for a
fixed makespan. Now we discuss the details of how such a
formula is constructed according to our procedure shown in
Algorithm 2.

The first part of the property is encoded in lines 4–6 where
a clause is added to ϕT

s for each action that is applicable at
each level up to the makespan T . If an action a is executed
at level t in a plan extracted from a truth assignment, then
Vact(a, t) is necessarily true from the definition of ϕT

h . Con-
sequently, the clause (¬Vact(a, t)) with weight c(a) is vio-
lated and c(a) is added to the cost of the truth assignment.
If the action is not executed, then Vact(a, t) is false and its
corresponding clause is satisfied and makes no contribution
to the cost of the assignment.

The second part of the property is ensured by lines 7–
17; the objective is to produce, for each Gi and each truth
assignment to predicates in Gi, a soft clause, weighted by
the residual utility, that is violated iff the predicates in Gi

take on that truth assignment. Our procedure is made more
complicated by accounting for situations where one or more
predicates in G are not coded for as goals in ϕT

h .
If a particular Gi is being processed, for each truth assign-

ment, the predicates in Gi are split into two sets, π+ and π−,
depending on whether the predicate is assigned true or false
respectively (lines 9–10). We then check to see if the truth
assignment might be possible on line 11 by checking if any
pair of predicates in π+ is known to be mutex at the final
level of the plan. If this is true then the truth assignment will
never satisfy ϕT

h so there is no need to add a clause for this
particular truth assignment to Gi to ϕT

s .

Algorithm 2: Encoding the optimization function (ϕT
s ).

Result: ϕT
s encoding the optimization function.

begin1

ΩT ← { ρj ∈ G | ρj is coded for as a goal in ϕT
h }2

ϕ ← true3

for t ← 1 to T do4

foreach action a ∈ A applicable at level t do5

ϕ ← ϕ ∧ (¬Vact(a, t))︸ ︷︷ ︸
c(a)6

for i ← 1 to k do7

foreach v ∈ B
|Gi| do8

π+ ← {ρj ∈ Gi | vj = 1}9

π− ← {ρj ∈ Gi | vj = 0}10

if MutexFree(π+,T) and π+ ⊆ ΩT11

then

L ← {¬Vpred(ρ, T ) | ρ ∈ π+}12

L ← L ∪ {Vpred(ρ, T ) | ρ ∈ π− ∩ ΩT }13

if L �= ∅ then14

ϕ ← ϕ ∧
(∨

�∈L

�

)
︸ ︷︷ ︸

ri(v)15

ϕT
s ← ϕ16

end17

If at least one predicate in π+ is not coded for as a goal,
then this tells us that this predicate cannot be achieved by
any plan of makespan less than or equal to T ; thus, this truth
assignment and its corresponding clause should be ignored.
This is the reason for the check π+ ⊆ ΩT on line 11.

At lines 12 and 13 we gather the set of literals for the
clause. We negate variables corresponding to predicates in
π+ and leave as positive literals the variables corresponding
to predicates in π− ∩ ΩT . If the truth assignment is made,
then all literals will be false and the clause will be violated.
Notice how we exclude any predicates that are in π− \ ΩT

because they are unreachable at the final level and cannot be
achieved by any plan of makespan less than or equal to T ,
consequently they are fixed to false. The check at line 14
handles the special case where the truth assignment assigns
false to all predicates in Gi and none of these predicates are
coded for as goals in ϕT

h . This results in an empty clause that
is always violated; therefore, we need not include it in the
encoding since it will not affect the minimization. Finally,
at line 15 the clause is added with weight set to the residual
utility of the truth assignment to the predicates in Gi.

We implemented this procedure on top of the SATPLAN06
system. We modified the parser and lexer to read in a spec-
ification of action costs and a description of the utility func-
tion. To represent the utility function we use a tree-like
structure called a UCP-net1 (Boutilier, Bacchus, and Braf-

1We ignore the ceteris paribus condition that ensures the dom-
inance property at each node because we compile the function to
WPMax-SAT where it is not exploited by the solver.
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Figure 1: Comparison of MSATPLAN with IPUD/SYM on the number of subproblems solved as each system is given more
time. Each point shows the mean number of subproblems solved within the corresponding time limit. Error bars show ±σ,
calculated over three runs. A lack of an error bar indicates that there was no observed variance in that measurement.

man 2001). Each node in this tree represents the value of a
single goal predicate from G. If there is a directed link from
node Y to node X then Y is a parent of X , and we denote
the set of parents of a node X as Parents(X). Each node X
also contains a conditional preference table which we spe-
cialize to a tabular representation of a pseudo-Boolean func-
tion fX : B

|Parents(X)|+1 → N0 since all variables in the tree
are boolean-valued. fX represents X’s contribution to the
utility of a plan dependent on its value and those of its par-
ents.

Experimental Results

We compared our system MSATPLAN with IPUD using
a one state change (1SC) encoding over a collection of
problems derived from past International Planning Competi-
tion (IPC) benchmarks: DriverLog, Depot, ZenoTravel and
Rovers from IPC3; and Truck and Pathways from IPC4. We
wrote a Java program to parse untyped STRIPS problems
and attach randomly generated action costs and utility func-
tions over goals. This process is described as follows. For
each action in a domain, a cost is generated randomly ac-
cording to a discrete uniform distribution over the values
{x ∈ N | 1 ≤ x ≤ 30}. For each problem, a random util-
ity function is generated in two stages. Firstly, a DAG with
a restriction on heuristic induced width is randomly gener-
ated according to a method that is used to generate random
Bayesian networks (Ide et al. 2004). Given this DAG, a con-
ditional preference table (CPT) is generated for each node.
For each truth assignment T for a node X and its parents, if
T [X] is false then an entry of 0 is made in the CPT for that
truth assignment; otherwise, a value is randomly generated
according to a discrete uniform distribution over the values
{x ∈ N | 100 ≤ x ≤ 200}, and this is entered in the CPT
for the truth assignment T . The numbers in these ranges are
somewhat arbitrary; they were selected by experimenting to

find values that tended to allow valid plans of increasing net
benefit as the makespan was increased from 1 to 10. If the
action costs are too high or the utilities too low it precludes
the existence of any nonempty plan with positive net benefit;
the optimal plan would be empty in these cases.

We do not use the original IPUD system because it uses
a commercial linear program solver called CPLEX 10.02,
which we did not have access to; instead, we implemented
IPUD’s encoding scheme by extending the 1SC encoding3

of IPPLAN (van den Briel, Vossen, and Kambhampati 2008)
and modifying it to use an open-source mixed integer pro-
gram solver SYMPHONY 5.1 (Ralphs and Guzelsoy 2005).
We refer to this implementation as IPUD/SYM to avoid am-
biguity. We believe this remains a reasonably fair test as we
do not use a commercial WPMax-SAT solver and the al-
gorithms for SYMPHONY are published and open for in-
spection. MSATPLAN uses MiniMaxSat 1.0 (Heras, Lar-
rosa, and Oliveras 2008) to solve the WPMax-SAT encod-
ings. MiniMaxSat was chosen because of its strong perfor-
mance across domains in the Max-SAT-2008 evaluation.

Since all goals are soft, a (possibly empty) plan exists at
every makespan, and consequently it is not very interesting
to search for the plan with smallest makespan. Instead, we
split each problem up into subproblems parameterized by a
makespan variable d. Each subproblem is to find a plan of
makespan d that solves the original problem with optimal
net benefit over all other plans of makespan d. For each
problem in a domain benchmark, we derive subproblems for
d = 1, . . . , 10. Each planning system is given 30 minutes to
solve each subproblem, and is aborted if it fails to do so.

In summary, each run of our experiment consists of gener-

2http://www.ilog.com/products/cplex
3We use the 1SC encoding instead of the G1SC one used in

Do et al.’s original paper because it allows the same amount of
parallelism as the SAT-based encoding that MSATPLAN extends.
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Figure 2: Comparison of the successful search depth between MSATPLAN and IPUD/SYM over six problem domains taken
from IPC-3 and IPC-4. Each point shows the mean number of subproblems, of a particular makespan, that were solved by each
system. Error bars show ±σ, which is calculated over the three runs. A lack of an error bar indicates that there was no observed
variance in that measurement.

ating a random utility tree and action costs for each problem
in each domain, splitting each problem into 10 subproblems
and attempting to solve each subproblem with both solvers.
We conduct three runs using randomly generated utility trees
and action costs each time. Where appropriate, we com-
puted the sample mean and sample variance over these dif-
ferent runs to investigate how the utility tree and action costs
affect solution times. All experiments were conducted on a
Linux machine with an Intel 2.4 GHz quad core CPU (al-
though neither program is multithreaded) and 2 GB of mem-
ory; however, we limit the memory resource available to
each program to 1.5 GB to reduce paging.

When examining these results, it should be noted that
IPUD/SYM uses a translation step, taken from the Fast
Downward Planner (Helmert 2006), that converts PDDL2.2
(Edelkamp and Hoffmann 2004) files to the SAS+ formal-
ism (Backstrom and Nebel 1995), which is used to represent
multi-valued planning tasks. Inspection of several experi-
ments revealed that for problems 06–30 from the Pathways
domains, this translation step almost always failed to com-
plete within 30 minutes. We found that this was also the
case for the original translation tool applied to the original
PDDL2.2 files taken from the Pathways domain from IPC-4;
the reason for this failure remains unclear.

The data were used to calculate for each run, and ex-
ponentially increasing time limits, the number of subprob-
lems solved within those time limits. The results for each
time limit were then averaged over the three runs. Fig-
ure 1 shows a plot of the results. MSATPLAN shows a
clear advantage over the 1SC encoding of IPUD/SYM for
the Depot and Truck domains by solving 233% and 107%
more subproblems respectively. MSATPLAN also performs
very well on the Pathways domain; however, comparing this
with IPUD/SYM is not possible because of a problem with

the translation step as described above. IPUD/SYM solves
27%, 40%, and 2% more problems than MSATPLAN for the
DriverLog, ZenoTravel and Rovers domains respectively.

How the two systems compare over the range of fixed
makespans can be seen in Figure 2. The percentage of
subproblems that are solved drops off with an increase in
makespan, as one would expect; however, the gradient of
this decrease differs quite substantially between domains.
For the Depot and DriverLog domains, the decrease is
smooth with a reasonably consistent gradient for both sys-
tems. For the Truck and Pathways domains, there is very
little decrease initially and almost all the decrease occurs
within 2–4 makespans for MSATPLAN.

How each system performed on an individual problem can
be seen in Figure 3. It is somewhat surprising that MSAT-
PLAN’s performance is maintained across the Pathways do-
main. For other domains the performance tends to degrade
as the problem number increases, since these are consid-
ered harder problems. It is also surprising that MSATPLAN
solves a large number of subproblems from the higher prob-
lem numbers in the DriverLog domain, but not for problem
numbers 04–10, which would normally be considered easier
to solve.

Discussion

The leading approaches to finding an optimal solution to a
WPMax-SAT problem usually involve a depth-first branch-
and-bound or branch-and-cut search; the same can be said
for finding an optimal solution to an integer program. These
algorithms calculate an exact upper bound ub on the cost
of the optimal solution, which is the cost of the best model
found so far in the search, and an underestimation of best
cost that can be achieved by extending the current partial as-
signment to a model. A branch of the search tree is pruned
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Figure 3: Comparison of MSATPLAN with IPUD/SYM on each problem over a total of six domains from IPC-3 and IPC-4.
The height of a bar indicates the mean number of subproblems solved by that system for that problem. Error bars indicate
±σ, calculated over three runs. A lack of an error bar for a column indicates that there was no observed variance in that
measurement.

when its lower bound is found to be greater than or equal to
ub. Soft clauses can also be promoted to hard clauses dur-
ing the search if their weight is found to be greater than ub,
which allows us to use this clause together with other hard
clauses for efficient procedures such as unit-propagation.

If we incrementally increase the plan makespan and find
optimal solutions for each one, we can trivially extend an
optimal solution for a makespan of d − 1 to a solution with
makespan d by executing appropriate NOOP actions be-
tween layers d − 1 and d. From this, we can produce a
nontrivial lower bound on the best net benefit obtainable at
makespan d and thus produce a nontrivial value for ub for
the problem at makespan d. Hopefully, this will increase
the number of pruning and promotion events, as described
above, that occur early on in the branch-and-bound search.

It is worth noting that these branch-and-bound searches
keep track of the best solution encountered during search.
This can produce a solution to a planning problem at any
time – before the first non-trivial solution is found, this
would return the empty plan. In our experiments we ter-
minated searches that lasted for longer than 30 minutes
and recorded no solution. Alternatively, after 30 minutes,
we could have returned the best solution found so far in
the branch-and-bound search and compared this to the re-
sults obtained by a heuristic search planner; however, Mini-
MaxSat did not support this feature.

Related Work

Using Max-SAT to model hard and soft constraints in opti-
mization problems has been studied for Steiner trees (Jiang,
Kautz, and Selman 1995), although this did not use the par-
tial weighted Max-SAT variant, so hard constraints were
modelled with very high numeric weights.

There have been several recent improvements to the plan-

ning as satisfiability paradigm. Londex constraints gener-
alize mutex links to indicate mutual exclusion across time
steps, which reduces planning time in many benchmark
problems (Chen, Zhao, and Zhang 2007). ∃-step seman-
tics have been incorporated into encodings for planning as
satisfiability (Wehrle and Rintanen 2007). This style of se-
mantics allows parallel execution of operators if at least one
total ordering of them is consistent, which allows for shorter
parallel plan lengths. The generalized one state change
(G1SC) encoding, found in IPUD, provides this level of par-
allelism (van den Briel, Vossen, and Kambhampati 2008).
Lifted encodings for planning as satisfiability that allow
more scope for parallelism have been investigated (Robin-
son et al. 2008).

Although preferences are receiving an increasing amount
of attention from the planning community, there has been
little work examining how the planning as satisfiability
paradigm can handle preferences. SATPLAN(P) handles
quantitative and qualitative preferences using a custom
DPLL solver that branches according to a preference or-
der (Giunchiglia and Maratea 2007). In particular, for a
problem with quantitative preferences, the value of the opti-
mization function is encoded as a sequence of bits, and the
preference order prefers higher/lower order bits to be set de-
pending on whether the optimization function is to be maxi-
mized/minimized. Their experimental results only cover the
cases where either (1) each goal is soft with a utility of 1
and there are no action costs or (2) all goals are hard and all
actions have cost 1. Thus, it remains to be seen how their ap-
proach scales for optimization functions that are more flexi-
ble.

The heuristic search planners AltAlt and Sapa have been
extended to solve PSP problems (van den Briel et al. 2004);
the former heuristically selects a set of goals to plan for, and

151



Sapa uses an A* search with a heuristic that estimates the
extra net benefit available from extending the current partial
plan. Sapa has also been extended to handle goal utility de-
pendencies (Do et al. 2007). Its heuristic calculation first
greedily constructs a relaxed plan that supports all reachable
goals; it then encodes a problem in IP to find the most bene-
ficial plan contained in the relaxed plan.

An alternative method for selecting goals to plan for is
to represent an abstracted part of the planning problem as
an orienteering problem (Smith 2004). This is motivated
by oversubscription planning problems relevant to the Mars
rover where the cost of achieving goals depends strongly on
the order in which they are achieved. The aim is to model
the cost dependencies between achieving goals, but this ig-
nores the idea of goal utility dependencies. If such goal de-
pendencies are sufficiently localized so that none exist be-
tween ‘cities’ in the orienteering graph, then a system such
as IPUD or MSATPLAN might find use in producing reward
estimates for each city provided that the subproblems are
small enough and the computation time constraints are suf-
ficiently generous.

Concluding Remarks

We have demonstrated a system, MSATPLAN, for solv-
ing planning problems with goal utility dependencies us-
ing an optimization variant of propositional satisfiability,
known as weighted partial Max-SAT. This system is guar-
anteed to produce plans that are optimal up to a given
makespan. We compared our implementation against a suc-
cessful integer programming based encoding, implemented
as IPUD/SYM, using past benchmark problems from the
International Planning Competition. Our results showed
that MSATPLAN is competitive with IPUD/SYM, solving
as many as 107% and 233% more subproblems for the Truck
and Depots domains; it also demonstrated consistently good
performance on the Pathways domain. When IPUD/SYM
outperformed MSATPLAN in our experiments, it did so by
a smaller margin: 27%, 40% and 2% more problems solved
for the DriverLog, ZenoTravel and Rovers domains.

We obtained our results for MSATPLAN using a general-
purpose weighted partial Max-SAT solver to find a plan. An
area for future work is to investigate how we can specialize
the algorithms used in these solvers to exploit the regular
structure that is found in plan encodings.
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