
Perfect Hashing for State Space Exploration on the GPU

Stefan Edelkamp
TZI, Universität Bremen

edelkamp@tzi.de

Damian Sulewski
TZI, Universität Bremen

dsulews@tzi.de

Cengizhan Yücel
Technische Universität Dortmund

cengizhan.yuecel@googlemail.com

Abstract

This paper exploits parallel computing power of graphics
cards to accelerate state space search. We illustrate that mod-
ern graphics processing units (GPUs) have the potential to
speed up breadth-first search significantly. For a bitvector
representation of the search frontier, GPU algorithms with
one and two bits per state are presented. Efficient perfect hash
functions and their inverse are explored in order to achieve
enhanced compression. We report maximal speed-ups of up
to a factor of 27 wrt. single core CPU computation.

Introduction

In the last few years there has been a remarkable increase in
the performance and capabilities of the graphics processing
unit (GPU). Modern GPUs are powerful, parallel, and pro-
grammable processors featuring complex arithmetic com-
puting and high memory bandwidths. Deployed on current
graphics cards, and conveniently accessible, e.g., through
CUDA (Lindholm et al. 2008) NVIDIA’s programming en-
vironment, GPUs have outpaced CPUs in numerical algo-
rithms such as Fourier transformations (Owens et al. 2008)
or sorting (Leischner, Osipov, and Sanders 2009).

To tackle the intrinsic hardness of large search problems,
sparse-memory and disk-based algorithms are often used
together. I/O-efficient breadth-first search (BFS) has been
suggested for explicit undirected graphs by Munagala and
Ranade (1999) and for implicit graphs by Korf (2003). The
duplicate detection schemes in these frontier search algo-
rithms can either be delayed or structured (Zhou and Hansen
2004). Especially on multiple disks, instead of the I/O wait-
ing time due to disk latencies, the computational bottleneck
for these external-memory algorithms is internal time, so
that a rising number of parallel search variants has been stud-
ied (Korf and Schultze 2005; Zhou and Hansen 2007).

External two-bit breadth-first search by Korf (2008) in-
tegrates the RAM compression method by Cooperman and
Finkelstein (1992) into an I/O-efficient algorithm. The ap-
proach for solving large-scale problems relies on reversible
perfect hash functions. It applies a space-efficient represen-
tation with two bits per state e.g. to prove lower bounds in
Rubik’s Cube (Kunkle and Cooperman 2007).

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Due to the large number of processors, memory access is
a bottleneck on current graphics cards. All data accessed by
the GPU have to be copied to the card, however, the amount
of memory is very limited when compared to the system’s
RAM. GPUs are designed for high throughput, while latency
is the main guiding principle in a CPU’s design.

Based on the two-bit approach by Cooperman and Finkel-
stein (1992), we put forward two algorithms: a generalized
one-bit reachability algorithm, and a one-bit BFS algorithm.
We show how to speed up the search by parallelizing the
algorithms and computing reversible minimal perfect hash
functions on the GPU. We analyze our approach on several
perfect hash functions, ranging from permutations to bino-
mial coefficients for solving search problems.

The paper is structured as follows. Firstly, the used per-
fect hashing functions are introduced and extended. For
minimal perfect hashing we have a closer look on the change
of parity in some games, and combine its computation with
lexicographic and alternative orderings. We then turn to
space-efficient state space search on a bitvector, including
known variants such as two-bit BFS and new variants that
require only one bit per state. We recall GPU essentials and
the underlying computational model. Execution of the algo-
rithms on the GPU is explained next, and its effectiveness is
shown with the help of a wide range of experiments.

Perfect Hashing Functions

For the search in a bitvector we require certain characteris-
tics of hash functions.

Definition 1 (Hash Function) A hash function h is a map-
ping of some universe U to an index set [0, . . . , m− 1].

The set of reachable states S is a subset of U , i.e., S ⊆ U .
Important classes are injective hash functions.

Definition 2 (Perfect Hash Function) A hash function h :
U → [0, . . . , m− 1] is perfect, if for all s ∈ S with h(s) =
h(s′) we have s = s′.

Given that every state can be viewed as a bitvector, and,
in turn, be interpreted as a number in binary, a simple but
space-inefficient design for a perfect hash function would
be to use this number as a hash value.

Definition 3 (Space Efficiency) The space efficiency of h is
the proportion �m/|S|� of available hash values to states.

57

Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS 2010)

Definition 4 (Minimal Perfect Hash Function) A perfect
hash function h is minimal if its space efficiency is 1.

A minimal perfect hash function is a one-to-one mapping
from the state space S to the set of indices {0, . . . , |S| − 1},
i.e., m = |S|. In contrast to open-addressed or chained hash
table, perfect hash functions allow direct-addressing of bit-
state hash tables. This allows compressing the set of visited
states Closed. The other important property is that the state
vector can be reconstructed given the hash value, which al-
lows us to also compress the list of frontier nodes Open.

Definition 5 (Reversible Hash Function) A perfect hash
function h is reversible, if given h(s), the state s ∈ S can be
reconstructed. A reversible minimum perfect hash function
is called rank, while the inverse is called unrank.

We will see that for a traversal of the search space in
which array indices serve as state descriptors, reversible
hash functions are required.

Definition 6 (Move-Alternation) Property p : S → {0, 1}
is move-alternating, if it toggles for all applied actions.

In other words, for all successors s′ of s, we have p(s′) =
1 − p(s). As a result, p(s) is the same for all states s in
one BFS layer, so that states s′ in the next BFS layer can
be separated from the ones in the current one, exploiting
p(s′) = x �= y = p(s). A stronger criterion is the following
one.

Definition 7 (Layer-Selection) A property p : S → N is
layer-selecting, if it determines the BFS-layer for a state, in
other words p(s) = BFS-layer(s).

An example is the number of unoccupied holes in the Peg-
Solitaire game. In some cases perfect hash functions can be
partitioned along the properties (Korf and Schultze 2005).

Definition 8 (Orthogonal Hash Functions) Two hash fun-
ctions h1 and h2 are orthogonal, if for all states s, s′ ∈ S
with h1(s) = h1(s′) and h2(s) = h2(s′) we have s = s′.

Theorem 1 (Orthogonal implies Perfect Hashing) If the
two hash functions h1 : S → [0, . . . , m1 − 1] and h2 :
S → [0, . . . , m2 − 1] are orthogonal, their concatenation
(h1, h2) is perfect.

Proof. We start with two hash functions h1 and h2. Let s, s′
be any states in S. Given (h1(s), h2(s)) = (h1(s′), h2(s′))
we have h1(s) = h1(s′) and h2(s) = h2(s′). Since h1 and
h2 are orthogonal, this implies s = s′. �

In case of orthogonal hash functions, with small m1 the
value of h1 can be encoded in the file name, leading to
a partitioned layout of the state space, and a smaller hash
value h2 to be stored explicitly. Orthogonality can cooper-
ate with bitvector representation of the search space, as a
perfect function h2 can be used as a secondary index.

Definition 9 (BFS-Partitioning) A perfect hash function h
is alternation partitioning, if there is a move-alternation
property p that is orthogonal to h. A perfect hash function h
is layer partitioning, if there is a layer-selection property p
that is orthogonal to h.

For a given perfect hash function h for the full state space
this leads to further compression, and in some cases memory
advances when applying frontier search, depending on the
locality of the search space (Zhou and Hansen 2006).

If p is a move-alteration property, we can partition S into
parts S0 = {s | p(s) = 0} and S1 = {s | p(s) = 1} with
S0 ∪ S1 = S and S0 ∩ S1 = ∅, such that h(s0) < h(s1) for
(s0, s1) ∈ S1×S2. This defines two bit-vector compression
functions h0(s) = h(s) and h1(s) = h(s) − |{h(s) | s ∈
S0}| that can be used in odd and even layer of the search.
Similarly, we can extend the observation to hash functions
h1, h2, h3, . . ., if p is layer partitioning.

Belazzougui, Botelho, and Dietzfelbinger (2009) show
that, given a state space, minimal perfect hash functions with
a few bits per state can be constructed I/O efficiently.

Unfortunately, the hash functions are hardly reversible.
For many domain-independent problem domains, however,
perfect hash functions (and their inverses) can be derived.

Permutation Rank as a Hash Function

For the design of rank and unrank functions for permutation
games (including the ones shown in Figure 3) parity is a
crucial concept.

Definition 10 (Parity) The parity of the permutation π of
length N is defined as the parity of the number of inversions
in π, where inversions are all pairs (i, j) with 0 ≤ i < j < n
and πi > πj .

Definition 11 (Parity Preservation) A permutation prob-
lem is parity preserving, if all moves preserve the parity of
the permutation.

Parity-preservation allows separating solvable from in-
solvable states in several permutation games. Examples are
the sliding-tile and the (n, k) Top-Spin puzzles (with even
value of k and odd value of n). If the parity is preserved, the
state space can be compressed.

Korf and Schultze (2005) use two lookup tables with a
space requirement of O(2N log N) bits to compute lexico-
graphic ranks (and their inverse). Bonet (2008) discusses
time-space trade-offs and provides a uniform algorithm that
takes O(N log N) time and O(N) space. As we are not
aware of any O(N) time and O(N) space algorithm for
lexicographic rank and unrank, we studied the ordering in-
duced by the rank1 and unrank1 functions from Myrvold
and Ruskey (2001).

Algorithm 1 illustrates that the parity of a permutation can
be derived on-the-fly. For faster execution (especially on the
graphics card), we additionally avoid recursion.

Theorem 2 (Parity in Myrvold & Ruskey’s Unrank)
The parity of a permutation for a rank according to Myrvold
& Ruskey’s ordering can be computed on-the fly in the
unrank function shown in Algorithm 1.

Proof. In the unrank function swapping two elements u and
v at position i and j, resp., with i �= j we count 2(j−i−1)+
1 transpositions (u and v are the elements to be swapped, x
acts as a wild card): uxx . . . xxv → xux . . . xxv → . . . →
xx . . . xxuv → xx . . . xxvu → . . . → vxx . . . xxu. As
2(j−i−1)+1 mod 2 = 1, each transposition either increases

58

Algorithm 1 Permutation-Unrank(r)
1: π := id
2: parity := false
3: while N > 0 do
4: i := N − 1
5: j := r mod N
6: if i �= j then
7: parity := ¬parity
8: swap(πi, πj)
9: r := r div N

10: N := N − 1
11: if ¬parity then
12: swap(π0, π1)
13: return π

or decreases the parity of the number of inversions, so that
the parity toggles for each iteration. The only exception is
if i = j, where no change occurs. Hence, the parity of the
permutation is determined on-the-fly in Algorithm 1. �

Theorem 3 (Folding Myrvold & Ruskey) Let π(r) denote
the permutation computed by Algorithm 1 given index r at
line 11. Then π(r) = π(r + N !/2) except of swapping π0

and π1.

Proof. The last call to swap(πN−1, πr mod N) in Myrvold
and Ruskey’s unrank function is swap(π0, πr mod 1), which
resolves to either swap(π1, π1) or swap(π1, π0). Only the
latter one induces a change.

If r1, . . . , rN−1 denote the indices of r mod N in the iter-
ations 1, . . . , N − 1 of Myrvold and Ruskey’s unrank func-
tion, then rN−1 = �. . . �r/(N − 1) . . . /2, which resolves
to 1 for r ≥ N !/2 and 0 for r < N !/2. �

Hashing with Binomial Coefficients

For states consisting of a fixed number of Boolean variables,
it suffices to store only the variables that are assigned true,
in order to identify each state. Traversing the search graph
and generating successors flips the status of individual state
variables depending on the successor generating function.

If the order of the variables is fixed and the number of sat-
isfied bits are given, we can identify their position using a
binomial coefficient. A binomial coefficient

(
n
k

)
is the num-

ber of possible k-sets in a set of n elements. Algorithm 2
describes how to assert a unique rank to a given state. Since
the number of k-sets in a n-set is known, we can impose an
ordering on these k-sets. This ordering is given by the posi-
tion of the variables that are satisfied. The algorithm starts
with a rank r = 0 and uses the variable t to count the num-
ber of satisfied variables. For each unsatisfied variable r is
increased by the binomial coefficient given by the position
of this entry and the number of the remaining satisfied vari-
ables.

The according unrank function is displayed in Algo-
rithm 3. For proving the correctness, we show surjectivity
and injectivity.
Theorem 4 (Surjectivity) For each s ∈ S with t satisfied
variables, the maximal rank is bounded by r(s) ≤ (

n
n−t

)−1.

Proof. Value r is increased only if no satisfied variable
is found. For all n, t ∈ N with n ≥ t, we have

(
n
t

) ≥(
n−1

t

)
. We get the maximal rank when the first n − t vari-

ables are not satisfied, resulting in r =
(
n−1
t−1

)
+ . . . +(

n−t
t−1

)
. Using the known characteristic of binomial coef-

ficients
∑m

i=0

(
n+i
n

)
=

(
n
n

)
+ . . . +

(
n+m

n

)
=

(
n+m+1

n+1

)

we have
∑t

i=0

(
(n−t)−1+i
(n−t)−1

)
=

(
n

n−t

)
, and, by applying

Algorithm 2, we deduce
(

n−t
(n−t)−1

)
+ . . . +

(
n−1

(n−t)−1

)
=

(
n

n−t

)− (
(n−t)−1
(n−t)−1

)
=

(
n

n−t

)− 1. �

Theorem 5 (Injectivity) Given a number of satisfied vari-
ables t binomial ranking induces a collision free hash func-
tion, such that for all s, s′ ∈ St, we have s �= s′ implies
r(s) �= r(s′).

Proof. Assume the contrary. Then there exists s, s′ ∈ St

with s �= s′ and r(s) = r(s′). Since s and s′ are different,
an entry at a minimal position i exists with si �= s′i. If w.l.o.g
si is not satisfied, equation r(s0..i) = r(s′0..i) +

(
n−i
ti−1

)
ap-

plies, where ti is the number of satisfied elements left, but
the maximal increase for r(s′) is, due to the same arguments
as in Theorem 4,

(
(n−j)−1

ti−2

)
+ . . . +

(
ti−1
ti−2

)
=

(
n−j
ti−1

)− 1. �

Algorithm 2 Binomial-Rank(s)
1: i := 0; r := 0
2: t := number of true values in s
3: while t > 0 do
4: i := i + 1
5: if si = 1 then
6: t := t− 1
7: else
8: r := r +

(
n−i
t−1

)

9: return r

Algorithm 3 Binomial-Unrank(r, t)
1: i := 0
2: while t > 0 do
3: if r <

(
n−i−1

t−1

)
then

4: si := true
5: t := t− 1
6: else
7: si := false
8: r := r − (

n−i−1
t−1

)

9: i := i + 1
10: while i < |s| do
11: si := false
12: i := i + 1
13: return s

Bitvector State Space Search

Minimal and reversible perfect hash functions are bijective
mappings of the set of reachable states to a set of available
indices.

59

Two-Bit Breadth-First Search

Cooperman and Finkelstein (1992) show that, given a min-
imal reversible perfect hash function, two bits per state are
sufficient to conduct a complete breadth-first exploration of
the search space. The running time of their approach (shown
in Alg. 4) is determined by the size of the search space times
the maximum breadth-first layer (times the efforts to gen-
erate the children). The algorithm uses two bits, encoding
numbers from 0 to 3, with 3 denoting an unvisited state, and
0, 1, and 2 denoting the current depth value modulo 3. The
main effect is that this allows us to separate newly generated
states and visited states from the current layer.

Algorithm 4 Two-Bit-BFS (init)
1: for all i := 0, . . . , |S| − 1 do
2: Open[i] := 3
3: Open[rank(init)] := layer := 0
4: while Open has changed do
5: layer := layer + 1
6: for all i := 0, . . . , |S| − 1 do
7: if Open[i] = (layer− 1) mod 3 then
8: succs := expand(unrank(i))
9: for all s ∈ succs do

10: if Open[rank(s)] = 3 then
11: Open[rank(s)] := layer mod 3

Two-bit breadth-first search suggests the use of bit-state
tables for compressing pattern databases (Breyer and Korf
2009). If we store the mod-3 BFS value, we can determine
its absolute value first by construction of its generating path
and then by incremental updates. By having the BFS-layer
as the lookup value of the initial state, the pattern database
lookup-values can be determined incrementally.

One-Bit Reachability

The simplification in Algorithm 5 allows us to generate the
entire state space while using only one bit per state.

Algorithm 5 One-Bit-Reachability (init)
1: for all i := 0, . . . , |S| − 1 do
2: Open[i] := false
3: Open[rank(init)] = true
4: while Open has changed do
5: for all i := 0, . . . , |S| − 1 do
6: if Open[i] = true then
7: succs := expand(unrank(i))
8: for all s ∈ succs do
9: Open[rank(i)] := true

As we do not distinguish between open and closed nodes,
the algorithm may expand a node several times. Worse, in
one iteration of the algorithm, states in different BFS-layers
can be expanded. If the successor’s rank is smaller than the
rank of the actual one, it will be expanded in the next scan,
otherwise in the same one. Nevertheless, if a bijective hash
function is available, the algorithm is able to determine all
reachable states. Additional information extracted from a

state can improve the running time by decreasing the number
of reopened nodes.

Theorem 6 (Number of Scans in 1-Bit Reachability)
The number of scans in the algorithm One-Bit-Reachability
is bounded by the maximum BFS layer.

Proof. Let Layer(i) be the breadth-first search layer of
a state with rank i and Scan(i) be the layer in the algo-
rithm One-Bit-Reachability. Evidently, Scan(rank(init)) =
Layer(rank(init)) = 0. For any path (s0, . . . , sd) generated
by BFS, we have Scan(rank(sd−1)) ≤ Layer(rank(sd−1))
by induction hypothesis. All successors of sd−1 are gener-
ated in the same iteration (if their index value is larger than
i) or in the next iteration (if their index value is smaller than
i) such that Scan(rank(sd)) ≤ Layer(rank(sd)). �

One-Bit Breadth-First Search

Given a move-alternation or layer-selection property, we can
perform BFS using only one bit per state.

Assuming a layer-selection property, Algorithm 6 retains
the breadth-first order, i.e., a bit identifying a node is set in
the BFS-layer where the node is reached for the first time.
The bitvectors Open are expanded depending on the breadth-
first layer. The algorithm terminates when no new successor
is generated.

Algorithm 6 One-Bit-BFS (init)
1: for all i := 0, . . . , |S| − 1 do
2: Open[0][i] := false
3: Open[0][rank0(init)] := true
4: layer := 0
5: while Slayer �= ∅ do
6: layer := layer + 1
7: for all i := 0, . . . , |S| − 1 do
8: Open[layer][i] := false
9: for all i := 0, . . . , |Slayer−1| − 1 do

10: if Open[layer − 1][i] = true then
11: succs := expand(unranklayer−1(i))
12: for all s ∈ succs do
13: r := ranklayer(s)
14: Open[layer][r] := true

One important observation is that not all visited states that
appear in previous BFS layers are removed from the current
one. Hence, there are states that are reopened; in the worst
case once for each BFS layer. Even though some states may
be re-expanded several times, the following result is imme-
diate.

Theorem 7 (Population Count In One-Bit-BFS) Let the
population count pcl be the number of bits set after the l-th
scan in Algorithm One-Bit-BFS. Then the number of states
in BFS-layer l is |Layerl| = pcl − pcl−1.

GPU Essentials

The GPU architecture mimics a single instruction multiple
data (SIMD) computer with the same instructions running
on all processors. It supports different layers for memory

60

Texture Processor Cluster 1 T
exture

P
rocessor

C
lusters

2
...10

Global memory

Streaming
Multiprocessor 1

shared
m

em
ory

Streaming
Processors

Streaming
Multiprocessor 2

shared
m

em
ory

Streaming
Processors

Streaming
Multiprocessor 3

shared
m

em
ory

Streaming
Processors

special function unit 2

special function unit 1

special function unit 2

special function unit 1

special function unit 2

special function unit 1

Figure 1: Sample GPU Architecture (G200 Chipset).

access, forbids simultaneous writes but allows concurrent
reads from one memory cell.

If we consider the G200 chipset, as found in state-of-
the-art NVIDIA GPUs and illustrated in Figure 1, a core is
a streaming processor (SP). 8 SPs are grouped together to
one streaming multiprocessor (SM), and used like ordinary
SIMD processors. Each of the 10 texture processor clusters
(TPCs) combines 3 SMs, yielding 240 cores in one chip.

Memory, visualized dashed in the figure, is structured hi-
erarchically, starting with the GPU’s global memory (video
RAM, or VRAM). Access to this memory is slow, but can be
accelerated through coalescing, where adjacent accesses are
combined to one 64-bit access. Each SM includes 16 KB of
memory (SRAM), which is shared between all SPs and can
be accessed at the same speed as registers. Additional regis-
ters are also located in each SM but not shared between SPs.
Data has to be copied from the systems main memory to the
VRAM to be accessible by the threads.

The function executed in parallel on the GPU is called
kernel. The kernel is driven by threads, grouped together
in blocks. The TPC distributes the blocks to its SMs in a
way that a block is not distributed among different SMs. All
the SPs get the same chunk of code, so that SPs in an else-
branch wait for the SPs operating in the according if-branch,
being idle. After all threads have completed a chunk of code,
the next one is executed. Threads waiting for data can be
parked by the SM, while the SPs work on threads, which
have already received the data.

Implementation on the GPU

Let us now consider how to implement the above algorithms
on the GPU. To profit from coalescing, threads should access
adjacent memory contemporary. Additionally, the SIMD-
like architecture forces to avoid if-branches and to design a
kernel, which is executed unchanged for all threads. These
facts lead to keeping the entire or partitioned state space
bitvector in RAM and copying an array of ranks to the GPU.
This approach benefits from the SIMD technology but im-
poses additional work on the CPU. One scan through the
bitvector is needed to convert its bits into ranks, but on the
GPU the work to unrank, generate the successors and rank
them is identical for all threads. To avoid unnecessary mem-
ory accesses, the value given to expand should be overwrit-

010010101 010010101 010010101 010010101

0010

FLUSH

EXPAND(GPU)

(GPU)
RANK UNRANK

(GPU) (GPU)
RANK

FLUSH

B0 B1 B2 Bnm

rank(π3)
rank(π0) rank(π2)
rank(π1)

Figure 2: GPU Exploration of the Sliding-Tile Puzzle Do-
main represented as a Bitvector.

ten with the value of the first child. If the number of suc-
cessors is known in advance, we can reserve space for these
successors in advance.

In larger instances that exceed RAM capacities we em-
ploy I/O-efficient disk-based algorithms, additionally main-
taining write buffers to avoid random access on disk. Once
the buffer is full, it is flushed to disk. In one streamed file
access, all corresponding bits in the buffer are set.

The setting is exemplified for the sliding-tile puzzle do-
main in Figure 2. We see the “blank-partitioned” BFS layer
of the state space resides on disk. It is read into RAM, con-
verted to integer ranks, and copied to the GPU to be un-
ranked, expanded and ranked again.

Since the bottleneck on the GPU is the memory not the
computing power we suggest toing additional useful opera-
tions after expanding the state. One option is computing the
heuristic value and to also accelerate heuristic search. By
the large reduction in state space due to the directness of
the search and by the lack of a perfect hash function for ex-
plored part of the state space in heuristic search – at least for
simpler instances – a bitvector compression for the entire
search space is not the most space-efficient option. How-
ever, as bitvector manipulation is fast, for hard instances we
obtain runtime advances on the GPU.

For our case study we have also ported breadth-first
heuristic search (BFHS) (Zhou and Hansen 2006) to the
GPU. For a given upper bound U on the optimal solution
length and current BFS-layer g the GPU receives the value
U − g as the maximal possible h-value, and marks states
with larger h-value as invalid.

Experiments

To test the efficiency of our approach, we implemented the
hash functions for several search problems and compared the
running times for GPU and CPU execution. We conducted
the experiments on an Intel Core i7 CPU 920 @2.67GHz
system with 12 GB RAM and 1.5 TB external storage, dis-
tributed on 4 hard disks. The GPU we used is an NVIDIA
N285GTX rev a1 with 1 GB VRAM and 240 cores.

For measuring speed-ups, we compare the GPU perfor-
mances with the run-times of a SIMD CPU implementation,
either running on a single or on multiple cores (8 in our case,

61

Table 1: GPU vs. CPU Performance using 1-Bit BFS (o.o.t
denotes out of time).

Domain Instance Times
GPU CPU CPU
GPU 1 Core 8 Cores

Sliding-Tile

(3× 4) 66s 427s 217s
(4× 3) 78s 475s 187s
(2× 6) 93s 1, 114s 374s
(6× 2) 114s 1, 210s 284s
(7× 2) 14, 215s o.o.t. 22, 396

Peg-Solitaire 44s 360s

using pthreads). We used this to grant fairness between the
two implementations, since a conceptually different CPU al-
gorithm would not be comparable to the GPU one.

Permutation-type Problems

Extracting a state from a permutation rank, generating the
children and computing their ranks was tested on three dif-
ferent single player games gaining speed-ups of more then
one order of magnitude.

Sliding-Tile Puzzle The (n ×m) sliding-tile puzzle (see
Fig. 3a) consists of (nm− 1) numbered tiles and one empty
position, called the blank. The task is to re-arrange the tiles
such that a certain goal arrangement is reached. Swapping
two tiles toggles the permutation parity and in turn the solv-
ability status of the game. Thus, only half of the states are
reachable.

The move-alternating property we used in this puzzle is
the position of the blank. Note that there is one subtle prob-
lem with ranking the blank. Simply taking the parity of the
entire board does not suffice, as swapping a tile with the
blank is a move, which does not change it. A solution is to
partition the state space wrt. the position of the blank, since
for exploring the (n×m) puzzle it is equivalent to enumer-
ate all (nm−1)!/2 orderings together with the nm positions
of the blank. If B0, . . . , Bnm−1 denote the set of “blank-
projected” partitions, then each set Bi contains (nm−1)!/2
states. Given the index r as the permutation rank and Bi it
is simple to reconstruct the puzzle’s state. As a side effect,
horizontal moves of the blank do not change the state vector,
thus the rank remains the same.

The first set of experiments in Table 1 shows the gain of
integrating bitvector state space compression with BFS in
different instances of the Sliding-Tile puzzle.

We run the one-bit breadth-first search algorithm on var-
ious instances of the sliding-tile-puzzle with RAM require-
ments from 57 MB up to 4 GB. The 3×3 version was simply
too small to show significant advances, while even in parti-
tioned form a complete exploration on a bit vector represen-
tation of the 15-Puzzle requires more RAM than available.
Moreover, the predicted amount of 1.2 TB hard disk space is
only slightly smaller than the 1.4 TB of frontier BFS search
reported by Korf and Schultze (2005).

Table 2: GPU vs. CPU Performance using 1-Bit BFHS in
the Sliding-Tile Puzzle Domain.

Instance Times
Size Rank Blank Pos. GPU CPU

(2× 6) 18, 295, 101 5 25s 98s
(6× 2) 799, 911 1 21s 95s
(3× 4) 5, 840, 451 9 30s 208s
(4× 3) 1, 560, 225 3 27s 202s
(2× 7) 2, 921, 466, 653 6 114s 2, 188s

For the 1-Bit BFS implementation the speed-up achieves a
factor between 7 and 10 in the small instances. Many states
are re-expanded in this approach, inducing more work for
the GPU and exploiting its potential for parallel computa-
tion. Partitions being too large for the VRAM are split and
processed in chunks of about 250 millions indices (for the
7 × 2 instance). A quick calculation shows that the savings
of GPU computation are large. We noticed that the GPU has
the capability to generate 83 million states per second (in-
cluding unranking, generating the successors and computing
their ranks) compared to about 5 million states per second of
the CPU (utilizing one core). As a result, for the CPU exper-
iment that ran out of time (o.o.t), which we stopped after one
day of execution, we predict a speed-up factor of at least 16,
and a running time of over 60 hours. We also implemented
a multicore version of the algorithm utilizing the available 8
cores and showing the benefit of the GPU implementation.

For BFHS, we measure the effect of computing the esti-
mate together with the expansion on the GPU (see Table 2).
For the puzzles we chose the hardest instances located in
the deepest BFS layer from a previous BFS run as the initial
state (its rank is provided in Table 2 column 2 and 3). The
speed-up ranges in between 3 and 6 for small puzzle sizes.
This can be attributed to the fact that for small problems the
number of states copied to the GPU is limited. It scales up to
22 for large puzzles, where the effect of parallel computation
is clearly visible. Even the additional burden of computing
the Manhattan distance heuristic from scratch is negligible.

Top-Spin Puzzle The next example is the (n, k)-Top-Spin
Puzzle (see Fig. 3b) (Chen and Skiena 1995), which has n
tokens in a ring. In one twist action k consecutive tokens are
reversed and in one slide action pieces are shifted around.
There are n! different possible ways to permute the tokens
into the locations. However, since the puzzle is cyclic only
the order of the different tokens matters and thus there are
only (n − 1)! different states in practice. After each of the
n possible actions, we thus normalize the permutation by
cyclically shifting the array until token 1 occupies the first
position in the array.

The results for the (n, k)-Top-Spin problems for k = 4
are shown in Table 3. Since no layer-selection or move-
alternating property is known, we perform 2-bit BFS. We ad-
ditionally compare the GPU performance to a parallel CPU
implementation, where the algorithm utilizes all the avail-

62

a)
13

1 2 3 4 5 6

7 8 9 10 11 12
b)

13

6
7

8

14
1516

17

18

19

1

2

3

4

5

10

9

12

11

c)

Figure 3: Permutation Games: a) Sliding Tile Puzzle, b) Top-Spin Puzzle c) Pancake Problem.

Table 3: GPU vs. CPU Performance using 2-Bit BFS.
Domain Instance Times

GPU CPU CPU
1 Core 8 Cores

Top-Spin

10 0s 2s 0s
11 1s 10s 3s
12 12s 272s 63s
13 87s 2, 404s 510s

Pancake

10 0s 4s 2s
11 9s 52s 14s
12 130s 832s 164s
13 1, 819s 11, 771s 2, 499s

Frogs and Toads 686s 8, 880s

able cores. For large values of n, we obtain a significant
speed-up of more than factor 27 wrt. the single core compu-
tation, and a factor of 5 compared to the 8 core computation.

Pancake Problem The n-Pancake Problem (see Fig. 3c)
(Dweighter 1975) is to determine the number of flips of the
first k pancakes (with varying k ∈ {1, . . . , n}) necessary to
put them into ascending order. It is known that (5n + 5)/3
flips always suffice, and that 15n/14 flips are necessary.

The GPU and CPU running time results for the n-Pancake
problems are shown in Table 3. In contrast to the Top-Spin
puzzle for a large value of n, we obtain a speed-up factor of
7 wrt. running the same algorithm on one core of the CPU.

Binomial-type Problems

Two games were analyzed to test the effectiveness of the
binomial ranking. Since calculating large binomial coeffi-
cients is a computationally intensive task, necessary values
were precomputed and stored in an array while initializing
the experiments.

Peg-Solitaire Peg-Solitaire (see Fig. 4a), is a single-agent
problem invented in the 17th century. The game asks for
the minimum number of pegs that is reachable from a
given initial state. The set of pegs is iteratively reduced
by jumps. Solutions for the initial state (shown in Fig. 4a)
with one peg remaining in the middle of the board are
widely known (Berlekamp, Conway, and Guy 1982). An
optimal player for all possible states has been generated
by Edelkamp and Kissmann (2007).

In this problem the number of pegs decreases with each
move by one. Using this layer-selection property we can as-
sign each state immediately to its BFS layer. We performed
a 1-bit BFS on the complete state space and show the results
in Table 1. The GPU achieves a significantly faster explo-
ration speed then a CPU exploration.

Frogs and Toads The Frogs and Toads puzzle (see
Fig. 4b) is a generalization of the Fore and Aft puzzle, which
has been made popular by the American puzzle creator Sam
Loyd. It is played on a part of the 7x7 board consisting
of two 4x4 subarrays at diagonally opposite corners. They
overlap in the central square. One square has 15 black pieces
and the other has 15 white pieces, with the centre left va-
cant. A move is to slide or jump over another pieces of any
color (without removing it). The objective is to reverse the
positions of pieces in the lowest number of moves. This
game was originally an English invention in the 18th cen-
tury. Henry Ernest Dudeney discovered a quickest solution
of just 46 moves for Fore and Aft. To our knowledge full
explorations of larger instances of Frogs-and-Toads have not
been reported.

In this problem, each field can be either blank or occu-
pied with a black or a white piece. Hence a straight-forward
binomial ranking would not suffice to distinguish the three
different options. To overcome this challenge, we exploit the
fact that the number of pieces remains unchanged during the
entire exploration, and divide the search space into disjoint
sets, identified by the position of the blank. This way we can
define one color as the satisfied variable in order to use the
binomial ranking. Table 3 shows the results.

Conclusion

In this paper we studied the application of GPU computa-
tion in selected search domains. We have shown how to ap-
ply GPU-based BFS. The speed-ups of up to factor 27 with
respect to one core CPU computation compare well with
the speeds we obtained on a multiple core CPU (Korf and
Schultze 2005; Zhou and Hansen 2007).

Two-bit BFS is applicable if reversible and perfect hash
functions are available. Given a move-alternating or a layer-
selection property 1-bit per state suffices for a BFS. One-bit
reachability shows an interesting time-space trade-off.

Due to the small amount of available shared RAM of 16
KB on the GPU, we prefer the space requirements for rank-
ing and unranking to be small. To compute reversible min-
imal perfect hash functions for the permutation games, we

63

a) b)

Figure 4: Binomial Problems: a) Peg Solitaire, b) Frogs and Toads.

thus studied the ranking proposed by Myrvold and Ruskey.
Future work will consider efficient ranking and unranking

functions for general state spaces by forcing a BDD repre-
senting all reachable states to work as a perfect hash func-
tion. For simple reachability analysis this does not provide
any surplus, but in case of more complex algorithms, like
the classification of two-player games, perfect hash function
based on BDDs show computational advantages in form of
(internal or external) memory gains.

One open question is how domain-independent the results
are. The algorithms require a perfect and reversible hash
function that does not exceed SRAM. The mapping does not
have to be minimal, but space-efficient to yield a memory
advantage wrt. an explicit storage of the state vector. An au-
tomatic generation of such concise mapping seems difficult,
but if we consider the hash function as part of the input, then
all the algorithms above are domain-independent.

Acknowledgements Thanks to Shahid Jabbar and Peter
Kissmann for proofreading and DFG for support in the
project ED 74/8.

References
Belazzougui, D.; Botelho, F. C.; and Dietzfelbinger, M.
2009. Hash, displace, and compress. In Fiat, A., and
Sanders, P., eds., ESA, volume 5757 of Lecture Notes in
Computer Science, 682–693. Springer.
Berlekamp, E. R.; Conway, J. H.; and Guy, R. K. 1982.
Winning Ways for your Mathematical Plays, volume 2.
ISBN 0-12-091152-3: Academic Press. chapter 25.
Bonet, B. 2008. Efficient algorithms to rank and unrank
permutations in lexicographic order. In AAAI-Workshop on
Search in AI and Robotics.
Breyer, T., and Korf, R. E. 2009. 1.6-bit pattern databases.
In Symposium of Combinatorial Search.
Chen, T., and Skiena, S. 1995. Sorting with fixed-length
reversals. Discrete Applied Mathematics 71:269–295.
Cooperman, G., and Finkelstein, L. 1992. New methods for
using cayley graphs in interconnection networks. Discrete
Applied Mathematics 37/38:95–118.
Dweighter, H. 1975. Problem e2569. American Mathe-
matical Monthly 82:1010+.
Edelkamp, S., and Kissmann, P. 2007. Symbolic ex-
ploration for general game playing in PDDL. In ICAPS-
Workshop on Planning in Games.

Korf, R. E., and Schultze, P. 2005. Large-scale parallel
breadth-first search. In Veloso, M. M.; Kambhampati, S.;
Veloso, M. M.; and Kambhampati, S., eds., AAAI, 1380–
1385. AAAI Press / The MIT Press.
Korf, R. E. 2003. Delayed duplicate detection: extended
abstract. In IJCAI’03: Proceedings of the 18th inter-
national joint conference on Artificial intelligence, 1539–
1541. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc.
Korf, R. E. 2008. Minimizing disk I/O in two-bit breadth-
first search. In AAAI’08: Proceedings of the 23rd national
conference on Artificial intelligence, 317–324. AAAI
Press.
Kunkle, D., and Cooperman, G. 2007. Twenty-six moves
suffice for rubik’s cube. In ISSAC ’07: Proceedings of the
2007 international symposium on Symbolic and algebraic
computation, 235–242. New York, NY, USA: ACM.
Leischner, N.; Osipov, V.; and Sanders, P. 2009. Gpu
sample sort. CoRR abs/0909.5649.
Lindholm, E.; Nickolls, J.; Oberman, S.; and Montrym, J.
2008. NVIDIA Tesla: A unified graphics and computing
architecture. IEEE Micro 28(2):39–55.
Munagala, K., and Ranade, A. 1999. I/O-complexity of
graph algorithms. In SODA ’99: Proceedings of the tenth
annual ACM-SIAM symposium on Discrete algorithms,
687–694. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics.
Myrvold, W., and Ruskey, F. 2001. Ranking and unranking
permutations in linear time. Information Processing Letters
79(6):281–284.
Owens, J. D.; Houston, M.; Luebke, D.; Green, S.; Stone,
J. E.; and Phillips, J. C. 2008. Gpu computing. Proceedings
of the IEEE 96(5):879–899.
Zhou, R., and Hansen, E. A. 2004. Structured duplicate
detection in external-memory graph search. In AAAI’04:
Proceedings of the 19th national conference on Artifical
intelligence, 683–688. AAAI Press / The MIT Press.
Zhou, R., and Hansen, E. 2006. Breadth-first heuristic
search. Artificial Intelligence 170(4-5):385–408.
Zhou, R., and Hansen, E. A. 2007. Parallel structured
duplicate detection. In AAAI’07: Proceedings of the 22nd
national conference on Artificial intelligence, 1217–1223.
AAAI Press.

64

