
Iterative Learning of Weighted Rule Sets for Greedy Search

Yuehua Xu
School of EECS

Oregon State University
xuyu@eecs.oregonstate.edu

Alan Fern
School of EECS

Oregon State University
afern@eecs.oregonstate.edu

Sungwook Yoon
Palo Alto Research Center
sungwook.yoon@parc.com

Abstract

Greedy search is commonly used in an attempt to gen-
erate solutions quickly at the expense of completeness
and optimality. In this work, we consider learning sets
of weighted action-selection rules for guiding greedy
search with application to automated planning. We
make two primary contributions over prior work on
learning for greedy search. First, we introduce weighted
sets of action-selection rules as a new form of control
knowledge for greedy search. Prior work has shown
the utility of action-selection rules for greedy search,
but has treated the rules as hard constraints, resulting in
brittleness. Our weighted rule sets allow multiple rules
to vote, helping to improve robustness to noisy rules.
Second, we give a new iterative learning algorithm for
learning weighted rule sets based on RankBoost, an ef-
ficient boosting algorithm for ranking. Each iteration
considers the actual performance of the current rule set
and directs learning based on the observed search errors.
This is in contrast to most prior approaches, which learn
control knowledge independently of the search process.
Our empirical results have shown significant promise
for this approach in a number of domains.

Introduction
It is often the case that search problems must be solved
quickly in order for their solutions to be usefully applied.
Such scenarios often arise due to real-time constraints, but
also in problem solving frameworks that solve complex
problems by reduction to a number of simpler search prob-
lems, each of which must be solved quickly. For example,
some approaches to probabilistic planning involve generat-
ing and solving many related deterministic planning prob-
lems (Yoon et al. 2008; Kolobov, Mausam, and Weld 2009).
Greedy search is one approach to finding solutions quickly
by pruning away most nodes in a search space. However,
when the guiding heuristic is not accurate enough, it often
leads to failure. Here we focus on the problem of learning
control knowledge to guide greedy search in planning do-
mains based on training solutions to example problems.

One prior approach to learning greedy control knowledge
has been to learn action-selection rules for defining reac-
tive policies tuned to a particular planning domain (Khardon

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1999; Martin and Geffner 2000; Yoon, Fern, and Givan
2002). Given a good reactive policy, a planning problem
from the corresponding domain can be quickly solved with-
out search. While action-selection rules are an intuitively
appealing form of control knowledge and give good results
in certain domains, experience with existing learning algo-
rithms has shown that in many domains the learned reactive
policies are often imperfect and result in poor planning per-
formance.

There are at least three possible reasons for this lack
of robustness. (1) Policies have typically been defined as
decision-lists of action-selection rules, which can be quite
sensitive to variations in the training data. In particular,
each decision made by a decision list is based on a single
rule, rather than a vote among a number of rules, each pro-
viding its own evidence. (2) Learning from example plans
(i.e. state-action sequences) leads to ambiguity in the train-
ing data. In particular, there are often many good actions in a
state, yet the training data will generally only contain one of
them arbitrarily. Attempting to learn a policy that selects the
arbitrary training-data actions over other, inherently equal,
actions can lead to extremely difficult learning problems. (3)
Prior approaches to learning greedy policies from example
plans typically do not consider the search performance of
the learned policy. These approaches select a policy based
on an analysis of the training data alone, but never actually
observe the search performance of the selected policy.

In this paper, we describe a new form of control knowl-
edge and learning algorithm for addressing the above three
shortcomings. (1) Recognizing that action-selection rules
are able to capture useful knowledge, we attempt to learn
and use such rules in a more robust way. In particular, we
use sets of weighted rules to define a ranking function on
state transitions, allowing multiple rules to vote at each de-
cision point. We use a variant of the powerful RankBoost
algorithm to learn both the rules and rule weights. (2) To
deal with the problem of ambiguous training data we derive
partially ordered plans from the original sequential train-
ing plans, which provide more accurate information about
which actions are good and bad in each state. We then de-
fine our learning goal to be that of forcing greedy search to
remain consistent with the partially ordered plan, rather than
the original action sequence. (3) We introduce a novel iter-
ative learning algorithm that takes the search performance

201

Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS 2010)

into account. On each iteration the algorithm conducts a
greedy search with the current knowledge and uses the ob-
served search errors to guide the next round of learning.
Thus, the learning is tightly integrated with the search pro-
cess.

Other recent work (Yoon, Fern, and Givan 2008; de la
Rosa, Jiménez, and Borrajo 2008) has made progress on
learning various forms of control knowledge including
heuristics and policies for guiding search in planning. That
work does not focus on guiding greedy search1 and as will be
shown in our experiments, the knowledge learned in (Yoon,
Fern, and Givan 2008) does not work well when applied
greedily. Furthermore, the knowledge in those studies is
learned completely independently of the search process. In
particular, there is no mechanism for directly trying to im-
prove the knowledge to correct for observed search errors.
In contrast, the learning approach in this paper is directly
driven by observed search errors, focusing on parts of the
search space that are observed to be most difficult.

Recent studies have considered a tighter integration of
search and learning in the context of structured prediction
(Daume III and Marcu 2005) and automated planning (Xu,
Fern, and Yoon 2009). However, these approaches only
learn the weights of a human provided set of features and
did not provide a feature learning mechanism. Rather in our
work we consider learning weights and features, where here
action-selection rules serve as the feature representation.
To our knowledge, there is only one other prior work that
has integrated learning with search and that also attempts
to learn features and weights (Daumé III, Langford, and
Marcu 2009). That work attempts to learn greedy policies
as linear combinations of component policies (or features)
to guide greedy search for structured-prediction problems.
However, the work makes a number of assumptions that are
often valid for structured prediction, but rarely valid for au-
tomated planning or similar combinatorial search problems.
In particular, the work assumes the ability to compute the
optimal policy at any state that might be generated on the
training search problems, which is highly impractical for the
planning problems we are interested in.

The remainder of the paper is organized as follows. First,
we give our problem setup for learning control knowledge to
guide greedy search. Second, we introduce the form of our
rule-based ranking function. Next, we present a new itera-
tive learning algorithm for learning the ranking function, fol-
lowed by a description of our rule learner. We finally present
experimental results and conclude.

Problem Setup

We focus our study on search problems arising from deter-
ministic planning problems. A planning problem is a tu-
ple (s0, A, g), where s0 is the initial state, A is a set of ac-
tions, and g is a set of state facts representing the goal. A
solution plan for a planning problem is a sequence of ac-

1One approach in (de la Rosa, Jiménez, and Borrajo 2008) con-
siders guiding enforced hill-climbing, which is more greedy than
most search approaches, but still relies on unbounded (non-greedy)
expansion at each step to find an improved node.

tions (a1, . . . , al), where the sequential application of the
sequence starting in state s0 leads to a goal state s∗ where
g ⊆ s∗. A planning problem can be viewed as searching a
large directed graph where the vertices represent states and
the edges represent applicable actions.

Greedy Search. We focus on planning scenarios where
problems must be solved very quickly in order for their so-
lutions to be useful. For this purpose we consider greedy
search as our mechanism for generating solutions quickly.
In particular, we assume access to a ranking function that
assigns a numeric score to any possible state transition. Ties
can be broken according to some canonical ordering (e.g.
lexicographic). At each step of greedy search, the current
search node is expanded and the child of the transition with
the highest rank is selected to be the current node. This pro-
cess continues until a goal node is discovered or time runs
out.

Learning to Plan. Given a target planning domain, our
goal in this paper is to learn a ranking function on state tran-
sitions that can quickly solve problems in the domain us-
ing greedy search. A learning-to-plan problem provides a
training set of pairs {(xi, yi)}, where each xi = (si, A, gi)
is a planning problem from the target planning domain and
each yi = (ai1, ai2, . . . , ail) is a sequence of actions that
achieves the goal gi starting from initial state si. Here we
have assumed, without loss of generality, that all solutions
have length l to simplify notation. Given such a training
set the learning goal is to learn a ranking function so that
when used to rank state transitions, greedy search will solve
the training problems, typically finding solutions that are the
same or variants of the provided solutions in the training
set. There is an implicit assumption that the set of training
problems are representative of the problem distribution to
be encountered in the future, so that learning will be biased
toward the most relevant problem space. In addition, the so-
lutions in the training set should reflect good solutions, since
learning will be largely driven to produce variants of those
solutions.

Rule-based Ranking Functions

We consider ranking functions of state transitions that are
represented as linear combinations of features, where our
features will correspond to action-selection rules. Follow-
ing prior work (Yoon, Fern, and Givan 2008) that used tax-
onomic syntax to define action-selection rules for reactive
policies, each of our action-selection rules has the form:

u(z1, . . . , zk) : L1, L2, . . . , Lm (1)

where u is a k-argument action type and the zi are argument
variables. Each Li here is a literal of the form z ∈ E where
z ∈ {z1, . . . , zk} and E is a taxonomic class expression.
Given a state-goal pair (s, g), each class expression E rep-
resents a set of objects in a planning problem, so that each
literal can be viewed as constraining a variable to take values
from a particular set of objects. For example, holding is a
taxonomic class expression in the Blocksworld domain and
it represents the set of blocks that are being held in the cur-
rent state. More complex class expressions can be built via
operations such as intersection, negation, composition, etc.

202

For example, the class expression ontable∩gontable repre-
sents the set of objects/blocks that are on the table in both the
current state and goal. We refer the reader to (Yoon, Fern,
and Givan 2008) for details of taxonomic syntax, noting that
the details are not essential to the main contribution of this
paper. Given a state-goal pair (s, g) and a ground action a
where a = u(o1, . . . , ok), the literal zj ∈ E is said to be true
if and only if oj is in the set of objects that is represented by
E. We say that the rule suggests action a for state-goal pair
(s, g) if all of the rule literals are true for a relative to (s, g).

Given a rule of the above form, we can define a corre-
sponding feature function f on state transitions, where a
state transition is simply a state-goal-action tuple (s, g, a)
such that a is applicable in s. The value of f(s, g, a) = 1
iff the corresponding rule suggests a for (s, g) and otherwise
f(s, g, a) = 0. An example rule in the Blocksworld domain
is: putdown(x1): x1 ∈ holding which defines a feature
function f , where f(s, g, a) = 1 iff a = putdown(o) and
holding(o) ∈ s for some object o, and is equal to zero for
all other transitions.

Assume that we have a set of rules giving a corresponding
set of feature functions {fi}. The ranking function is then a
linear combination of these rule-based features

F (s, g, a) =
∑

i

wi · fi(s, g, a)

where wi is the corresponding real-valued weight of fi.
From this it is clear that the rank assigned to a transition
is simply the sum of the weights of all rules that suggest that
transition. In this way, rules that have positive weights can
vote for transitions by increasing their rank, and rules with
negative weights can vote against transitions by decreasing
their rank.

Learning Weighted Rule Sets

In this section, we describe the traditional rank learning
problem from machine learning and then how to formulate
the learning-to-plan problem as a rank learning problem.
Next we describe a variant of the RankBoost algorithm for
solving the ranking learning problem. Finally, we describe
our novel iterative learning algorithm based on RankBoost
for learning weighted rule sets.

The Rank Learning Problem

Given a set of instances I , a ranking function is a function
that maps I to the reals. We will view a ranking function
as defining a preference ordering over I , with ties allowed.
A rank learning problem provides us with training data that
gives the relative rank between selected pairs of instances
according to some unknown target partial ordering. The goal
is to learn a ranking function that is (approximately) con-
sistent with the target ordering across all of I based on the
training data.

More formally a rank learning problem is a tuple (I, S),
where I is a set of instances, and S ⊆ I × I is a training set
of ordered pairs of instances. By convention, if (v1, v2) ∈ S
then the target is to rank v1 higher than v2. The learning
objective is to learn a ranking function F that minimizes the

number of misranked pairs of nodes relative to S (Freund et
al. 2003). Here we say that F misranks a pair if (v1, v2) ∈ S
and F (v1) ≤ F (v2), or (v2, v1) ∈ S and F (v1) ≥ F (v2).
The hope is that the learned ranking function will generalize
so that it correctly ranks pairs outside of the training set.

It is typical to learn linear ranking functions of the form
F (v) =

∑
i wi · fi(v), where the fi are real-valued feature

functions that assign scores to instances in I . The wi are
real-valued weights indicating the influence of each feature.
In this paper, the instances will correspond to possible state
transitions from a planning domain and our features will be
the rule-based features described above.

Learning-to-Plan as Rank Learning

We now describe two approaches for converting a learning-
to-plan problem into a rank learning problem. Given a
learning-to-plan training set {(xi, yi)} for a planning do-
main, let sij be the j′th state along the solution trajectory
specified by yi. Also let Cij be the set of all candidate
transitions out of sij , where a transition from s to s′ via
action a will be denoted by (s, a, s′). Finally, let tij =
(sij , aij , si(j+1)) be the target transition out of sij specified

by yi. Our first conversion to a rank learning problem (I, S)
defines the set of instances I to be the set of all possible state
transition in the planning domain. The set S is defined to re-
quire that tij be ranked higher than other transitions in Cij ,
in particular, S =

⋃
i,j{(tij , t)|t ∈ Cij , t �= tij}. Any rank-

ing function that is consistent with S will allow for greedy
search to produce all solutions in the training set and hence
solve the learning-to-plan problem.

Unfortunately, for many planning domains, finding an ac-
curate ranking function for the above rank learning problem
will often be difficult or impossible. In particular, there are
often many equally good solution trajectories for a planning
problem other than those in the learning-to-plan training set,
e.g. by exchanging the ordering of certain actions. In such
cases, it becomes infeasible to require that the specific tran-
sitions observed in the training data be ranked higher than all
other transitions in Cij since many of those other transitions
are equally good. To deal with this issue, our second con-
version to rank learning attempts to determine which other
transitions in Cij are also good transitions. To do this we
use the heuristic algorithm described in (Veloso, Pérez, and
Carbonell 1991) to transform the given solution trajectories
into partially ordered plans. The partially ordered plans con-
tain the same set of actions as the totally ordered plan given
by the yi but only include the necessary constraints on the
action-ordering. Therefore, every partially ordered plan im-
plicitly represents a set of solution paths, often an exponen-
tially large set.

Given partially ordered plans for the examples in our
learning-to-plan problem, we can now consider the learn-
ing goal of finding a ranking function such that greedy
search will always remain consistent with the partially or-
dered plans. To do this we can generate a rank learning
problem (I, S) that defines I as above, but defines the set
S relative to the partial order plans as follows. Let δ(t, xi)
be a boolean function that determines whether a given tran-
sition t = (s, a, s′) is on the partially ordered plan for xi.

203

δ(t, xi) = 1 indicates that there exists a solution path con-
sistent with the partially ordered plan that goes through t
and δ(t, xi) = 0 otherwise. Given this we can arrive at an
improved set of training pairs

S =
⋃

i,j

{(t1, t2) | t1, t2 ∈ Cij , δ(t1, xi) = 1, δ(t2, xi) = 0}.

This definition of S specifies that for every state on the
solution path corresponding to yi, its outgoing transitions
that are consistent with the partially ordered plan should be
ranked higher than those that are not consistent. Intuitively,
this learning problem will often be easier than the one de-
fined earlier since the learner is not forced to make arbitrary
distinctions between equally good transitions (i.e. those con-
sistent with the partially ordered plan).

Unfortunately, with this new form of training data a subtle
problem has been introduced. In particular, a ranking func-
tion that is consistent with the rank learning problem is no
longer guaranteed to solve the training planning problems.
That is solving the rank learning problem does not necessar-
ily solve the learning-to-plan problem. The reason for this
is that the only transitions included in I are those that orig-
inate at nodes on the totally ordered training solutions (i.e.
the union of transitions in the Cij). However, a consistent
ranking function might lead a greedy search to take a transi-
tion that leads off of the training solution (e.g. by selecting
a good/consistent transition not in the totally ordered solu-
tion), where it has not been trained and hence no guarantees
can be made about its performance. One way to solve this
problem would be to include all possible transitions in I and
attempt to rank all transitions consistent with a partially or-
dered plan higher than all others. Unfortunately, there can
be an exponentially large set of transitions consistent with a
partially ordered plan, making this option intractable in gen-
eral. In order to overcome this potential pitfall, we propose
an iterative learning algorithm later in this section. Before
that, we first describe how to solve a fixed ranking problem
with a variant of the RankBoost algorithm.

RankBoost with Prior Knowledge

By converting our learning-to-plan problems to rank learn-
ing we can now consider applying existing learning algo-
rithms for ranking. RankBoost is a particularly effective al-
gorithm that combines a set of weak learners in order to ac-
curately rank a set of instances (Freund et al. 2003). Given
a set of ordered pairs of instances S, RankBoost defines D
to be a uniform distribution over all pairs in S. RankBoost’s
learning objective is to find a ranking function F that mini-
mizes the rank loss with respect to D,

rLossD(F) =
∑

(v1,v2)∈S

D(v1, v2) · ψ(F (v1) ≤ F (v2))

where ψ(·) is 1 if its argument is true and 0 otherwise. This
is equivalent to finding an F that minimizes the number of
misranked pairs with respect to S.

RankBoost is an iterative algorithm that adds one feature
to a linear ranking function on each iteration in order to im-
prove the rank loss. To do this, on each iteration i it main-
tains a distribution Di over all pairs in S, starting with D

from above, which indicates the importance of each pair to
be ranked correctly by the next learned feature. Di is passed
to the weak learner, which attempts to return a new feature
fi that achieves a good rank loss with respect to Di. Rank-
Boost then selects an appropriate weight wi (details below)
so that the resulting ranking function F (v) =

∑
i wi · fi(v)

has a reduced rank loss over iteration i− 1. The distribution
Di+1 then gets updated so that it decreases the emphasis on
pairs ranked correctly by fi and increases the emphasis on
incorrectly ranked pairs. As a result, iteration i+1 will con-
centrate more on pairs that have been misranked more often
in previous iterations.

In our case, we consider a variant of RankBoost that takes
into account prior knowledge provided by an initial ranking
function. This is motivated by the fact that prior work (Yoon,
Fern, and Givan 2008; Xu, Fern, and Yoon 2009) has found
it quite useful to incorporate state-of-the-art heuristics such
as relaxed plan length (Hoffmann and Nebel 2001) into the
learned control knowledge. In addition, our overall algo-
rithm (described later) will call RankBoost repeatedly and
it is beneficial to provide RankBoost with the best ranking
function from previous calls as prior knowledge. Our variant
algorithm takes any ranking function F0 as input and learns
weighted features that attempt to correct the mistakes of this
ranking function. As shown in Figure 1, the main idea is to

RB-prior (S, F0, k)
// S is the set of instance pairs.
// F0 is the input ranking function.
// k is the number of iterations.
for each pair (v1, v2) ∈ S

D1(v1, v2) = exp(F0(v2)−F0(v1))
Z0

for i = 1, 2, . . . , k :
fi ← Rule-Learner (S, Di)
// Learning a ranking feature using distribution Di

Choose wi ∈ R // see text for our choice
for each pair (v1, v2) ∈ S

Di+1(v1, v2) = Di(v1,v2)exp(wi(fi(v2)−fi(v1)))
Zi

where Zi is a normalization factor
return F = F0 +

Pk

i=1 wi · fi

Figure 1: The variant of RankBoost.

modify the initial distribution according to the given ranking
function F0. The learned ranking function F is then equal to
F0 plus a linear combination of learned features that attempt
to correct the mistakes of F0. The following theorem proves
a bound on the rank loss of F .

Theorem 1 For any F0 the rank loss on the training data

of F = F0 +
∑k

i=1 wifi returned by RB-prior satisfies

rLossD(F) ≤
∏k

i=0 Zi.

The proof, which we omit for space reasons, is a direct adap-
tation of the original RankBoost result (Freund et al. 2003).
This bound indicates that if we can always maintain Zi < 1
then the rank loss on the training data decreases exponen-
tially fast. To achieve this we follow the approach of (Fre-
und et al. 2003) for learning features and selecting weights,

204

where a specialized formulation was presented for binary
features, which is the case for our rule-based features. In
particular, the weak learner attempts to find a feature f that
maximizes |r|, where r =

∑
(v1,v2)∈S Di(v1, v2)(f(v1) −

f(v2)). The weight for the feature is set to wi = 1
2 ln(1+r

1−r
).

Provided that the weak learner can find a feature with |r| > 0
then it can be shown that Zi < 1. Therefore, RB-prior is
guaranteed to reduce the rank loss at an exponential rate pro-
vided that the weak learner can achieve a minimal guarantee
of |r| ≥ ε for any ε > 0.

Iterative Learning Algorithm

As noted above, the conversions from learning-to-plan to
rank learning included only a small fraction of all possible
state transitions, in particular those transitions that originate
from states in the training solution paths. For any transitions
that are not included in S, the learning problem does not
specify any constraints on their rank. Thus, when the learned
ranking function leads greedy search to parts of the search
space outside of S the search is in unchartered territory and
no guarantees can be given on the search performance of the
learned weighted rule set on the training problems.

In order to help overcome this issue, we propose an itera-
tive learning algorithm, which integrates the above RB-prior
algorithm with the search process. The goal is to form rank
learning problems whose set of transitions in S are a bet-
ter reflection of where a greedy search using the currently
learned ranking function is going to go. In particular, it
is desirable to include erroneous transitions resulting from
greedy search with the current ranking function, where an
erroneous transition is one that falls outside of the partially
ordered plan of a training example. This allows for learning
to focus on such errors and hopefully correct them.

More specifically, Figure 2 gives pseudo-code for our
improved approach to learning ranking functions for plan-
ning. The top level procedure repeatedly constructs a rank-
ing problem by calling ConstructRP, calls RB-prior to
learn k new features on it, and then further optimizes the
feature/rule weights by calling WeightLearning using a
perceptron-style algorithm. In RB-prior, the weights are se-
lected in order to minimize the rank loss. However, this does
not always correspond exactly to the best weights for max-
imizing planning performance. Thus, to help improve the
planning performance, we consider using the perceptron-
style algorithm to further optimize the weights. This weight-
learning algorithm iteratively conducts greedy search and
updates the weights in order to correct the search errors that
have been made. For details about the weight learning algo-
rithm, we refer to prior work (Xu, Fern, and Yoon 2009).

The key aspect of this iterative algorithm is that the train-
ing instances generated at each iteration depend on the per-
formance of the currently learned ranking function. In par-
ticular, given the current ranking function F , the algorithm
simulates the process of greedy search using F and then
adds transition pairs to S along the greedy search path. At
any node along the greedy search path all possible outgoing
transitions are classified as being on or off the partial order
plan via δ and pairs are added to S to specify that transi-

IterativeLearning ({xi}, δ, F0, k)
// xi = (si, A, gi) is a planning problem.
// δ is the function defined on partially ordered plans.
// F0 is an initial ranking function, e.g. a planning heuristic.
// k is the number of iterations of RB-prior for each
generated ranking problem
F ← F0 //initialize the ranking function
S ← ∅ // initialize the ranking problem
repeat until no improvement or a certain number of
iterations

S ← S+ ConstructRP ({xi}, δ, F)
F ′ ←RB-prior (S, F, k)
F ← F ′

F ←WeightLearning(F)
return F

ConstructRP ({xi}, δ, F)
S ← ∅
for each xi = (si, A, gi)

s ← si

repeat until s ⊇ gi // goal achieved
C ← all transitions (s, a, s′) out of s
C+ ← {t | t ∈ C ∧ δ(t, xi) = true}
C− ← C − C+

S = S + {(t, t′) | t ∈ C+, t′ ∈ C−}
s ← destination of highest ranked transition in C+

according to F
return S

Figure 2: The iterative learning algorithm.

tions on the partial order plan be ranked higher than those
that are not. If, during this process, the greedy search should
ever follow an erroneous transition according to δ, then the
search will be artificially forced to follow the highest ranked
good transition. This helps avoid adding pairs to S along
paths that significantly diverge from the partial order plan.

Convergence. Under certain assumptions the above it-
erative learning algorithm is guaranteed to converge to a
ranking function that solves the training problems in a finite
amount of time. This is a minimal property that a learning
algorithm should have, but for most prior work on learning
control knowledge, which does not take search performance
into account, no such guarantees can be made.

The assumptions we make are as follows: 1) There exists
a weighted rule set in our rule language which can correctly
rank all nodes in the search space, according to δ defined on
the partially ordered plans, 2) We have a weak rule learner
which can always find a rule that achieves |r| ≥ ε for some
ε > 0, which is a standard assumption in boosting theory, 3)
Each call to RB-prior is run for enough iterations to achieve
zero rank loss on its input ranking problem.

Under assumptions (2) and (3) we are guaranteed that
each call to RB-prior will terminate in a finite amount of
time with zero rank loss since the rank loss decreases expo-
nentially fast as described earlier. Thus it remains to bound
the number of calls to RB-prior. After each call to RB-prior,
if the resulting ranking function does not solve a training
problem then new training pairs of instances will be gener-
ated and added to the current set of training pairs S. Note

205

that the training pairs are only generated for the transitions
(s, a, s′) out of s where s is a possible state generated by
the corresponding partially ordered plan. Let m denote the
number of possible states that can be reached by the par-
tially ordered plans. The number of calls to RB-prior is then
bounded by m. Unfortunately, m can be exponentially large
in the size of the partially ordered plans. Unless further as-
sumptions are made it is possible to construct example learn-
ing problems that match this worst case bound, showing the
bound is tight.

In future work, we will investigate assumptions where
convergence can be guaranteed in a small number of iter-
ations. In particular, the worst case results are quite patho-
logical since they assume that the learning algorithm never
generalizes correctly to unseen states in the training data. It
is likely that assumptions about generalization will allow for
much tighter bounds.

Learning Action Selection Rules

The RankBoost algorithm assumes the existence of a weak
learner that can be called to produce a ranking feature. In
this section, we briefly introduce the rule learner we used.
As shown in Figure 1, the input to the rule learner is the set
of transition pairs S and a distribution D over S. In our case,
each instance composing a pair in S is represented as a state-
goal-action tuple (s, g, a), on which a rule-based feature can
be evaluated. The learning objective is to find a rule that
can maximize |r| where r =

∑
(v1,v2)∈S D(v1, v2)(f(v1)−

f(v2)).
For this purpose, we adapt the heuristic rule learner de-

scribed in (Yoon, Fern, and Givan 2008) to find the best rule
that can maximize |r|. Since the rule space is exponentially
large, the approach performs a beam search over possible
rules, where the starting rule has no literals in its body and
each search step adds one literal to the body. The search
terminates when the beam search is unable to improve |r|.

Experimental Results

Domains. To facilitate comparison we present experiments
in seven STRIPS domains from prior work (Yoon, Fern,
and Givan 2008; Xu, Fern, and Yoon 2009) that also stud-
ied learning knowledge from provided solution trajectories.
The domains included: Blocksworld (30-30), Depots (15-
35), Driverlog (15-35), FreeCell (15-35), Pipesworld(15-
35), Pipesworld-with-tankage(15-35) and Philosopher(15-
33), which had 30 training and 30 test problems for
Blocksworld and for all other domains 15 training problems
and 35 or 33 test problems. For each training problem, we
select the shortest plan out of those found by running FF
and beam search with various beam widths to be the so-
lution trajectory. For consistency with those prior studies
we set a time cut-off of 30 CPU minutes, upon which a
problem was considered a failure, however, for our greedy
search approach, when solutions are found they are found
very quickly.

Description of Tables. Figure 3 compares the perfor-
mance of our different learning approaches as well as to
the performance of greedy search using control knowledge

learned by various algorithms from prior work (Yoon, Fern,
and Givan 2008; Xu, Fern, and Yoon 2009). The algo-
rithms are: Yoon08: three forms of control knowledge were
learned in (Yoon, Fern, and Givan 2008) (policies, heuris-
tics, and measures-of-progress). The table entries labeled
Yoon08 give the best performance among the three types of
control knowledge when used for greedy search as reported
in that work. Results for Yoon08 are only given for our
three IPC4 domains for which our training and testing sets
exactly correspond. RPL: greedy search with FF’s relaxed
plan length heuristic. LaSO-BR1: greedy search with the
ranking function learned by LaSO-BR1 (Xu, Fern, and Yoon
2009). This is the closest work to our approach, in which
the ranking function is also represented as a linear combi-
nation of features and used to control greedy search. The
features in that work were features of state rather than transi-
tions and were provided to the algorithm rather than learned
as in this work. RB: greedy search with the weighted rule
set that is learned by RB-prior when no prior knowledge is
provided. Here the ranking problem is derived from just the
states in the training trajectories. Learning is stopped when
no improvement is observed or 30 rules are learned. RB-
prior: same as RB but with the relaxed plan length heuristic
provided as prior knowledge. ITR: greedy search with the
weighted rule set that is learned via our iterative learning
algorithm. In this experiment, we do not accumulate data
across iterations as described in Figure 2, for efficiency rea-
sons, but rather pass only the most recent data to RB-prior.
Also, we implement only an approximation of the δ func-
tion since an exact test is computationally hard (see full re-
port for details). We initialize the algorithm with the relaxed
plan length heuristic as input in the first iteration and learns
k = 5 rules with RP-prior per iteration. Learning is ter-
minated when no improvement is observed or 30 rules are
learned in total.

For an additional reference point, we also include the per-
formance of FF (Hoffmann and Nebel 2001) in Figure 3
which is not constrained to perform greedy search. Each
column of Figure 3 corresponds to an algorithm and each
row corresponds to a target planning domain. The planning
performance is first evaluated with respect to the number of
solved problems. When two algorithms solve the same num-
ber of problems, we will use the median plan length of the
solved problems to break the tie.

Figure 4 provides more details of the approaches we used.
We add a new column “Learning iterations” indicating how
many times the rule learner is called. Since the learner
sometimes learns duplicated rules, we add a set of three
columns that are labeled as “Number of unique rules”, giv-
ing the actual size of the learned rule set that removes dupli-
cations. Now each row corresponds to the performance of
the weighted rule set learned after the number of iterations
specified by that row. Since ITR learned 5 rules for each
ranking problem generated in each iteration, we compared
the results after every 5 rules being induced. For example,
the first row for Blocksworld corresponds to the weighted
rule set learned after 5 rules are induced. However, after re-
moving duplications, the actual size of the weighted rule set
is 3 for RB and 4 for RB-prior. The next row indicates that

206

Problems solved (Median plan length) FF Yoon08 RPL LaSO-BR1 RB RB-prior ITR

Blocksworld 10 (77) N/A 13 (3318) 27 (840) 30 (126) 30 (166) 30 (118)

Depots 14 (63) N/A 1 (462) 4 (1526) 15 (661) 11 (129) 23 (433)

Driverlog 3 (119) N/A 0 (-) 0 (-) 0 (-) 3 (2852) 4 (544)

FreeCell 29 (90) N/A 5 (96) 7 (132) 5 (155) 7 (96) 9 (92)

Pipesworld 20 (50) 0 (-) 11 (114) 16 (1803) 7 (1360) 17 (1063) 17 (579)

Pipesworld-with-tankage 3 (63) 0 (-) 6 (119) 5 (55) 1 (1383) 6 (152) 5 (206)

Philosopher 0 (-) 0 (-) 0 (-) 6 (589) 33 (875) 33 (363) 33 (363)

Figure 3: Experimental results for different planners. For each domain, we show the number of solved problems and the median
plan length of the solved problems. A dash in the table indicates that the median plan length is not available since none of the
problems can be solved. N/A indicates that the result of the planner is not applicable here.

the size of the weighted rule set is 7 for RB after 10 rules are
induced.

Performance Evaluation

From Figure 3 we can see that overall among the learning
approaches, ITR performs the best in all domains, solving
more problems with fairly good plan length. Also, ITR is as
good and in many cases better than the relaxed plan length
heuristic (RPL) and LaSO-BR1. From Yoon08 it is shown
that no form of control knowledge learned in (Yoon, Fern,
and Givan 2008) was able solve any problem when used to
guide greedy search. Interestingly one form of knowledge
was (unweighted) rule-based policies using an identical rule
language to our own. This provides some evidence that us-
ing weighted rule sets is a more robust way of using rules
in the context of greedy search. To the best of our knowl-
edge, these are the best reported results of any method for
learning control knowledge for greedy search. Finally, we
see that ITR is comparable or better than FF, which is not
restricted to greedy search, in all domains except for Free-
cell, where ITR is significantly outperformed. This shows
that the performance of ITR is not due to easy problem sets.

Performance Across Learning Iterations. In Figure 4,
we first make the observation that our rule learner often
learns duplicate rules from previous iterations. In fact, in
some cases, the learner fails to find new rules, e.g ITR stops
learning new rules for Driverlog after 15 iterations, regard-
less of how many times the rule learner is called. This either
indicates a failure of our rule learner to adequately explore
the space of possible rules, or indicates a limitation of our
language for representing rules in this domain. These issues
will be investigated in future work.

Note that in general, with some exceptions, the planning
performance judged in terms of solved problems and me-
dian plan length improves as the number of unique rules in-
creases. For example, RB solves 3 problems with 13 rules
but 15 problems with 16 rules for Depots. As an exception,
however, consider Philosopher, where ITR solves all prob-
lems with the first 3 rules learned. When one new rule is
added, it can not solve any of those problems. It appears
that the rule learner is unable to learn new rules based on the
training data that are able to take it out of the bad local min-
ima. Again we suspect that this is a more likely a problem
with the rule learner rather than with the overall approach,
though this needs to be further investigated.

Effect of Prior Knowledge. The only difference between

RB-prior and RB is that we used the relaxed plan length
heuristic as prior knowledge for the former method. In Fig-
ure 4, it is shown that the relaxed plan length heuristic did
help to significantly improve performance in some domains.
Overall, there is a clear improvement on the planning per-
formance that is achieved by adapting RankBoost to take
advantage of prior knowledge.

Iterative Learning vs. Non-iterative learning. While
RB-prior outperforms the original RankBoost, our iterative
learning algorithm has even better performance. ITR can
also be viewed as an iterative version of RB-prior. In gen-
eral, ITR works better than RB-prior, solving more planning
problems and improving the plan length. The only exception
is in the Pipesworld-with-tankage domain, where RB-prior
solves one more problem than ITR.

Summary and Future Work

We developed a new approach for learning to control greedy
search. First, we introduced a new form of control knowl-
edge, weighted rule sets, as a more robust way of using
action-selection rules than prior work. Second, we devel-
oped a learning algorithm for weighted rule sets based on
the RankBoost algorithm. This algorithm, unlike most prior
work, is tightly integrated with the search process, directing
its learning based on the search performance of the current
rule set. Our experiments show that this iterative learning
approach is beneficial compared to a number of competitors
in the context of greedy search.

The experiments show several domains where there is still
significant room to improve. We suspect that our results can
be further improved by using more powerful weak learn-
ing algorithms, e.g. relational decision trees as in (de la
Rosa, Jiménez, and Borrajo 2008). However, we are also
interested in understanding other failure modes of our ap-
proach and better understanding its convergence properties.
Moreover we are interested in understanding the fundamen-
tal limitations on learning for greedy search. In particular,
can one characterize when it is possible to practically com-
pile search away via learning? One way to begin addressing
this question is to understand when it is and is not possible to
succinctly represent greedy control knowledge for a search
problem.

Acknowledgments

This work was supported by NSF grant IIS-0546867.

207

Learning iterations Number of unique rules Problems solved (Median plan length)

RB RB-prior ITR RB RB-prior ITR

Blocksworld 5 3 4 5 30(133) 30(151) 30(160)

10 7 8 10 30(126) 30(166) 30(118)

Depots 5 4 5 4 0(-) 2(8631) 3(115)

10 7 9 8 3(9194) 4(954) 20(796)

15 9 13 9 5(5372) 2(113) 16(313)

20 11 17 12 2(5193) 7(263) 23(433)

25 13 20 14 3(3188) 5(678) 22(349)

30 16 24 15 15(661) 11(129) 19(314)

Driverlog 5 4 5 5 0(-) 1(1893) 3(8932)

10 6 5 8 0(-) 3(2852) 1(2818)

15 7 6 10 0(-) 0(-) 3(544)

20 8 8 10 0(-) 1(4309) 4(544)

25 9 9 10 0(-) 3(4082) 4(544)

30 10 11 10 0(-) 1(632) 3(544)

FreeCell 5 2 4 5 2(213) 6(104) 9(94)

10 4 7 5 2(186) 5(112) 7(95)

15 7 10 6 3(103) 6(143) 9(94)

20 11 15 6 5(155) 7(96) 9(94)

25 11 19 6 3(334) 5(90) 9(92)

Pipesworld 5 3 4 3 4(382) 17(1063) 16(279)

10 7 7 7 2(7845) 8(1821) 11(307)

15 9 9 9 5(2929) 12(1599) 17(595)

20 9 12 13 3(1369) 11(1423) 17(579)

25 11 16 15 4(998) 11(2561) 17(595)

30 12 19 18 7(1360) 12(1423) 15(366)

Pipesworld-with-tankage 5 5 5 4 0(-) 3(296) 4(126)

10 6 8 9 0(-) 3(100) 4(148)

15 9 9 10 0(-) 4(98) 4(134)

20 12 12 10 1(1383) 6(152) 5(350)

25 16 17 10 1(1383) 4(449) 5(206)

Philosopher 5 3 3 3 0(-) 33(363) 33(363)

10 3 3 4 0(-) 33(363) 0(-)

15 4 5 4 0(-) 33(363) 0(-)

20 5 5 4 33(875) 33(363) 0(-)

Figure 4: Experimental results for different planners and different weighted rule sets. For each domain, we show the number
of unique rules that are learned after the corresponding number of learning iterations. The performance of each learned rule set
is given by the number of solved problems, together with the median plan length of the solved problems. A dash in the table
indicates that the median plan length is not available while none of the problems can be solved.

References
Daume III, H., and Marcu, D. 2005. Learning as search optimiza-
tion: Approximate large margin methods for structured prediction.
In ICML.

Daumé III, H.; Langford, J.; and Marcu, D. 2009. Search-based
structured prediction. Machine Learning 75:297–325.

de la Rosa, T.; Jiménez, S.; and Borrajo, D. 2008. Learning re-
lational decision trees for guiding heuristic planning. In ICAPS,
60–67.

Freund, Y.; Iyer, R.; Schapire, R. E.; and Singer, Y. 2003. An
efficient boosting algorithm for combining preferences. Journal of
Machine Learning Research 4:933–969.

Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 14:263–302.

Khardon, R. 1999. Learning action strategies for planning do-
mains. Artificial Intelligence 113:125–148.

Kolobov, A.; Mausam, M.; and Weld, D. 2009. ReTrASE: integrat-
ing paradigms for approximate probabilistic planning. In IJCAI,
1746–1753. Morgan Kaufmann Publishers Inc.

Martin, M., and Geffner, H. 2000. Learning generalized policies in
planning domains using concept languages. In International Con-
ference on Knowledge Representation and Reasoning.

Veloso, M. M.; Pérez, M. A.; and Carbonell, J. G. 1991. Nonlinear
planning with parallel resource allocation. In Workshop on Inno-
vative Approaches to Planning, Scheduling and Control, 207–212.

Xu, Y.; Fern, A.; and Yoon, S. 2009. Learning linear ranking
functions for beam search with application to planning. Journal of
Machine Learning Research 10:1571–1610.

Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008. Proba-
bilistic planning via determinization in hindsight. In AAAI.

Yoon, S.; Fern, A.; and Givan, R. 2002. Inductive policy selection
for first-order MDPs. In In Proceedings of Eighteenth Conference
in Uncertainty in Artificial Intelligence.

Yoon, S.; Fern, A.; and Givan, R. 2008. Learning control knowl-
edge for forward search planning. Journal of Machine Learning
Research 9:683–718.

208

