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Abstract

Decentralized POMDPs are powerful theoretical models for
coordinating agents’ decisions in uncertain environments, but
the generally-intractable complexity of optimal joint policy
construction presents a significant obstacle in applying Dec-
POMDPs to problems where many agents face many policy
choices. Here, we argue that when most agent choices are
independent of other agents’ choices, much of this complexity
can be avoided: instead of coordinating full policies, agents
need only coordinate policy abstractions that explicitly convey
the essential interaction influences. To this end, we develop
a novel framework for influence-based policy abstraction for
weakly-coupled transition-dependent Dec-POMDP problems
that subsumes several existing approaches. In addition to
formally characterizing the space of transition-dependent in-
fluences, we provide a method for computing optimal and
approximately-optimal joint policies. We present an initial
empirical analysis, over problems with commonly-studied fla-
vors of transition-dependent influences, that demonstrates the
potential computational benefits of influence-based abstraction
over state-of-the-art optimal policy search methods.

Introduction

Agent team coordination in partially-observable, uncertain
environments is a problem of increasing interest to the re-
search community. The decentralized partially-observable
Markov decision process (Dec-POMDP) provides an elegant
theoretical model for representing a rich space of agent be-
haviors, observability restrictions, interaction capabilities,
and team objectives. Unfortunately, its applicability and ef-
fectiveness in solving problems of significant size has been
substantially limited by its generally-intractable complexity
(Goldman and Zilberstein 2004). This is largely due to the
policy space explosion that comes with each agent having to
consider the possible observations and actions of its peers,
on top of its own observations and actions.

To combat this complexity, researchers have sought tract-
able Dec-POMDP subclasses wherein agents are limited in
their interactions. For instance, there has been significant
effort in developing efficient, scalable solution methods for
Transition-Independent DEC-MDPs (Becker, Zilberstein, and
Lesser 2004) and Network-Distributed POMDPs (Nair et al.
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2005; Varakantham et al. 2007), where agents can only in-
fluence one another through their reward functions. Because
the agents’ transitions and observations remain independent,
the complexity of this subclass is immune to the growth of
the general Dec-POMDP class. Some work has been done in
exploring subclasses where agents can influence each others’
transitions. However, these either introduce additional restric-
tions on individual agent behavior (Beynier and Mouaddib
2005; Marecki and Tambe 2009), yield no guarantees of opti-
mality (Varakantham et al. 2009), or have only been shown
effective for teams of two or three agents executing for a
handful of time steps (Becker, Zilberstein, and Lesser 2004;
Oliehoek et al. 2008).

This paper presents an alternative approach to planning
for teams of agents with transition-dependent influences. To
address the issue of policy space complexity head-on, we
contribute a formal framework for policy abstraction that
subsumes two existing approaches (Becker, Zilberstein, and
Lesser 2004; Witwicki and Durfee 2009). The primary in-
tuition of our work is that by planning joint behavior using
abstractions of policies rather than the policies themselves,
weakly-coupled agents can form a compact influence space
over which to reason more efficiently.

We begin by framing the problem as a class of Transition-
Decoupled POMDPs (TD-POMDPs) with an expressive, yet
natural, representation of agents with rich behaviors whose
interactions are limited. Moreover, TD-POMDPs lead us to a
systematic analysis of the influences agents can exert on one
another, culminating in a succinct model that accommodates
both exact and approximate representations of interagent
influence. To take advantage of these beneficial traits, we
contribute a general-purpose influence-space search algo-
rithm that, based on initial empirical evidence, demonstrably
advances the state-of-the-art in exploiting weakly-coupled
structure and scaling transition-dependent problems to larger
teams of agents without sacrificing optimality.

Coordination of Weakly-coupled Agents

We focus on the problem of planning for agents who are
nearly independent of one another, but whose limited, struc-
tured dependencies require coordination to maximize their
collective rewards. Domains for which such systems have
been proposed include the coordination of military field
units (Witwicki and Durfee 2007), disaster response sys-
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tems (Varakantham et al. 2009), and Mars rover exploration
(Mostafa and Lesser 2009). Here, we introduce a class of
Dec-POMDPs called Transition-Decoupled POMDPs (TD-
POMDPs) that, while still remaining quite general, pro-
vides a natural representation of the weakly-coupled structure
present in these kinds of domains.

Autonomous Planetary Exploration

As a concrete example, consider the team of agents pictured
in Figure 1A whose purpose is to explore the surface of a
distant planet. There are rovers that move on the ground
collecting and analyzing soil samples, and orbiting satellites
that (through the use of cameras and specialized hardware)
perform various imaging, topography, and atmospheric anal-
ysis activities. In representing agents’ activities, we borrow
from the TAEMS language specification (Decker 1996), as-
signing to each abstract task a window of feasible execution
times and a set of possible outcomes, each with an associated
duration and quality value. For example, the satellite agent in
Figure 1A has a path-planning task that may take 2 hours and
succeed with probability 0.8 or may fail (achieving quality 0)
with probability 0.2 (such as when its images are too blurry
to plan a rover path). Surface conditions limit the rover’s visit
to site A to occur between the hours of 2 and 8. Additional
constraints and dependencies exist among each individual
agent’s tasks (denoted by lines and arrows).

Although each agent has a different view of the environ-
ment and different capabilities (as indicated by their local
model bubbles), it is through their limited, structured interac-
tions that they are able to successfully explore the planet. For
instance, the outcome of the satellite’s path-planning task in-
fluences the probabilistic outcome of the rover’s site-visiting
task. Navigating on its own, the rover’s trip will take 6 hours,
but with the help of the satellite agent, its trip will take only
3 hours (with 0.9 probability). In order to maximize produc-
tivity (quantified as the sum of outcome qualities achieved
over the course of execution), agents should carefully plan
(in advance) policies that coordinate their execution of inter-
dependent activities. Though simplistic, this example gives
a flavor of the sorts of planning problems that fit into our
TD-POMDP framework.

Transition-Decoupled POMDP Model

The problem from Figure 1 can be modeled using the finite-
horizon Dec-POMDP, which we now briefly review. For-
mally, this decision-theoretic model is described by the tuple
〈S, A, P, R,Ω, O〉, where S is a finite set of world states
(which model all features relevant to all agents’ decisions),
with distinguished initial state s0. A = ×1≤i≤nAi is the
joint action space, each component of which refers to the set
of actions of an agent in the system. The transition function
P (s′|s, a) specifies the probability distribution over next
states given that joint action a = 〈a1, a2, . . . , an〉 ∈ A is
taken in state s ∈ S. The reward function R (s, a, s′) ex-
presses the immediate value of taking joint action a ∈ A in
state s ∈ S and arriving in state s′ ∈ S; the aim is to max-
imize the expected cumulative reward from time steps 1 to
T (the horizon). The observation function O (o|a, s′) maps

joint actions and resulting states to probabilities of joint obser-
vations, drawn from finite set Ω = ×1≤i≤nΩi. We denote the
observation history for agent i as �o t

i = 〈o 1
i , . . . , o t

i 〉 ∈ Ωt
i,

the set of observations i experienced from time step 1 to
t ≤ T . A solution to the Dec-POMDP comes in the form
of a joint policy π̄ = 〈π1, . . . , πn〉, where each component
πi (agent i’s local policy) maps agent i’s observation history
�o t

i to an action ai, thereby providing a decision rule for any
sequence of observations that each agent might encounter.

Though the general class of Dec-POMDPs accommodates
arbitrary interactions between agents through the transition
and reward functions, our example problem contains structure
that translates to the following useful properties. First, the
world state is factored into state features s = 〈a, b, c, d, . . .〉,
each of which represent a different aspect of the environment.
In particular, different features are relevant to different agents.
Whereas a rover agent may be concerned with the composi-
tion of the soil sample it has just collected, this is not relevant
to the satellite agent. As with other related models (e.g. those
discussed at the end of this section), we assume a particu-
lar grouping of world state features into local features that
make up an agent’s local state si. We introduce a further de-
composition of local state (that is unique to the TD-POMDP
class) whereby agent i’s local state si is comprised of three
disjoint feature sets: si =

〈
ūi, l̄i, n̄i

〉
, whose components are

as follows.

• uncontrollable features ūi = 〈ui1, ui2, ...〉 are those fea-
tures that are not controllable (Goldman and Zilberstein
2004) by any agent, but may be observable by multiple
agents. Examples include time-of-day or temperature.

• locally-controlled features l̄i = 〈li1, li2, ...〉 are those fea-
tures whose values may be altered through the actions of
agent i, but are not (directly) altered through the actions
of any other agent; a rover’s position, for instance.

• nonlocal(ly-controlled) features n̄i = 〈ni1, ...〉 are those
features that are each controlled by some other agent but
whose values directly impact i’s local transitions (Eq. 1).

With this factoring, division of world state features into
agents’ local states is not strict. Uncontrollable features may
be part of more than one agent’s state. And each nonlocal
feature in agent i’s local state appears as a locally-controlled
feature in the local state of exactly one other agent. In the
example (Figure 1), the rover models whether or not the satel-
lite agent has planned a path for it, so path-A-planned would
be a nonlocal feature in the rover’s local state.

The reward function R is decomposed into into local re-
ward functions, each dependent on local state and local action:
R (s, a, s′) = F (R1(s1, a1, s

′
1) , ..., Rn(sn, an, s′n)). The

joint reward composition function F () has the property that
increases in component values do not correspond to decreases
in joint value: ri > r′i → F (r1, ..., ri−1 , ri, ri+1, ..., rn)
≥ F (r1, ..., ri−1 , r′i, ri+1, ..., rn) ∀r1, ..., ri−1, ri+1, ..., rn.
In the example problem, local rewards are the qualities at-
tained from the tasks that the agents execute, which combine
by summation to yield the joint reward by which joint policies
are evaluated.

The observation function is similarly factored O (o|a, s′)
=

∏
1≤i≤n Oi (oi|ai, s

′
i), allowing agents direct (partial) ob-
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Figure 1: Autonomous Exploration Example.

servations of their local state features but not of features out-
side their local states. Note, however, that this does not imply
observation independence (whereas other models (Becker
et al. 2004; Nair et al. 2005) do) because of the shared
uncontrollable and nonlocal state features. Likewise, this
model is transition-dependent, as the values of nonlocal fea-
tures controlled by agent j may influence the probabilistic
outcomes of agent i’s actions. Formally, agent i’s local tran-
sition function, describing probability of next local state st+1

i

=
〈
ūt+1

i , l̄t+1
i , n̄t+1

i

〉
given that joint action a is taken in

world state st, is the product of three independent terms:

Pr
(
st+1

i |st, a
)

= Pr
(
ūt+1

i |ūt
i

) · Pr
(
l̄t+1
i |l̄ti , n̄t

i, ū
t
i, ai

)

· Pr
(
n̄t+1

i |st − l̄ti , a�=i

)
(1)

The result of this factorization is a structured transition de-
pendence whereby agents alter the effects of each others’
actions sequentially but not concurrently. Agent i may set
the value of one of agent j’s nonlocal state features and agent
j’s subsequent transitions are influenced by the new value.

The structure we have identified is significant because
it decouples the Dec-POMDP model into a set of weakly-
coupled local POMDP models that are tied to one another by
their transition influences. Without the existence of nonlocal
features, an agent cannot influence another’s observations,
transitions, or rewards, and the agents’ POMDPs become
completely independent decision problems. With an increas-
ing presence of nonlocal features, the agents subproblems
become more and more strongly coupled. We can concisely
describe the coupling and locality of interaction in a TD-
POMDP problem with an interaction digraph (Figure 1B),
which represents each instance of a nonlocal feature with an
arc between agent nodes. As pictured, the interaction digraph
for our example problem contains an arc from agent 1 (the
satellite) to agent 7 (the rover) labeled n7a that refers to the
nonlocal feature path-A-planned.

Although the TD-POMDP is less general than the Dec-
POMDP (and the factored Dec-POMDP (Oliehoek et al.

2008)), it is more general than prior transition-dependent Dec-
POMDP subclasses (Becker, Zilberstein, and Lesser 2004;
Beynier and Mouaddib 2005). Beynier’s (2005) OC-DEC-
MDP assumes fixed execution ordering over agent tasks and
dependencies in the form of task precedence relationships.
Becker’s (2004) Event-Driven DEC-MDP is more closely
related, but it assumes local full observability, and restricts
transition dependencies to take the form of mutually exclu-
sive events which could trivially be mapped to nonlocal fea-
tures in the TD-POMDP model. The TD-POMDP is also
more general than the DPCL (Varakantham et al. 2009) in
its representation of observation (since local observations
can depend on other agents’ actions), but less general in its
representation of interaction (since agents cannot affect each
others’ local transitions concurrently). Generality aside, we
contend that the structure that we have defined provides a
very natural representation of interaction, making it straight-
forward to map problems into TD-POMDPs. Further, as we
shall see, TD-POMDP structure leads us to a broad character-
ization of transition-dependent influences and a systematic
methodology for abstracting those influences.

Decoupled Solution Methodology

To take advantage of the TD-POMDP’s weakly-coupled in-
teraction structure, we build upon a general solution method-
ology that decouples the joint policy formulation. Central
to this approach is the use of local models, whereby each
agent can separately compute its individual policy. As de-
rived by Nair (2003), any Dec-POMDP can be transformed
into a single-agent POMDP for agent i assuming that the
policies of its peers have been fixed. This best-response
model is prohibitive to solve in the general case (given that
the agent must reason about the possible observations of
the other agents), but in various restricted contexts, itera-
tive best-response algorithms have been devised which pro-
vide substantial computational leverage (Becker et al. 2004;
Nair et al. 2005). As we describe later on, the TD-POMDP
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(which is composed of weakly-coupled local POMDPs) can
be decoupled into fully-independent POMDPs that have been
augmented with compact models of influence.

Given this decoupling scheme, planning the joint policy be-
comes a search through the space of combinations of optimal
local policies (each found by solving a local best-response
model). This approach is taken in much of the literature to
solve transition-independent reward-dependent models (e.g
TI-DEC-MDPs (Becker et al. 2004), ND-POMDPs (Nair
et al. 2005; Varakantham et al. 2007)). And while some
approaches have solved transition-dependent models in this
way, the results have been either limited to just two agents
(Becker, Zilberstein, and Lesser 2004), or to approximately-
optimal solutions without formal guarantees (Varakantham
et al. 2009; Witwicki and Durfee 2007). In the remainder
of this paper, we present and evaluate a formal framework
that subsumes previous transition-dependent methods and
produces provably optimal solutions, focusing on abstraction
to make the search tractable and scalable.

Influence-Based Policy Abstraction

The Dec-POMDP joint policy space (which is exponential
in the number of observations and doubly exponential in the
number of agents and the time horizon) grows intractably
large very quickly. The primary intuition behind how our
approach confronts this intractability is that, by abstracting
weakly-coupled interaction influences from local policies,
an influence space emerges that is more efficient to explore
than the joint policy space. We begin by discussing policy
abstraction in the context of a simple, concrete example with
some very restrictive assumptions. Over the course of this
section, we gradually build up a less restrictive language
through which agents can convey their abstract influences,
culminating in a formal characterization of the general space
of interaction influences for the class of TD-POMDPs.

Figure 2 portrays an interaction wherein one rover (R5)
must prepare a site before another rover (R6) can benefit from
visiting the site. Assume that apart from this interaction, the
two agents’ problems are completely independent. Neither
of them interact with any other agents, nor do they share any
observations except for the occurrence of site C’s preparation
and the current time. In a TD-POMDP, this simple interaction
corresponds to the assignment of a single boolean nonlocal
feature site-C-prepared that is locally-controlled by R5, but
that influences (and is nonlocal to) R6. Thus, in planning its
own actions, R6 needs to be able to make predictions about
site-C-prepared’s value (influenced by R5) over the course
of execution.
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Figure 2: Example of highly-constrained influence.

Definition 1. For a TD-POMDP interaction x represented
by agent j as nonlocal feature njx, which is controllable
by agent i and affects the transitions of agent j, we define
the influence of i’s policy πi on njx, denoted Γπi

(njx) =
Pr (njx| . . .), to be a sufficient summary of πi for agent j to
model expected changes to njx and to plan optimal decisions
given that agent i adopts πi.

By representing the influence of R5’s policy with a distri-
bution Pr(site-C-prepared|...) as in Definition 1, R6 can con-
struct a transition model for nonlocal feature site-C-prepared.
The last multiplicand of Equation 1 suggests that this con-
struction requires computing a transition probability for every
value of the (nonlocal subsection of) world state (st − l̄ti),
nonlocal action (a�=i), and next nonlocal feature value. How-
ever, in this particular problem, R6 does not need a complete
distribution that is conditioned on all features. In fact, the
only features that R6 can use to predict the value of site-
C-prepared are time and site-C-prepared itself. Although
site-C-prepared is dependent on other features from R5’s
local state, R6 cannot observe any evidence of these fea-
tures except through its (perhaps partial) observations of
site-C-prepared and time. Thus, all other features can be
marginalized out of the distribution Pr(site-C-prepared|...).

In this particular example, the only influence information
that is relevant to R6 is the probability with which site-C-
prepared will become true conditioned on time = 4. At
the start of execution, site-C-prepared will take on value
false and remain false until R5 completes its “Prepare
Site C” task (constrained to finish only at time 4, if at all,
given the task window in Figure 2). After the site is pre-
pared, the feature will remain true thereafter until the end of
execution. With these constraints, there is no uncertainty
about when site-C-prepared will become true, but only
if it will become true. Hence, the influence of R5’s pol-
icy can be summarized with just a single probability value,
Pr(site-C-prepared = true|time = 4), from which R6 can
infer all transition probabilities of site-C-prepared.

Reasoning about concise influence distributions instead
of full policies can be advantageous in the search for op-
timal joint policies. The influence space is the domain of
possible assignments of the influence distribution, each of
which is achieved by some feasible policy. In our sim-
ple example, this corresponds to the feasible values of
Pr(site-C-prepared = true|time = 4). As shown in Fig-
ure 2, R5 has several sites it can visit, each with uncertain
durations. In general, different policies that it adopts may
achieve different interaction probabilities. However, due to
the constraints in Figure 2, many of R5’s policies will map to
the same influence value. For instance, any two policies that
differ only in the decisions made after time 3 will yield the
same value for Pr(site-C-prepared = true|time = 4). For
this example, the influence space is strictly smaller than the
policy space. Thus, by considering only the feasible influence
values, agents avoid joint reasoning about the multitude of
local policies with equivalent influences.

A Categorization of Influences

The influence in the example from Figure 2 has a very sim-
ple structure due to the highly-constrained transitions of the
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nonlocal feature. By removing constraints, we can more gen-
erally categorize the influence between R5 and R6. Let the
window of execution of “Prepare Site C” be unconstrained:
[0, 8]. With this change, there is the possibility of R5 prepar-
ing site C at any time during execution. The consequence is
that a single probability is no longer sufficient to characterize
R5’s influence. Instead of representing a single probability
value, R6 needs to represent a probability for each time site-
C-prepared could be set to true. In other words, this influence
is dependent on a feature of the agents’ state: time.
Definition 2. An influence Γπi(njx) is state-dependent w.r.t.
feature f if its summarizing distribution must be conditioned
on the value of f : Pr (njx|f, ...).
As we have seen in prior work (Witwicki and Durfee 2009),
the set of probabilities Pr(site-C-prepared|time) is an ab-
straction of R5’s policy that accommodates temporal uncer-
tainty of the interaction.

Generalizing further, the probability of an interaction may
differ based on both present and past values of state fea-
tures. For instance, in the example from Figure 1A, if it is
cloudy in the morning, this might prohibit the satellite from
taking pictures, and consequently lower the probability that
it plans a path for the rover in the afternoon. So by moni-
toring the history of the weather, the rover could anticipate
the lower likelihood of help from the satellite, and might
change some decisions accordingly. Becker employs this sort
of abstraction in his Event-driven DEC-MDP solution algo-
rithm, where he relates probabilities of events to dependency
histories (Becker, Zilberstein, and Lesser 2004).
Definition 3. Influence Γπi

(njx) is history-dependent w.r.t.
feature f if its summarizing distribution must be conditioned
on the history of f : Pr

(
nt+1

jx |�f t, ...
)

.

Moreover, there may also be dependence between influ-
ences. For instance, agent 4 has two arcs coming in from
agent 3 (in Figure 1B), indicating that agent 3 is exerting two
influences, such as if agent 3 could plan two different paths
for agent 4. In the case that agent 3’s time spent planning one
path leaves too little time to plan the other path, the nonlocal
features n4a and n4b are highly correlated, requiring that
their joint distribution be represented.
Definition 4. Influence Γπi(nx) and influence Γπi(ny) are
influence-dependent (on each other) if their summarizing
distributions are correlated, requiring Pr (nx, ny|...).
A Comprehensive Influence Model

With the preceding terminology, we have systematically
though informally introduced an increasingly comprehen-
sive characterization of transition influences. A given TD-
POMDP influence might be state-dependent and history-
dependent on multiple features, or even dependent on the
history of another influence. Furthermore, there may be
chains of influence-dependent influences. In Figure 1B, for
example, agent 7 models two nonlocal features, one (n7a)
influenced by agent 1 and the other (n7b) influenced by agent
6. The additional arc between agents 1 and 6 forms an undi-
rected cycle that implies a possible dependence between n7a

and n7b by way of n6b. The only way to ensure a complete

influence model is to incorporate all three influences into a
joint distribution.

In general, for any team of TD-POMDP agents, their in-
fluences altogether constitute a Dynamic Bayesian Network
(DBN) whose variables consist of the nonlocal features as
well as their respective dependent state features and depen-
dent history features with links corresponding to the depen-
dence relationships. This influence DBN encodes the prob-
ability distributions of all of the outside influences affect-
ing each agent. Once all of an agent’s incoming influences
(exerted by its peers) have been decided, the agent can in-
corporate this probability information into a local POMDP
model with which to compute optimal decisions. The agent
constructs the local POMDP by combining the TD-POMDP
local transition function (terms 1 and 2 of Equation 1) with
the probabilities of nonlocally-controlled feature transitions
Pr

(
n̄t+1

j |...) encoded (as conditional probabilities) by the
influence DBN. Rewards and observations for this local
POMDP are dictated by the TD-POMDP local reward func-
tion Ri and local observation function Oi, respectively.

As agents’ interactions become more complicated, more
variables are needed to encode their effects. However, due
to TD-POMDP structure, the DBN need contain only those
critical variables that link the agents’ POMDPs together.
Proposition 1. For any given TD-POMDP, the influence
Γπi

(njx) of agent i’s fixed policy πi on agent j’s nonlocal
feature njx need only be conditioned on histories (denoted
�mj) of mutually-modeled features m̄j =

⋃
k �=j

(sj ∩ sk).

Proof Sketch. The proof of this proposition emerges from
the derivation of a belief-state (see Nair et al. 2003) represen-
tation for TD-POMDP agent j’s best-response POMDP.

bt
j =

〈
Pr

(
st

j , �mt−1
j |�a t−1

j , �o t
j

)
,∀st

j , �mt−1
j

〉
(2)

We can derive an equation for the components (each indexed
by one value of

〈
st+1

j , �mt
j

〉
) of j’s belief-state at time t + 1

by applications of Bayes’ rule, conditional probability, and
the factored TD-POMDP local observation function Oi():

bt+1
j

(
st+1

j , �mt
j

)
= Pr

(
st+1

j , �mt
j |�a t

j , �o t+1
j

)

=
Oj(o

t+1
j

|at
j,s

t+1
j ) P

st
j

P r(s
t+1
j

|st
j , �m

t−1
j

,�a t
j ,�o t

j )bt
j(st

j , �m
t−1
j )

P r(o
t+1
j

|�a t−1
j

,�o t
j

,at
j) : a normalizing constant

(3)
Next, from conditional independence relationships implied
by the factored transitions (Equation 1) of the TD-POMDP:

=
Oj(...)

P

st
j
−m̄t

j
P r(l̄

t+1
j

|st
j ,at

j)P r(ū
t+1
j

|st
j)P r(n̄

t+1
j

|�mt
j)bt

j(...)

P r(o
t+1
j

|�a t−1
j

,�o t
j

,at
j) : a normalizing constant

(4)
Equation 4 has three important consequences. First, agent

j can compute its next belief state using only its peers’ poli-
cies, the TD-POMDP model, its previous belief state, and its
latest action-observation pair (without having to remember
the entire history of observations). Second, the denominator
of Equation 4 (which is simply a summation of the numer-
ators across all belief-state components) allows the agent
to compute the probability of its next observation (given its
current action) using only its peers’ policies, the TD-POMDP
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model, and its previous belief state. These two consequences
by themselves prove sufficiency of the belief state represen-
tation for optimal decision-making. Third, the only term in
the numerator of Equation 4 that depends upon peers’ fixed
policies is Pr

(
n̄t+1

j |�mt
j

)
, and hence this distribution is a

sufficient summary of all peers’ policies.

Corollary 1. The influence DBN grows with the number of
shared state features irrespective of the number of local state
features and irrespective of the number of agents.

The implication of Proposition 1 is that the local POMDP
can be compactly augmented with histories of only those
state features that are shared among agents. Moreover, the
complexity with which an agent models a peer is controlled
by its tightness of coupling and not by the complexity of the
peer’s behavior. Efficiency and compactness of local models
is significant because they will be solved repeatedly over the
course of a distributed policy-space search.

Another way to interpret this result is to relate it to the rel-
ative complexity of the influence space, which is the number
of possible influence DBNs. Each DBN is effectively a HMM
whose state is made up of shared features (and histories of
shared features) of the TD-POMDP world state. Given Propo-
sition 1’s restrictions on feature inclusion, the space of DBNs
should scale more gracefully than the joint policy space with
the number of world features and number of agents (under
the assumption that agents remain weakly-coupled), a claim
that is supported by our empirical results.

Searching the Influence Space

Given the compact representations of influence that we have
developed, agents can generate the optimal joint policy by
searching through the space of influences and computing
optimal local policies with respect to each. Drawing inspira-
tion from Nair’s (2005) GOA method for searching through
the policy space, here we describe a general algorithm for
searching the (TD-POMDP) influence space.

Algorithm 1 outlines the skeleton of a depth-first search
that enumerates all feasible values, one influence at a time,
as it descends from root to leaf. At the root of the search tree,
influences are considered that are independent of all of other
influences. And at lower depths, feasible influence values are
determined by incorporating any higher-up influence values
on which they depend. This property is ensured given any
total ordering of agents (denoted ordering in Algorithm
1) that maintains the partial order of the acyclic interaction
digraph.1 At each node of the depth-first search, procedure
OIS() is called on agent i, who invokes the next agent’s OIS()
execution and later returns its result to the previous agent.

1In the event of a cyclic interaction digraph, we can still ensure
this property, but with modifications to Algorithm 1. Note that
although the digraph may contain cycles, the influence DBN itself
cannot contain cycles (due to the non-concurrency of agent influ-
ences described following equation 1). We can therefore separate
an agent’s time-indexed influence variables into those {dependent
upon, independent of} another influence, and reason about those
sets at separate levels of the search tree. If we separate influence vari-
ables sufficiently, cyclic dependence can be avoided as we progress
down the search tree.

Algorithm 1 Optimal Influence-Space Search
OIS(i, ordering, DBN, vals)

1: POMDPi ← BUILDBESTRESPONSEMODEL(DBN )
2: if i = LASTAGENT(ordering) then

3: 〈vals[i], πi〉 ←EVALUATE(POMDPi)
4: return 〈vals, DBN〉
5: end if

6: j ← NEXTAGENT(i, ordering)
7: I ← GENERATEFEASIBLEINFLUENCES(POMDPi)
8: bestV al ← −∞
9: bestDBN ← nil

10: for each influencei ∈ I do

11: thisV als ← COPY(vals)
12: 〈thisV als[i], πi〉 ← EVALUATE(POMDPi, influencei)
13: DBNi ← COMBINE(DBN, influencei)
14: 〈thisV als, DBNchild〉 ← OIS(j, ordering, DBNi, thisV als)
15: jointV al ← COMPOSEJOINTREWARD(thisV als)
16: if jointV al > bestV al then

17: vals ← thisV al

18: bestDBN ← DBNchild

19: end if

20: end for

21: return 〈vals, bestDBN〉

The algorithm is decentralized, but is initiated by a root agent
whose influence does not depend on its peers.

The search begins with the call OIS(root, ordering,
∅,∞), prompting the first agent to build its (independent)
local POMDP (line 1) and to generate all of the feasible
combinations of its outgoing influence values (line 7), each
in the form of a DBN (as described in the previous sec-
tion). A naı̈ve implementation of GENERATEFEASIBLEIN-
FLUENCES() would simply enumerate all local policies, and
for each, compute the requisite conditional probabilities that
the policy implies and incorporate them into a DBN model.
At the end of this section, we suggest a more sophisticated
generation scheme. The root creates a branch for each feasi-
ble influence DBN, passing down the influence along with
the value of the best local policy that achieves the DBN’s
influences (computed using EVALUATE()). Each such call to
OIS() prompts the next agent to construct a local POMDP in
response to the root’s influence, compute its feasible influ-
ences and values, and pass those on to the next agent.

At the root of the tree, the DBN starts out as empty and
gradually grows as it travels down the tree, each iteration
accumulating another agent’s fixed influences. The agent at
the leaf level of the tree does not influence others, so simply
computes a best response to all of the fixed influences and
passes up its policy value (lines 1-4). Local utility values get
passed down and washed back up so that intermediate agents
can evaluate them via COMBINE() (which composes expected
local utilities into expected joint utilities). In this manner,
the best outgoing influence values get chosen at each level
of the tree and returned to the root. When the search com-
pletes, the result is an optimal influence-space point: a DBN
that encodes the feasible influence settings that optimally
coordinate the team of agents. As a post-processing step,
the optimal joint policy is formed by computing all agents’
best-response policies (via BUILDBESTRESPONSEMODEL()
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and EVALUATE()) in response to the optimal influence point
returned by the search.

Approximation Techniques. An attractive trait of this
framework is the natural accommodation of approximation
methods that comes with representing influences as prob-
ability distributions. One straightforward technique is to
discretize the DBN space, grouping probability values that
are within ε of each other so as to guarantee that a distribu-
tion is found whose influences are close to that of the optimal
influence. A second technique is to approximate the structure
of the influence DBN. For a given influence, feature selection
methods could be used to remove all but the most useful
influence dependencies, thereby sacrificing completeness of
the abstraction for a reduction in search space.

Efficient Generation and Evaluation of Feasible State-
Dependent Influences. A commonly-studied subclass of
TD-POMDPs involves state-dependent, history-independent
influences whereby (in particular) agents coordinate the
timings of interdependent task executions (Becker, Zil-
berstein, and Lesser 2004; Beynier and Mouaddib 2005;
Witwicki and Durfee 2009). To reason about these influences,
we can utilize a constrained policy formulation technique
that is based upon the dual-form Linear Program (LP) for
solving Markov decision processes (Witwicki and Durfee
2007). Under the assumption of a non-recurrent state space,
the dual form represents the probabilities of reaching states
as occupancy measure variables, which are exactly what we
need to represent the influences that an agent exerts. For
instance, Pr (site-C-prepared|time = 4) corresponds to the
probability of R5 (in Figure 2) entering any state for which
site-C-prepared = true and time = 4, which is the summa-
tion of LP occupancy measures associated with these states
(or belief-states, for POMDPs). The agent can use this LP
method to (1) calculate its outgoing influence given any pol-
icy, (2) determine whether a given influence is feasible, and
if so (3) compute the optimal local policy that is constrained
to exert that influence.

We devise a useful extension: an LP that finds relevant in-
fluence points. For a given influence parameter p, we would
like the agent to find all feasible values for that parameter
(achievable by any deterministic policy). This can be accom-
plished by solving a series of (MI)LPs, each of which looks
for a (pure) policy that constrains the parameter value to lie
within some interval: pmin < p < pmax (starting with interval
[0, 1]). If the LP returns a solution, the agent has simultane-
ously found a new influence (p = p0) and computed a policy
that exerts that influence, subsequently uncovering two new
intervals {(pmin, p0), (p0, pmax)} to explore. If the LP returns
“no solution” for a particular interval, there is no feasible
influence within that range. By divide and conquer, the agent
can find all influences or stop the search once a desired reso-
lution has been reached (by discarding intervals smaller than
ε). In general, this method allows agents to generate all of
their feasible influences without exhaustively enumerating
and evaluating all of their policies.

Empirical Results

We present an initial empirical study analyzing the compu-
tational efficiency of our framework. Results marked “OIS”
correspond to our implementation of Algorithm 1 that fol-
lows the LP-based influence generation approach (discussed
previously). We compare influence-space search to two state-
of-the-art optimal policy search methods: (1) a Separable Bi-
linear Programming (“SBP”) algorithm (Mostafa and Lesser
2009) for problems of the same nature as ED-DEC-MDPs
(Becker, Zilberstein, and Lesser 2004) and (2) an implemen-
tation of “SPIDER” (Varakantham et al. 2007) designed to
find optimal policies for two-agent problems with transition
dependencies (Marecki and Tambe 2009). Both implementa-
tions were graciously supplied by their respective authors to
improve the fairness of comparison.

Plots 3A and 3B evaluate the claim that influence-space
search can exploit weak coupling to find optimal solutions
more efficiently than policy-space search. These two plots
compare OIS with SBP and SPIDER, respectively, on sets of
25 randomly-generated 2-agent problems from the planetary
exploration domain, each of which contains a single interac-
tion whereby a task of a satellite agent influences the outcome
of a task of a rover agent.2 For each problem, the influence
constrainedness was varied by systematically decreasing the
window size (from T to 1) of the influencing task. While
the computation time3 (plotted on a logarithmic scale) taken
by SBP and SPIDER to generate optimal solutions remains
relatively flat, OIS becomes significantly faster as influences
are increasingly constrained. This result, although prelimi-
nary, demonstrates that influence-based abstraction can take
great advantage of weak agent coupling but might prove less
valuable in tightly-coupled problems.

The third experiment (shown in Figure 3C-D) evaluates
OIS on a set of 10 larger problems (where SBP and SPIDER
were infeasible), each with 4 agents connected by a chain
of influences. One of agent 1’s tasks (chosen at random)
influences one of agent 2’s tasks, and one of agent 2’s tasks
influences one of agent 3’s tasks, etc. We compare optimal
OIS with “ε-OIS”, which discretizes probabilities with a step
size of ε in the probability space. The quality and runtime
figures indicate that, for this space of problems, influence-
space approximation can achieve substantial computational
savings at the expense of very little solution quality. Addi-
tionally, this result is notable for demonstrating tractability
of optimal joint policy formulation on a size of problems (4
agents, 6 time units) that has been beyond the reach of the
prior approaches to solving transition-dependent problems
(with relatively unrestricted local POMDP structure).

2As denoted in Figure 3, the agents each have k tasks, each with
d randomly-selected durations (with duration probabilities gener-
ated uniformly at random) and randomly-selected outcome qualities
executed for a horizon of T time units. Because the implementa-
tions of SBP and SPIDER were tailored to specific domains, we
could not run them on the same problems. For instance, the SBP
implementation assumes that agents are not able to wait between
task executions. Both domains assume partial observability such
that agents can directly observe all of their individually-controlled
tasks, but not the outcomes of the tasks that influence them.

3All computation was performed on a single shared CPU.
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Figure 3: Empirical Evaluation of Influence-space Search.

Conclusions

This paper contributes a formal framework that characterizes
a broad array of weakly-coupled agents’ influences and ab-
stracts them from the agents’ policies. Although previous
methods have abstracted specialized flavors of transition in-
fluence (Becker, Zilberstein, and Lesser 2004; Witwicki and
Durfee 2009) or used abstraction to guide heuristic search
(Witwicki and Durfee 2007), the comprehensive model we
have devised places these conceptually-related approaches
into a unified perspective. As a foundation for our framework,
we have introduced a TD-POMDP class whose factored tran-
sition structure engenders a decoupling of agents’ subprob-
lems and a compact model of nonlocal influence. Inspired
by the successful scaling of the (transition-independent,
reward-dependent) ND-POMDP model (Nair et al. 2005;
Varakantham et al. 2007) to teams of many agents, we have
cast the TD-POMDP joint policy formulation problem as one
of local best-response search.

Prior to this work, there have been few results shown in
scaling transition-dependent problems to teams of several
agents whilst maintaining optimality. Our compactness re-
sult suggests that, for weakly-coupled transition-dependent
problems, agents can gain traction by reasoning in an ab-
stract influence space instead of a joint policy space. We
give evidence supporting this claim in our initial empirical
results, where we have demonstrated superior efficiency of
optimal joint policy generation through an influence-space
search method on random instances of a class of commonly-
studied weakly-coupled problems. But more importantly, our
general influence-based framework offers the building blocks
for more advanced algorithms, and a promising direction for
researchers seeking to apply Dec-POMDPs to teams of many
weakly-coupled transition-dependent agents. Future work
includes a more comprehensive investigation into problem
characteristics (e.g. digraph topology and influence type) that
impact the performance of influence-space search, and fur-
ther development and comparison of approximate flavors of
OIS with other approximate approaches (such as TREMOR
(Varakantham et al. 2009)).
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