
A New Approach to Conformant Planning using CNF∗

Son Thanh To and Tran Cao Son and Enrico Pontelli
New Mexico State University
Dept. of Computer Science

sto@cs.nmsu.edu, tson@cs.nmsu.edu, epontell@cs.nmsu.edu

Abstract

In this paper, we develop a heuristic, progression based con-
formant planner, called CNF, which represents belief states
by a special type of CNF formulae, called CNF-state. We
define a transition function ΦCNF for computing the succes-
sor belief state resulting from the execution of an action in a
belief state and prove that it is sound and complete with re-
spect to the complete semantics defined in the literature for
conformant planning. We evaluate the performance of CNF
against other state-of-the-art conformant planners and iden-
tify the classes of problems where CNF is comparable with
other state-of-the-art planners or scales up better than other
planners. We also develop a technique called one-of relax-
ation which helps boost the performance of CNF. We char-
acterize the domains where this technique can be applied and
validate this idea by proposing a new set of benchmarks that
is really difficult for other planners yet easy for CNF.

Introduction and Motivation
Conformant planning is the planning problem in presence of
incomplete information about the initial state. A conformant
plan is a sequence of actions that achieves the goal from any
possible initial state of the world. For example, given that
the execution of an action a changes the value of a propo-
sition f from false to true, regardless of the truth value of
other propositions, the sequence containing only the action
a is a conformant plan achieving f from any possible state
of the world. Conformant planning is important since it re-
moves one of the (unrealistic) assumptions about planning
problems: the completeness assumption which states that
agent has complete information about the initial state.

Since the problem is introduced (Smith and Weld 1998),
several conformant planners have been developed. To date,
the most efficient conformant planners are Conformant-FF
(CFF) (Brafman and Hoffmann 2004), KACMBP (Cimatti,
Roveri, and Bertoli 2004), POND (Bryce, Kambhampati,
and Smith 2006), t0 (Palacios and Geffner 2007), CPA
(Tran et al. 2009), and DNF (To, Pontelli, and Son 2009).
One of the major difficulties in the building of a conformant
planner lies in dealing with the uncertainty about the ini-
tial state, which is often represented by a set of formulas

∗Partial supported by NSF grants IIS-0812267, CBET-
0754525, and CREST-0420407.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

describing the possible initial states of the world, which is
often referred as the initial belief state. In a domain with n
propositions, the size of the initial belief state can be 2n.

The representation of belief states affects the performance
of a conformant planner in two ways. First, it can quickly
increase the memory usage of the planner, leading to the
undesirable “Out of memory” situation, if the size of the
belief state is large. Second, it directly influences the time
complexity in computing the successor belief states.

Indeed, the literature is rich in methods for representing
of and dealing with belief states in conformant planners.
CFF does not have a direct encoding of the belief states in
its search process. Rather, it stores the sequence of actions
reaching to the belief states and recomputes the belief states
whenever it is necessary. 1 Checking whether an action is
executable needs a call to a SAT-solver. POND uses or-
dered binary decision diagram (OBDD) (Bryant 1992) in its
representation and relies on the OBDD-library to compute
the successor belief states. A disadvantage of this approach
is that the size of the OBDD can be very large—the structure
of the OBDD is sensitive to the ordering of variables and the
manipulation of the OBDD might require intermediate OB-
DDs of exponential size. t0 translates a conformant plan-
ning problem to a classical planning problem, uses a classi-
cal planner (FF) to solve the new problem, and then converts
the solutions of the new problem to solutions of the original
problem. The size of the initial state (the number of the flu-
ents) in the new problem, however, could be exponential to
the size of the original problem if completeness is required.
CPA identifies and keeps only a set of approximation states,
which guarantees completeness of the planner, in its search
for solution; thus reducing the size of the belief states, in
many cases, significantly. The price CPA has to pay is that
the overhead for computing the initial approximation state
is sometimes quite significant, leading to its inability to start
the search process. DNF goes to an extreme by employing
an explicit representation of belief states using disjunctive
normal form. DNF expands the DNF representation on de-
mand. As such, it can avoid some problems faced by CPA,
CFF, or t0 and can solve more problems than these plan-
ners (To, Pontelli, and Son 2009).

1CFF does implement some techniques which help reduce the
number of recomputations.

169

Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS 2010)

It is worth mentioning that regardless of the representation
of the belief states, all planners have difficulties scaling up
when the size of the initial belief state is large. For example,
for the coins-21 instance, from the IPC-2006, all plan-
ners fail to find a solution either because of “out of mem-
ory” error or because of “time out.” The initial belief state
of this problem contains 1016 states, comparing to the “easy
instances” in the same domain such as coins-20, whose
initial belief state contains less than 106 possible states, and
can be solved by all planners in less than two minutes.

The above discussion motivates us to investigate alterna-
tive representation of belief states in conformant planning.
More precisely, we develop a conformant planner, called
CNF, that uses a specific form of CNF, called CNF-state,
to represent belief states. We compare CNF with other plan-
ners and our experiments show that the new representation
does incur some overhead which cannot be easily overcame.
In order to exploit the new representation, we develop a new
technique called one-of relaxation and implement it in CNF.
This technique helps further reducing the size of the initial
belief state, allowing the planner to solve instances which
cannot be solved by other planners due to the size of the ini-
tial belief state. We provide a characterization of domains
in which this technique can be applied and evaluate this idea
by proposing a new set of benchmarks that is hard for the
other planners yet easy for CNF.

Background: Conformant Planning
A planning problem is a tuple P = 〈F,O, I, G〉, where F
is a set of propositions, O is a set of actions, I describes
the initial state of the world, and G describes the goal. A
literal is either a proposition p ∈ F or its negation ¬p. �̄
denotes the complement of a literal �—i.e., �̄ = ¬�, where
¬¬p=p for p∈F . For a set of literals L, L = {�̄ | � ∈ L}. A
conjunction of literals is often viewed as the set of its literals.

A set of literals X is consistent if there exists no p ∈ F
such that {p,¬p} ⊆ X . A set of literals X is complete if for
each p ∈ F , {p,¬p} ∩ X �= ∅. A state s is a consistent and
complete set of literals. A belief state is a set of states. We
will often use lowercase (resp. uppercase) letter, possibly
with indices, to represent a state (resp. a belief state).

Each action a in O is associated with a precondition φ
(denoted by pre(a)) and a set of conditional effects of the
form ψ → � (also denoted by a : ψ → �), where φ and ψ
are sets of literals and � is a literal.

A state s satisfies a literal �, denoted by s |= �, if � ∈ s.
s satisfies a conjunction of literals X , denoted by s |= X , if
it satisfies every literal belonging to X . The satisfaction of
a formula in a state is defined in the usual way. Likewise,
a belief state S satisfies a literal �, denoted by S |= �, if
s |= � for every s ∈ S. S satisfies a conjunction of literals
X , denoted by S |= X , if s |= X for every s ∈ S.

Given a state s, an action a is executable in s if s |=
pre(a). The effect of executing a in s is

e(a, s) = {� | ∃(a : ψ → �). s |= ψ}
The transition function, denoted by Φ, in the planning do-
main of P is defined by

Φ(a, s) =
{

s \ e(a, s) ∪ e(a, s) s |= pre(a)
⊥ otherwise

(1)

where ⊥ denotes a fail state.
Φ is extended to define Φ̂, a transition function which

maps sequences of actions and belief states to belief states
for reasoning about the effects of plans. Let S be a be-
lief state. We say that an action a is executable in a be-
lief state S if it is executable in every state belonging to
S. Let αn = [a1, . . . , an] be a sequence of actions and
αi = [a1, . . . , ai]:
• If n = 0 then Φ̂([], S) = S;
• If n > 0 then

◦ if Φ̂(αn−1, S) = ⊥ or an is not executable in
Φ̂(αn−1, S), then Φ̂(αn, S) = ⊥;

◦ if Φ̂(αn−1, S) �= ⊥ and an is executable in Φ̂(αn−1, S)
then Φ̂(αn, S) = {Φ(an, s′) | s′ ∈ Φ̂(αn−1, S)}.

The initial state of the world I is a belief state and is repre-
sented by a formula. In all benchmarks, I is a conjunction
of a set of literals, a set of one-of statements (resp. or-
statements)—representing an exclusive-or (resp. logical or)
of its components. By SI we denote the set of all states
satisfying I . Typically, the goal description G can contain
literals and or-clauses.

A sequence of actions α = [a1, . . . , an] is a solution of
P if Φ̂(α, SI) satisfies G. In this paper, for an action a, we
will denote with Ca the set of conditional effects of a.

Representing Belief States by CNF Formulae
In this section we develop the theoretical basis for the devel-
opment of a conformant planner which uses a specific type
of CNF formulae, which will be introduced shortly, to rep-
resent belief states. Our first task is to define a progression
function ΦCNF , similar to the function Φ, for computing the
successor belief state.

A clause is a set of fluent literals. A clause is trivial if it
contains the set {f,¬f} for some fluent f . A CNF formula
is a set of clauses. A literal � is in a CNF formula ϕ, denoted
by � ∈ ϕ, if there exists a clause α ∈ ϕ such that � ∈ α.
A unit clause is a singleton set, i.e. it contains only one
literal. The literal in a unit clause is called unit literal. A
clause α subsumes a clause β (or β is subsumed by α) if
α ⊂ β. A clause is subsumed by a CNF formula if it is
subsumed by some clause in the CNF formula. Obviously,
if ϕ′ is obtained by removing some subsumed clause(s) in a
CNF formula ϕ then ϕ′ ≡ ϕ.
Definition 1. A CNF-formula ϕ is called a CNF-state if
• ϕ does not contain a trivial clause;
• ϕ does not contain two clauses γ and δ such that γ sub-

sumes δ; and
• for every unit clause {�} in ϕ, � �∈ ϕ.

A set of CNF-states is called a CNF-belief state.
Intuitively, a CNF-state ϕ is minimal in the sense that it

does not contain redundant clauses and can be viewed as a
set of states. For example, if F = {p, q}, the CNF-state
ϕ1 = {{p}} encodes the set of states in which p is true,
i.e., the set {{p, q}, {p,¬q}}; the CNF-state ϕ2 = {{¬p}}
encodes the set of states in which p is false; the set of
CNF-states {ϕ1, ϕ2} represents all possible states of the do-
main. Observe also that even though ϕ1 is equivalent to

170

ϕ = {{p}, {p, q}}, ϕ is not a CNF-state as it violates the
second condition of Def. 1. Furthermore, observe that a
CNF-formula might be represented by several CNF-states.
For example, the formula p can be represented by either
{{p}} or {{p, q}, {p,¬q}} 2.

It is easy to see that an arbitrary CNF-formula can be con-
verted into an equivalent CNF-state and there exist differ-
ent algorithms for this purpose. In CNF, we implemented a
fixed-point algorithm which is a modification of an effective
CNF-preprocessor using unit-propagation and subsumption
techniques. The algorithm is deterministic and polynomial
in the size of the formula. Furthermore, it yields a CNF-state
that cannot be further simplified using the same techniques.
For our discussion, it suffices to note that r(ϕ), the result of
the algorithm, is a CNF-state equivalent to ϕ.

A literal � (resp. a set of literals γ) is true in a CNF-state
ϕ if ϕ |= � (resp. ϕ |= � for every � ∈ γ), where |= denotes
the standard entailment relation. Also, by ϕ� (resp. ϕ�̄) we
denote the set of clauses in ϕ which contain � (resp. �̄).

We define some operations for the manipulation of CNF
formulae, which will be used in manipulating CNF-states.

Definition 2. Let ϕ be a CNF formula and � be a literal.
By ϕ − � we denote the CNF formula obtained by removing
from ϕ every occurrence of �.

E.g., p∧(q∨¬r)−q = p∧¬r and ¬p∧(q∨r)−¬p = q∨r.

Definition 3. For two CNF formulae ϕ = {α1, . . . , αn} and
ψ = {β1, . . . , βm}, the cross-product of ϕ and ψ, denoted
by ϕ × ψ, is the CNF-formula defined by {αi ∪ βj | αi ∈
ϕ, βj ∈ ψ}. If either ϕ or ψ is empty then ϕ × ψ = ∅.

Observe that ϕ × ψ is nothing but a transformation of
ϕ ∨ ψ to a CNF formula. For a set of CNF formulae Ψ =
{ϕ1, . . . , ϕn}, ×[Ψ] denotes ϕ1 × ϕ2 × . . . × ϕn, a CNF-
formula equivalent to

∨n
i=1 ϕi.

Given a CNF-state ϕ, we define the function Update
which encodes the CNF-state after the execution of an ac-
tion, that causes a literal � to be true, in ϕ as follows.

Definition 4. Let ϕ be a CNF-state and � a literal. The
update of ϕ by �, denoted by Update(ϕ, �), is defined by:
• If � is a unit clause in ϕ then Update(ϕ, �) = ϕ.
• If �̄ is a unit clause in ϕ, then Update(ϕ, �) = (ϕ−�̄)∧�.
• Otherwise
Update(ϕ, �) = r((ϕ\(ϕ�∪ϕ�̄))∧�∧(ϕ�−�)×(ϕ�̄− �̄))
Intuitively, Update(ϕ, �) encodes Equation (1) when the

set of effects is {�} and the action is executable. As ϕ rep-
resents a belief state S = {s | s |= ϕ}, Update(ϕ, �) should
be equivalent to the formula

∨
s∈S(s \ {�} ∪ {�}). As such,

the first two cases of Definition 4 are obvious. To deal with
the third case, first ϕ is converted to the equivalent formula
ϕ′ = (ϕ0 ∧ (ϕ� − �) ∧ (ϕ�̄ − �̄)) ∨ (ϕ0 ∧ (ϕ� − �) ∧ �̄) ∨
(ϕ0 ∧ (ϕ�̄ − �̄) ∧ �), where ϕ0 = ϕ \ (ϕ� ∪ ϕ�̄). Then
ϕ′ is updated by updating each of its disjuncts: adding �
to the first and updating the last two ones according to the
first two cases in Definition 4 (note that the first disjunct in
ϕ′ does not contain � or �̄, the second contains the unit lit-
eral �̄, and the third contains the unit literal �). The formula

2In the implementation, actually this will be simplified to {{p}}

in the third case is a simplification of the obtained formula.
The definition is illustrated in the next few examples:
◦ Update({{f}, {g,¬p}}, p) = {{f}, {p}}
◦ Update({{f}, {h, p}}, p) = {{f}, {p}}
◦ Update({{f}, {g,¬p}, {h, p}}, p) = {{f}, {p}, {g, h}}

We can prove the following proposition.3

Proposition 1. Given a CNF-state ϕ and two literals �1 and
�2 such that �1 �= �̄2, then Update(Update(ϕ, �1), �2) =
Update(Update(ϕ, �2), �1).

Proposition 1 shows that the result of updating a CNF-
state ϕ using a consistent set of literals L is indepen-
dent from the order in which the various literals of L
are introduced. Given a consistent set of literals L,
we denote Update(ϕ, ∅) = ϕ and Update(ϕ, L) =
Update(Update(ϕ, �), L \ {�}) for any � ∈ L if L �= ∅.

Our goal is now to define the transition function ΦCNF .
Given an action a with the precondition pre(a) and its set of
conditional effect Ca and a CNF-state ϕ, we need to define
the successor CNF-state ΦCNF (a, ϕ). Since ϕ is a CNF-
state, when computing ΦCNF (a, ϕ), for each ψ → � in Ca,
there are three cases that need to be considered: (i) ϕ |= ψ;
(ii) ϕ |= ¬ψ; and (iii) ϕ �|= ψ and ϕ �|= ¬ψ. As an example,
if ϕ = p ∧ q and ψ = r, then we have ϕ �|= ψ and ϕ �|= ¬ψ.
As such, to define ΦCNF , we need the following definition.
Definition 5. Let ϕ be a CNF-state and γ a consistent set of
literals. The enabling form of ϕ w.r.t. γ, denoted by ϕ + γ,
is a set of CNF formulae and is defined as

ϕ + γ =

{
{ϕ} if ϕ |= γ or ϕ |= ¬γ
{r(ϕ ∧ γ), r(ϕ ∧ ¬γ)} otherwise

where ¬γ is the clause γ = {l̄|l ∈ γ}, ϕ ∧ ¬γ = ϕ ∪ {γ},
and ϕ ∧ γ = ϕ ∪ {{l}|l ∈ γ}

It is easy to see that ϕ + γ is a set of CNF formulae such
that for every δ ∈ ϕ+γ, δ |= γ or δ |= ¬γ. For a CNF-belief
state Ψ, let Ψ + γ =

⋃
ϕ∈Ψ(ϕ + γ). It holds that

Proposition 2. Let ϕ (resp. Ψ) be a CNF-state (resp. CNF-
belief state). If γ is a consistent set of literals, then ϕ + γ
(resp. Ψ + γ) is a CNF-belief state equivalent to ϕ (resp.
Ψ). If γ1 and γ2 are two consistent sets of literals then (ϕ +
γ1) + γ2 ≡ (ϕ + γ2) + γ1.
Definition 6. Let a be an action with the set of conditional
effects Ca. A CNF formula ϕ is called enabling for a if for
every conditional effect ψ → � in Ca, either ϕ |= ψ or
ϕ |= ¬ψ holds. A set of CNF formulae Ψ is enabling for a
if every CNF formula in Ψ is enabling for a.

For an action a and a CNF-state ϕ, let enba(ϕ) = ((ϕ +
ψ1) + . . .) + ψk where Ca = {ψ1 → �1, . . . , ψk → �k}.
Proposition 3. For every CNF-state ϕ and action a,
enba(ϕ) is a CNF-belief state equivalent to ϕ and enabling
for a.

For an action a and a CNF-state ϕ, the effect of a in ϕ,
denoted e(a, ϕ), is defined as follows. e(a, ϕ) = {�|ψ →
� ∈ Ca, ϕ |= ψ}. We are now ready to define the function
ΦCNF .

3Due to lack of space, all proofs are omitted. They can be found
at www.cs.nmsu.edu/~sto/full_cnf_paper.pdf.

171

Definition 7. Let ϕ be a CNF-state and let a be an action.
By ΦCNF (a, ϕ) we denote the transition function for CNF-
states:
• ΦCNF (a, ϕ)=r(×[{Update(φ, e(a, φ))|φ∈enba(ϕ)}])

if ϕ |= pre(a); and
• ΦCNF (a, ϕ) = ⊥ otherwise.

Given a CNF-state ϕ, by BS(ϕ) we denote the belief state
consisting of states satisfying ϕ. It holds that
Lemma 1. Let φ be a CNF-state enabling an action a.
Then,

Update(φ, e(a, φ)) ≡ {s \ e(a, s) ∪ e(a, s)|s ∈ BS(φ)}
Let Φ̂CNF is the function defined by extending ΦCNF to

allow for reasoning about the effects of an action sequence
in the same manner of extending Φ to Φ̂. Using Lemma 1,
one can prove the correctness of the following theorem.
Theorem 1. For every CNF state ϕ and action sequence
αn, Φ̂CNF (αn, ϕ) ≡ Φ̂(αn, BS(ϕ)).

The above theorem shows that Φ̂CNF is equivalent to the
complete semantics defined by Φ̂. Thus, any planner using
Φ̂CNF in its search for solutions will be sound and complete.

CNF-States and one-of Statements
One of the main methods used in specifying uncertainty in
conformant planning benchmarks is the use of the one-of
construct. This construct provides a way to specify mutual
exclusive information about certain proposition (e.g., a truck
t is at one (and only one) place p1, p2, p3 is expressed by the
statement one-of(at(t, p1), at(t, p2), at(t, p3)). The size of
the initial belief state (the number of states) depends largely
on the number of one-of statements in the problem specifi-
cation. The following proposition discusses this issue.
Proposition 4. A one-of statement c can be converted to
• an equivalent DNF formula of minimum size of |c|2; and
• an equivalent CNF formula of minimum size of Θ(|c|2).

where |c| denotes the number of literals in c.
A set S = {c1, . . . , cn} of independent one-of statements

can be converted to an equivalent DNF formula of minimum
size Πn

i=1|ci|2 and to an equivalent CNF formula of mini-
mum size Θ(Σn

i=1|ci|2).
In the above proposition we use independent which will

be defined later in the Definition 9. This proposition shows
that the representation of belief state affect the size of the
initial belief state, which the planner needs to deal with.
This is also the main reason behind the development of the
one-of combination technique by CPA which greatly influ-
ences the performance of CPA and DNF. This motivates us
to develop an alternative technique to the one-of combina-
tion technique for use in the CNF planner.

Intuitively, the CNF-representation favors the second way
of specifying uncertainty in conformant planning bench-
marks, the use of or statements. Can we replace one-of
statements by or statements? Surprisingly, in many bench-
marks, the answer for this question is yes. We call this tech-
nique as one-of relaxation. To illustrate this technique, let
us consider the dispose(m, n) problem, one of the bench-
marks in IPC-2008. The goal of this problem is to retrieve

m objects o1, . . . , om, whose initial locations are unknown,
and placing them in a trash can. The initial information is
specified by δi = one-of(at(oi, p1), . . . , at(oi, pn)). We
say that δ′i = or(at(oi, p1), . . . , at(oi, pn)) is a relaxation
of the one-of statement δi since the belief state specified by
the or statement contains all states belonging to the belief
state specified by the one-of statement. Let the planning
problem P ′ be obtained from the problem dispose(m, n)
by replacing δi with δ′i for every i. Obviously, the size of the
CNF-state representing the initial state of dispose(m, n) is
much larger than the size of the CNF-state encoding the ini-
tial state of P ′ (m × Θ(n2) vs. m × n). Moreover, every
solution of P ′ is also a solution of dispose(m, n). This can
be generalized as follows.

Proposition 5. Let P = 〈F,O, I, G〉 and P ′ =
〈F,O, I ′, G〉 be two conformant problems such that I |= I ′.
If α is a solution of P ′, then α is also a solution of P .

For a CNF-state ϕ and a set ϕ′ of clauses in ϕ, we have
that ϕ |= ϕ′. As such, given that the initial belief state is
represented by a CNF-state ϕ, the above proposition allows
one to attempt to solve the problem with a subset of ϕ. As
shown above, this could be significant, especially when there
are one-of statements that can be replaced by or statements.

Definition 8. Let P = 〈F,O, I, G〉 be a planning prob-
lem. We define Pone-of〈F,O, Ione-of, G〉 where Ione-of is ob-
tained from I be replacing every one-of(�1, . . . , �n) in I by
or(�1, . . . , �n).

Proposition 5 indicates that if Pone-of has a solution then
it is also a solution of P . However, this cannot be applied
arbitrarily as shown in the following example.

Example 1. Let P = 〈{f, g, h}, {a}, I, G〉 where I =
{one-of(f, g, h), one-of(¬f,¬g)}, a : ¬h → g, and
G = {g}. Intuitively, I specifies that ¬h is true in the ini-
tial state as the set of states satisfying I contains only two
states {f,¬g,¬h} and {¬f, g,¬h}. As such, a solution for
this problem is a. It is easy to see that replacing the one-of
statements by or statements indiscreetly leads to a new prob-
lem that has no solution.

The above example shows that one-of relaxation is incom-
plete. Thus, it is critical to find conditions under which the
technique can be used and the completeness of the planner
is guaranteed. To this end, we formalize the notion of inde-
pendence of one-of statements. For a one-of/or statement
δ, by lit(δ) we denote the set of literals occurring in δ.

Definition 9. A one-of statement δ is independent of
• a set of literal S if lit(δ) ∩ S = ∅ and lit(δ) ∩ S = ∅;
• an one-of statement (resp. or statement) γ if lit(δ) ∩
lit(γ) = ∅ and lit(δ) ∩ lit(γ) = ∅.
• an initial state description I , where δ ∈ I , if δ is inde-

pendent of every element in I \ {δ}.

Intuitively, the independency of an one-of statement δ of
I indicates that the literals occurring in δ do not appear in
any other statements of I . We also need the next definition.

Definition 10. Let a be an action and δ be an one-of state-
ment δ, we say

172

• a maintains δ if one |pre(a) ∩ lit(δ)| ≤ 1 and for every
state s, if s |= δ then Φ(a, s) |= δ.
• a negated δ if |pre(a) ∩ lit(δ)| ≤ 1 and for every state
s, if s |= δ then Φ(a, s) |= �̄ for every � ∈ δ.
Intuitively, an action maintains an one-of statement δ if

its execution does not change the overall dependency be-
tween the literals in δ. In the benchmarks, this type of ac-
tions frequently occurs. For instance, the action of driving
a truck from one location to another location maintains the
one-of statement about the locations of the truck; it also
maintains the one-of statements about the locations of other
trucks, as it does not affect the location of other trucks. To
verify the property of maintainability between actions and
one-of statements, we make use of the following lemma.
Lemma 2. Let δ = one-of(p1, . . . , pn) and a be an action
with Ca = {ψ1→�1, . . ., ψk→�k}. Let γ = {p1, . . . , pn}
and L = {�1, . . . , �k}. a maintains δ if either L ∩ γ =
L ∩ γ̄ = ∅; or the following conditions are satisfied:
◦ |L ∩ γ| ≤ 1; and
◦ if �i ∈ (L ∩ γ) then γ ∩ (pre(a) ∪ ψi) �= ∅ and ψi → �̄

for every � ∈ γ ∩ (pre(a) ∪ ψi).
The above lemma allows us to check, syntactically, the
maintainability of an action and one-of statements. A simi-
lar lemma can be developed for checking whether an action
negates an one-of statement. We can now state a complete-
ness of the problem Pone-of.
Theorem 2. Let P be the planning problem 〈F,O, I, G〉. If
• for every one-of statement δ in I , δ is independent of I;
• for every action a in O and one-of statement δ in I , a

maintains δ or a negates δ; and
• G is a conjunction of literals

then every solution of P is also a solution of Pone-of.
The third condition is important. To see why, consider the

statement one-of(f, g) which satisfies G = (f ∨g)∧ (¬f ∨
¬g). It is easy to check that or(f, g) does not satisfy G.

We observe that many benchmarks in the literature satisfy
the conditions of Theorem 2. For example, the coins, dis-
pose domains from the recent IPCs satisfy these property.

CNF— A Planner with CNF-States
We now describe CNF, a conformant planner which uses
CNF-states as the representation of belief states. The plan-
ner is a modification of DNF. Like other heuristic search
based planners, CNF implements a best first search algo-
rithm with the following specifics: each node in the search
is a pair of a CNF-state ϕ and the plan p such that ϕ =
Φ̂CNF (p, ϕI) where ϕI is the initial CNF-state. We omit
the search algorithm for space consideration. In what fol-
lows, we describe some important considerations, which are
different from other planners and contribute to the good per-
formance of CNF.
Computing Successor CNF-States
Given a CNF-state ϕ and an action a with the set of condi-
tional effects Ca, computing the successor CNF-state ϕ′ =
ΦCNF (a, ϕ), by Definition 7, includes the following steps:

1. If pre(a) is not true in ϕ then ϕ′ is undefined.
2. If pre(a) is true in ϕ, then ϕ′ is computed in three steps:

(a) enba(ϕ)
(b) Ψ = {Update(φ, e(a, φ))|φ ∈ enba(ϕ)}
(c) ϕ′ = ×[Ψ]

The algorithms for computing Update(φ, e(a, φ)) and ×[Ψ]
are quite straightforward following Def. 4 (for Update),
and Def. 3 (for ×) so we omit them here. For the simpli-
fication of the computation, we implement a preprocessor
which combines all effects with the same antecedent into
one of the form ψ → η, where η is a set of literals. The
algorithm for computing enba(ϕ) is given in Alg. 1. Ob-
serve that it also computes e(a, φ) for each φ ∈ enba(ϕ),
eliminating some redundant computations. More precisely,
the computation in line 7 is done as follows. If φ |= ψ
then Z = {φ} and e(a, φ) = e(a, φ) ∪ η; If φ |= ¬ψ
then Z = {φ} and e(a, φ) does not change; otherwise,
Z = {φ1, φ2} where φ1 = r(φ ∧ ψ) and φ2 = r(φ ∧ ¬ψ)
with e(a, φ1) = e(a, φ) ∪ η and e(a, φ2) = e(a, φ).
Algorithm 1 Computing enba(ϕ)

1: Input: CNF state ϕ, action a
2: Output: enba(ϕ), e(a, φ) for φ ∈ enba(ϕ)
3: Let X = {ϕ}, e(a, φ) = ∅ for φ ∈ enba(ϕ)
4: for each effect ψ → η in Ca do
5: Let Y = ∅
6: for each φ ∈ X do
7: compute Z = φ + ψ, update e(a, φ′) for φ′ ∈ Z
8: Y = Y ∪ Z
9: end for

10: Set X = Y
11: end for
12: return X

For computing ×[Ψ], we use the following proposition to
reduce the amount of computation
Proposition 6. Let ϕ and ψ be two CNF formulae, c be a
clause in ϕ, and c′ be a clause in ψ. It holds that
• If c = c′ then r(ϕ × ψ) = r((ϕ \ c) × (ψ \ c′) ∪ c)
• If c ⊂ c′ then r(ϕ × ψ) = r(ϕ × (ψ \ c′) ∪ c′)
Observe that if |ϕ| = n (ϕ has n clauses) and |ψ| = m

then the first item says that the size of the cross-product can
be reduced by n+m−1 clauses. The second item indicates
that it can be reduced by n − 1 clauses. Our experiments
show that this contributes to a significant reduction of search
time, ranging between 20% and 90% in the benchmark prob-
lems. The main reason is that, without using optimization of
Prop. 6, CNF spends most of search time for computing
cross-product of CNF-formulae which, if in the same CNF-
belief state, usually contains many common clauses since
they are originated from the same CNF-formula in the trans-
formation to enabling form. In addition, the Update func-
tion creates unit clause(s) which can subsume many other
clauses in the CNF-states of the same CNF-belief state.
Checking Entailment
Checking whether a CNF-state satisfies a set of literals is
needed whenever the planner needs to check for the exe-
cutability condition of an action and the goal satisfaction of
CNF-states. It is also needed during the computation of the
enabling CNF-belief states. In general, checking whether a
literal � (resp. set, clause) is true or false in a CNF-state ϕ

173

needs to a call to a SAT-solver. Thus, reducing the number
of calls to the SAT-solver is important for the performance of
CNF. The representation of belief states as CNF-states pro-
vides an easy way to check for entailment in several cases.
CNF takes advantages of this fact and reduces the number of
calls to the SAT-solver by implementing the following tests
before a call to the SAT-solver is made: (i) if � �∈ ϕ then
ϕ �|= �; (ii) if ϕ contains a clause c′ that subsumes a clause
c then ϕ |= c. With this simplifications, the running time
portion of the SAT-solver is manageable for most cases. In
our experiment, we observe that it is always less than 3%.
Heuristic
Since CNF is a modification of DNF, it uses the number of
satisfied subgoals to guide its search. However, it does not
consider the equivalence of the cardinality heuristic. The
reasons for this decision are twofold. By using the num-
ber of satisfied subgoals, we can evaluate the impact of the
belief state representation (using CNF-states) when we com-
pare the performance of CNF and DNF. CNF does not use
the cardinality heuristic because of the less the clauses in a
CNF-state, the more uncertainty it contains, in general.
Preprocessing Input
CNF is developed by modifying the source code of DNF and
CPA. As a result, CNF accepts the same input as DNF and
incurs the overhead generated by the preprocessing phase
as does DNF. However, CNF does not make use of one-of
combination or goal-splitting techniques.
one-of Relaxation
CNF makes use of the one-of relaxation technique de-
scribed in the previous section.

Experimental Evaluation

We evaluate CNF against the following conformant plan-
ners: DNF, CPA, CFF, POND, and t0 using conformant
planning benchmarks found in the literature. To the best of
our knowledge, these planners currently yield the best per-
formance in these domains. We obtained DNF, CPA, and
t0, from their respective authors. CFF was downloaded
from its author website. We use POND version 1.1.1 with
default setting.

All the experiments have been carried out using a set of
three dedicated Linux workstations of the same configura-
tion: Intel Core 2 Dual 9400 2.66GHz 4GB RAM. The time-
out limit is set to 2 hours. The results of our experiments are
divided into different tables. In Tables 1, 3, and 4, each col-
umn contains the performance of a planner. We report the
time and plan length for each planner. ‘OM’, ‘TO’, and ‘F’
denotes out of memory, time out, or abnormal termination
of the planner. Due to space limitation, we only report a
few large instances of each benchmark and do not report the
number of states that are generated and explored by each
planner. This number is included in the full version of this
paper. In the following, we discuss each table and evaluate
the strength and weakness of CNF against other planners.
Benchmarks From The Literature
Table 1 contains the results obtained from experiments on
the domains block, raokeys (raok-n), and uts-cycle (uts-c-n)
from IPC-2008. sortnet is from IPC-2006. bomb and grip-

per are from the author of CFF. The remaining problems
including corner-cube (cc-n-m), look-and-grab (lng-n-m-k),
and sort-number (sortnum-n) are from the package of t0.

The problems in Table 1 share the common property that
they do not contain an one-of statement which satisfies the
relaxation condition. Therefore, CNF can not take the advan-
tage of relaxation technique for these problems. The results
show that CNF and DNF are the best on the bomb, corner-
cube, grip, look-and-grab domains and the performance of
these two planners are almost the same on these domains.
However, CNF scales up better on corner-cube while DNF
is better on look-and-grab. The execution time and length
of plans found by CNF and DNF are the same for bomb and
gripper. For sort-number, t0 is the best on most instances
but only CNF is able to deal with the largest instance. We
observe that CNF spends more time in transforming CNF-
belief states to CNF-states in this problem while the size of
the representation of DNF increases very fast. POND out-
performs the others on block and sortnet but its performance
is pretty poor on the other domains. CFF is very good at
gripper, but it does not scale up well as CNF or DNF does on
the larger instances. t0 is the best on raokeys. This planner
also performs very well on many small problem instances.

Observe that although DNF outperforms all the other
planners on small instances of the corner-cube domain
but the time increases by a faster rate comparing to CNF.
This depends on the number of states generated and ex-
plored by DNF and CNF: 24969/5717 v.s. 18321/6362 for
corner-cube-40-20 and 300287/62027 v.s. 115330/39283
for corner-cube-119-59, respectively.

On the other hand, CNF does not do so good in the uts-
cycle domain due to the explosion of the CNF-state size as
shown in Table 5. The overhead of the function × of con-
verting a CNF-belief state to the equivalent CNF-state is an-
other reason. For example, for the instance uts-cycle-3, the
real search time (excluding the input theory translation time)
is 3.325 seconds. Whereas, the execution time spent on the
function × is 3.237, i.e. most of the search time. We present
the overhead incurred by CNF for some domains in Table 2.
In this table, t_trans, t_search, and t_CNF are the time
used by the preprocessing phase (which DNF does also use),
the time for searching for a solution, and the time incurs by
the transformation of CNF-belief states to CNF-states.

Challenging Problems
Table 3 contains the experimental results with domains that
are challenging for current state-of-the-art planners. Among
these, coins and dispose (ds-m-n) are from the IPC-2006 and
IPC-2008. The others are from the challenging domains pro-
posed in (Palacios and Geffner 2007) including 1-dispose
(1d-n-m) and push (push-n-m). Indeed, only few planners
can solve these problems and none can scale up when the
number of objects/constants become large. For coins-21
and larger instances, the main difficulty, which makes these
problems challenging, is the huge size of the belief states
encountered during the search or the huge size of the initial
belief state.

The domains in Table 3 fall in the class of problems where

174

Problem CNF DNF CPA T0 CFF POND

block-1 0.56/7 0.67/7 0.68/4 0.08/5 0.02/6 0.01/6
block-2 0.83/18 0.68/38 0.76/14 0.2/23 TO 0.06/34
block-3 TO 215/331 OM 48/80 TO 3.9/80
bomb-20-10 0.74/30 0.77/30 3.6/24 F 0.05/30 OM
bomb-50-10 1.28/90 1.28/90 21/58 F 1.16/90 OM
bomb-100-10 2.7/190 2.7/190 110/110 F 34/190 OM
bomb-100-20 5.3/180 5.2/180 244/118 F 28/180 OM
cc-20-10 2.37/138 2.07/217 F 2.1/258 2.5k/332 TO
cc-40-20 13.4/343 7.75/535 F 87/918 TO TO
cc-64-32 49.5/1106 21.2/872 F F TO TO
cc-99-49 90.6/1542 89.2/1553 F F TO TO
cc-119-59 180/2230 229/3522 F F TO TO
gripper-30 3.3/144 3.7/144 17/72 11/118 0.5/174 TO
gripper-50 8.6/234 8.7/234 106/106 52/198 3/294 TO
gripper-80 22.2/350 22.5/350 432/166 234/318 18/474 TO
gripper-100 31.9/438 31.2/438 970/206 421/398 >43 TO
lng-4-1-2 1.21/16 1.06/18 1.17/26 27/12 83/105 OM
lng-4-2-2 1.22/4 1.33/4 1.38/4 31/4 TO OM
lng-4-2-3 2.8/4 3.13/4 3.91/4 141/4 TO OM
lng-4-3-3 3.01/4 3.53/4 4.48/4 F TO OM
lng-7-2-2 26.4/58 17.9/48 21/28 F TO OM
lng-7-3-2 22.9/14 20.8/14 24.7/12 F TO OM
raok-2 1.65/27 0.57/26 1.1/32 0.04/21 0.07/34 F
raok-3 2754/919 1.68/153 3.8/152 0.25/66 12/102 F
raok-4 TO TO TO F TO F
sortnet-5 1.2/15 0.94/15 0.94/12 0.26/15 NA 0/12

sortnet-10 21.9/55 1.85/54 3.18/39 OM NA 0.03/38

sortnet-15 257/119 35.9/118 244/65 F NA 0.14/65

sortnum-5 1.56/10 2.57/10 OM 1.92/10 2.9/10 0.49/10
sortnum-6 22.8/15 397/15 OM 18.1/15 TO 19.4/15
sortnum-7 539/21 OM OM 91/21 TO 1077/21
sortnum-8 14277/28 OM OM F TO TO
uts-c-3 4.22/3 0.54/3 1.19/3 0.15/3 NA F
uts-c-4 TO 0.56/6 18.3/6 0.47/7 NA F
uts-c-5 TO 0.73/10 OM 1.8/10 NA F

Table 1: Benchmarks from Literature
the one-of relaxation is applicable. As we can see, CNF out-
performs other planners in many challenging domains (dis-
pose, 1-dispose, and push) and shows great performance in
the coins domain. In fact, only CNF was able to solve the
instances (-21 to -30) of the coins domain. In smaller in-
stances, CNF and DNF are comparable but the high memory
usage of DNF results in the “OM” error of DNF in large in-
stances.
New Challenging Problems
In this subsection, we introduce a new set of problems that
play to the advantage of CNF. They are variants of the chal-
lenging problems of the problems in Table 3. Instead of
one-of statements, we use the or statements. To illustrate
the modification, let us use the dispose problem.

In this problem, there are m different objects o1, . . . , om

Problem t_trans t_search t_CNF Problem t_trans t_search t_CNF

block-1 0.53 0.029 0.013 b-50-10 1.01 0.272 0.032
gripper-30 1.19 2.11 0.23 c-20-40 0.75 1.62 0.83
sortnet-5 0.85 0.35 0.15 lng-4-1-2 0.96 0.25 0.11
uts-c-3 0.895 3.325 3.237 sortnum-5 0.613 0.947 0.682

Table 2: Time Distribution: Search vs. Translation vs. Transfor-
mation in CNF

Problem CNF DNF CPA T0 CFF POND

coins-10 0.6/35 0.62/27 0.9/36 0.04/26 0.12/38 0.5/46
coins-15 0.91/81 0.97/67 7/362 0.12/79 2.6/89 10/124
coins-20 1.15/114 1.41/99 17/105 0.15/107 16/143 105/153
coins-21 1478/7321 OM OM F TO TO
coins-25 195/1843 OM OM F TO TO
coins-29 999/5368 OM OM F TO TO
ds-4-3 0.88/93 1.2/185 4.9/92 0.2/122 0.6/73 55/125
ds-4-5 1.15/155 1.7/180 11.3/126 0.8/145 2.5/107 TO
ds-8-3 27.5/392 37.4/447 778/413 133/761 TO OM
ds-8-5 32/537 65/878 2152/541 F TO OM
ds-10-3 158/531 193/680 4694/648 2388/1360 TO OM
ds-10-5 175/840 274/1286 TO F TO TO
ds-10-9 222/1543 787/2178 TO F TO TO
1d-3-2 0.74/60 0.78/36 0.76/27 0.9/38 TO 5.8/54
1d-3-3 1.04/60 1.86/36 1.87/27 48/36 TO 77/50
1d-3-4 1.67/60 12.5/36 14.3/27 F TO OM
1d-6-2 10.8/492 15.4/186 33.7/124 F TO OM
1d-6-3 18.1/492 506/186 OM F TO OM
1d-6-4 30.4/492 OM OM F TO OM
1d-10-4 667/3806 OM OM F TO OM
1d-10-5 1240/3806 OM OM F TO OM
push-4-1 0.94/41 1.17/41 1.61/51 0.16/78 0.28/46 7.3/65
push-4-3 1.06/105 2.1/194 144/847 0.66/164 1.3/48 TO
push-4-5 1.45/145 5.05/331 OM 2.04/260 126/50 OM
push-8-1 25.8/163 27.1/163 29.6/169 63/464 TO TO
push-8-2 29.6/396 41.2/903 4254/429 F TO TO
push-8-3 31.9/303 74/1477 OM F TO TO
push10-6 227/1194 2235/6382 OM F TO TO
push10-7 259/1221 OM OM F TO TO

Table 3: Challenging Domains
and n different places p1, . . . , pn. The goal is to find a
plan for a robot to pickup the objects and drop them at a
place where a trash can is available. Initially, we don’t
have any information about which object at which place.
So, in the initial information there are m one-of clauses
of following form: one-of(at(oi, p1), . . . , at(oi, pn)) for
i = 1, . . . , m. The robot can move between places by the
actions up, down, left, and right; pickup objects at dif-
ferent locations by the action pickup(oi, pj); hold an object
holding(oi).

The new problem, denoted by or-dispose, is as follows.
In this new problem, each object is associated with a type,
i.e., each oi is an object type, e.g. pens, books ... The predi-
cate at(oi, pj) now means “there exists an object of type oi

at place pj .” Similarly, holding(oi) means “holding some
object(s) of type oi.” The action pickup(oi, pj) allows the
robot to pickup all the objects of type oi at place pj . Sup-
pose, initially, all we know about the objects is that for each
object type oi, there is at least one instance of oi lying in
some places pj’s. In effect, we replace the one-of state-
ment one-of(at(oi, p1), . . . , at(oi, pn)) by the or statement
or(at(oi, p1), . . . , at(oi, pn)) in the domain specification of
dispose.

Observe that, when one-of relaxation is applied, the de-
scription of the initial state of dispose becomes exactly the
same as that of or-dispose. Hence, the size of the CNF state
representing the initial belief state does not change from dis-
pose to or-dispose if the one-of relaxation is applied. As

175

Problem CNF DNF CPA T0 CFF POND

or-coins-10 0.65/35 OM OM 0.032/26 0.11/38 0.5/46
or-coins-20 1.1/114 OM OM 0.15/107 15.9/143 86/121
or-coins-21 1486/7321 OM OM F TO TO
or-ds-4-3 0.86/93 81/117 OM 0.26/122 0.46/73 63.6/126
or-ds-4-5 1.15/155 OM OM 1.15/145 1.9/107 OM
or-ds-8-3 27.85/392 OM OM 278/761 TO OM
or-ds-8-5 31.9/537 OM OM F TO OM
or-ds-10-9 222/1543 OM OM F TO OM
or-1d-3-2 0.74/60 1.15/32 OM F TO 6.17/50
or-1d-3-4 1.67/60 420/32 OM F TO OM
or-1d-6-2 10.8/492 190/150 OM F TO OM
or-1d-6-3 18.1/492 OM OM F TO OM
or-1d-10-5 1240/3806 OM OM F TO OM
or-push-4-1 0.94/41 0.83/61 52/49 0.38/78 0.26/46 1.86/65
or-push-4-3 1.06/105 115/147 OM 11/189 0.8/48 125/120
or-push-8-1 26.6/163 27.2/134 OM 2.8k/367 TO TO
or-push-8-2 29.8/396 OM OM TO TO TO
or-push-10-7 259/1221 OM OM TO TO TO

Table 4: New Challenging Domains
such, CNF will be able to solve the new problems without
difficulty.

The new set of problems contains also the or-version of
other problems such as or-coins, or-dispose, or-1-dispose,
and or-push.

Table 4 displays the results of all planners on the set of
new problems. Due to the extremely large size of disjunc-
tive normal form formulae representing belief states in these
problems, a DNF belief state representation based planner,
e.g. DNF and CPA, appears to have very poor performance
on these problems. In these problems, the one-of combina-
tion technique is not applicable and therefore DNF and CPA
perform poorly on these problems. On the contrary, due to
the capability of maintaining a compact size of CNF formu-
lae representing belief states, CNF outperforms impressively
not only DNF belief state representation based planners, but
also all other competitive state-of-the-art conformant plan-
ners. It is worth mentioning that there is no significant differ-
ence between the performance of any other planner on these
problems in comparison with that on the original problems.
Size of CNF-states
We define the size of a CNF-state the total of the size of
every non-unit clause in the CNF-state. The experiments re-
veal that the size of successor CNF-states keep decreasing in
most problems. The reason is that updating a CNF-state by
a literal � removes all the clauses containing � or �̄. On the
other hand, most clauses in (ϕ� − �) × (ϕ�̄ − �̄) are usually
trivial or subsumed by another clause in the formula. Tables
5 and 6 report the size of the initial CNF-state and the av-
erage size of the generated CNF-states for several instances.
Table 6 also shows the effectiveness of the one-of relaxation
by additionally reporting those sizes for some problems in
Table 3 when the one-of relaxation is not used.

Conclusion and Future Work

In this paper, we introduce a new conformant planner, CNF,
which uses a special type of CNF formulae to represent
belief states. The overall performance of CNF on sev-
eral benchmark problems shows that it is competitive with

Problem Init./Avg. Problem Init./Avg. Problem Init./Avg.

block-1 47/39 cc-99-49 12/6 sortnet-10 0/43
block-2 105/145 cc-119-59 12/6 sortnet-15 0/87

bomb-m-n 0/0 lng-4-3-3 768/57 sortnum-5 0/28
uts-c-3 132/2820 lng-7-3-2 4802/134 sortnum-7 0/102

Table 5: Size of CNF-states: Initial vs. Average
Problem Relaxation No Relax. Probem Relaxation No Relax.
coins-20 54/28 402/200 ds-8-5 320/121 20k/4.7k
coins-22 170/45 1.7k/1.3k ds-10-3 300/99 30k/5.7k
1d-3-3 27/26 243/446 push-4-5 80/22 1280/165
1d-6-2 72/25 2592/511 push-8-3 192/64 12k/203

Table 6: Size of CNF-states: Applying Relax. vs. Not Applying
other state-of-the-art conformant planners in many domains.
More importantly, the new planner provides a better scala-
bility than all other planners; it can solve larger instances
of many problems that were challenging to previous confor-
mant planners. We propose a new technique, called one-of
relaxation, aimed at reducing the size of the initial belief
state. We also propose a new set of benchmarks that pro-
vides new challenges to conformant planners.

Although CNF displays good performance, it does have
some weaknesses which need to be addressed. First of all,
the overhead incurred in the computation of the × function
is sometimes larger than the actual time spent for searching
for a solution. Furthermore, an improved heuristic is also de-
sirable. Finally, the performance of CNF and DNF suggests
that a combination of the two techniques into one planner
might yield interesting result.

References
Brafman, R., and Hoffmann, J. 2004. Conformant planning
via heuristic forward search: A new approach. In ICAPS,
355–364.
Bryant, R. E. 1992. Symbolic boolean manipulation with
ordered binary decision diagrams. ACM Computing Surveys
24(3):293–318.
Bryce, D.; Kambhampati, S.; and Smith, D. 2006. Planning
Graph Heuristics for Belief Space Search. JAIR 26:35–99.
Cimatti, A.; Roveri, M.; and Bertoli, P. 2004. Confor-
mant Planning via Symbolic Model Checking and Heuristic
Search. AIJ 159:127–206.
Palacios, H., and Geffner, H. 2007. From Conformant into
Classical Planning: Efficient Translations that may be Com-
plete Too. In ICAPS.
Smith, D., and Weld, D. 1998. Conformant graphplan. In
AAAI, 889–896.
To, S. T.; Pontelli, E.; and Son, T. C. 2009. A Conformant
Planner with Explicit Disjunctive Representation of Belief
States. In Proceedings of the 19th International Conference
on Planning and Scheduling (ICAPS).
Tran, D.-V.; Nguyen, H.-K.; Pontelli, E.; and Son, T. C.
2009. Improving performance of conformant planners:
Static analysis of declarative planning domain specifica-
tions. In PADL, LNCS 5418, 239–253. Springer.

176

