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Abstract

Evolutionary trees of species can be reconstructed by pair-
wise comparison of their entire genomes. Such a comparison
can be quantified by determining the number of events that
change the order of genes in a genome. Earlier Erdem and
Tillier formulated the pairwise comparison of entire genomes
as the problem of planning rearrangement events that trans-
form one genome to the other. We reformulate this problem
as a planning problem to extend its applicability to genomes
with multiple copies of genes and with unequal gene con-
tent, and illustrate its applicability and effectiveness on three
real datasets: mitochondrial genomes of Metazoa, chloroplast
genomes of Campanulaceae, chloroplast genomes of various
land plants and green algae.

Introduction

In biology, evolutionary trees (or phylogenies) can
be reconstructed from the comparison of genomes of
species (Sankoff and Blanchette 1998). One metric of evo-
lutionary distance for this purpose is the number of rear-
rangement events such as transpositions and inversions to
convert one genome to the other where a smaller number of
such events implies a closer lineage. A rearrangement event
is a genome-wide mutation that changes the order, orienta-
tions and/or existence of genes in a genome. Finding the
minimum number of these rearrangement events between
genomes is called the genome rearrangement problem and
it is conjectured to be NP-hard (Bylander 1994).

We consider the genome rearrangement problem as a
planning problem as in (Erdem and Tillier 2005): one of
the genomes is represented as the initial state and the other
one as the goal state; the planner is prompted to find a se-
quence of at most k actions (rearrangement events) that leads
the initial state to the goal state. As in (Erdem and Tillier
2005), we describe the genome rearrangement problem in
ADL (Pednault 1989), and use TLPLAN (Bacchus and Ka-
banza 2000) to compute solutions. Our formulation of the
genome rearrangement problem differs from that of (Erdem
and Tillier 2005) in the following ways. First of all, it ex-
tends the descriptions of genomes to be able to handle du-
plicate genes—genes that occur multiple times in a single
genome. Accordingly, it not only extends the descriptions of
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transpositions, inversions, inverted transpositions (transver-
sions) but also introduces new operators for insertions and
deletions. The temporal control information is described
as preconditions of events. As observed in (Rintanen 2000;
Gabaldon 2003), such a modification improves the compu-
tational efficiency. Also, the goal-check is done in a more
computationally-efficient way by means of a biologically
motivated measure, called the breakpoint distance, which
does not require us to check the whole gene orders.

The main contribution of our work are as follows:
• We have introduced a computational method that can

solve the genome rearrangement problem with duplicates
and unequal gene content. Although the genomes of many
species (in particular, the chloroplast genomes) contain
duplicate genes, no existing genome rearrangement soft-
ware (e.g., GRIMM (Tesler 2002), GRAPPA (Moret et al.
2001), DERANGE 2 (Blanchette, Kunisawa, and Sankoff
1996)) can handle them.

• One method to handle duplications without loss of infor-
mation is to treat them as different genes and solve the
problem for each possible relabeling of these genes (Cui
et al. 2006); however, there are exponentially many pos-
sible relabelings in the number of occurrences of the du-
plicate genes. We have introduced a new method to han-
dle duplicates without such enumeration of relabelings,
by identifying the duplicates upfront and introducing a 0-
cost auxiliary action.

• We have illustrated the applicability and the effective-
ness of our planning-based approach to genome re-
arrangement on three sets of real data: mitochon-
drial genomes of Metazoa (animals with a nervous sys-
tem, and muscles) (Blanchette, Kunisawa, and Sankoff
1999), chloroplast genomes of Campanulaceae (flower-
ing plants) (Cosner et al. 2000), and chloroplast genomes
of various land plants and green algae (Cui et al. 2006).
Our results conform with the most recent and widely ac-
cepted results.

Genome Rearrangement Problem

The genome of a single-chromosome organism can be repre-
sented by circular configurations of numbers 1, . . . , n, with
a sign + or − assigned to each of them. For instance, Fig-
ure 1(a) shows a genome for n = 5. Numbers ±1, . . . ,±n
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Figure 1: (a) A genome; (b) a transposition of (a); (c) an
inversion of (b); (d) a transversion of (c).

will be called labels. Intuitively, a label corresponds to a
gene, and its sign corresponds to the orientation of the gene.
By (l1, . . . , ln) we denote the genome formed by the la-
bels l1, . . . , ln ordered clockwise. For instance, each of the
expressions (1, 2,−5,−4,−3), (2,−5,−4,−3, 1), . . . de-
notes the genome in Figure 1(a).

About genomes g, g′ we say that g′ is a transposition of g
(or can be obtained from g by a transposition) if, for some
labels l1, . . . , ln and numbers k, m (0 < k, m ≤ n),

g = (l1, . . . , ln)
g′ = (lk, . . . , lm, l1, . . . , lk−1, lm+1, . . . , ln).

For instance, the genome in Figure 1(b) is a transposition of
the genome in Figure 1(a).

Similarly, about genomes g, g′, we say that g′ can be ob-
tained from g by a deletion (or g can be obtained from g′ by
an insertion) if, for some labels l1, . . . , ln and a number m
(0 < m ≤ n),

g = (l1, . . . , ln)
g′ = (l1, . . . , lm−1, lm+1, . . . , ln).

Other events, inversions and transversions, can be defined as
in (Erdem and Tillier 2005).

We say that there is a breakpoint between two genomes
g and g′ at the pair l, l′ if g includes the pair l, l′ and g′
includes neither the pair l, l′ nor the pair −l′,−l. For in-
stance, there are 3 breakpoints between (1, 2, 3, 4, 5) and
(1, 2,−5,−4, 3). The number of breakpoints between two
genomes is called their breakpoint distance.

The genome rearrangement problem can be defined as
follows: given two genomes g and g′, and a positive inte-
ger k, decide whether g′ can be obtained from g by at most
k successive events. We view the genome rearrangement
problem as a planning problem:

given two genomes g and g′, and a nonnegative integer
k, find a sequence of at most k events that reduces the
number of breakpoints between g and g′ to 0.

Note that this planning problem is different from the one
described in (Erdem and Tillier 2005) in that both genomes
are specified in the initial world, and that the goal is specified
in terms of the number of breakpoints.

Representing the Planning Problem

We represent a genome by specifying the clockwise order
of its labels, for instance, by a fluent of the form cw(L, L1)
which expresses that label L1 comes after label L in clock-
wise direction. However, such a representation alone is not
sufficient to describe genomes with duplicate genes. For
example, the genome (1, 2, 3, 2, 4) can be represented by
the atoms: cw(1, 2), cw(2, 3), cw(3, 2), cw(2, 4), cw(4, 1).
Here, (1, 2, 4) can be erroneously considered as a subse-
quence of the genome. For this reason, we treat duplicate
genes as different genes but also keep track of them. To
identify which genes are duplicates, we introduce a predi-
cate duplicate. For example, the genome (1, 2, 3, 2, 4) can
be represented by the atoms: cw(1, 2), cw(2, 3), cw(3, 5),
cw(5, 4), cw(4, 1), duplicate(2, 5).

We view the genome rearrangement problem as a plan-
ning problem, as described in the previous section. Since
both genomes are described in the initial state, we intro-
duce two fluents to describe their gene orders: cw(L, L1)
and other(L, L1). The rearrangement events are applied to
the genome described by cw atoms. To describe the goal,
we introduce a functional fluent bpcount to denote the num-
ber of breakpoints: initially, it is counted; after that, at each
step, it is decreased by the application of a rearrangement
event. For instance, suppose that we are given two genomes,
(1, 2, 3, 2, 4) and (1, 4,−3,−2). In the corresponding plan-
ning problem, the initial state is described as follows:
(define (initial0)

(cw 1 2) (cw 2 3) (cw 3 5)
(cw 5 4) (cw 4 1) (duplicate 2 5)
(other 1 4) (other 4 -3)
(other -3 -2) (other -2 1))

and the goal as follows:
(define (goal0) (= (bpcount) 0))

in the language of TLPLAN. The maximum plan length k is
set to 3 by the fact
(set-initial-facts (= k 3)) .

With the description of this planning problem
(set-initial-world (initial0))
(set-goal (goal0))

TLPLAN computes the following 2-step plan
(transvert 2 3 4) (delete 5)

according to which the genome (1, 2, 3, 2, 4) can be trans-
formed to (1, 4,−3,−2) as follows: first 2, 3 is inverted and
then inserted after 4, next the first appearance of 2 is deleted.
Here, by default, the cost of each action is 1, and depth-best-
first search strategy is applied.

Representing Rearrangement Events

We introduce five actions to describe transpositions, inver-
sions, transversions, insertions and deletions, and represent
them as ADL-style operators in the language of TLPLAN.
These operators are applied to the genome described by cw.

Consider the action transpose(X, Y, Z) (“the gene se-
quence starting with the gene X and ending at the gene Y
is inserted after gene Z”) that describes a transposition. We
represent this action in the language of TLPLAN as follows.
Let us start with its straightforward formulation in (Erdem
and Tillier 2005):
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(def-adl-operator (transpose ?x ?y ?z)
; preconditions
(pre (?x) (label ?x)

(?y) (label ?y)
(?z) (label ?z)
(cantranspose ?x ?y ?z))

; insertion of ?x ?y after ?z
; in (?x1,?x..?y,?y1..?z,?z1,...)
; is (?x1,?y1..?z,?x..?y,?z1,...)
(exists (?x1) (cw ?x1 ?x)

(?y1) (cw ?y ?y1)
(?z1) (cw ?z ?z1)
(and (add (cw ?x1 ?y1) (cw ?z ?x)

(cw ?y ?z1))
(del (cw ?x1 ?x) (cw ?y ?y1)

(cw ?z ?z1))))).

where (cantranspose ?x ?y ?z) is defined as follows:
(def-defined-predicate (cantranspose ?x ?y ?z)

(and (< (plan-length) (k))
(not (= ?x ?z)) (not (= ?y ?z))
(not (cw ?z ?x)) (notbetween ?z ?x ?y))).

In (Erdem and Tillier 2005) the breakpoint heuristic—the
number of breakpoints should decrease at the next step—
is described as part of temporal control. As mentioned in
the introduction, we enforce this heuristic by defining the
preconditions cleverly so as to reduce a breakpoint in each
action. For example, we extend the preconditions of trans-
position with the following conditions:
(not (goodbefore ?x)) (not (goodafter ?y))
(not (goodafter ?z))
(or (goodlink ?z ?x)

(exists (?t) (cw ?z ?t) (goodlink ?y ?t)))

The first three conditions prevent a transposition from
breaking any existing links that are not breakpoints: if ?x1
?x, ?y ?y1, or ?z ?z1 is a good link (i.e., it is a subse-
quence of the gene order of the other genome described by
other) then a transposition is not applicable. The disjunc-
tion enforces a transposition to relieve at least one break-
point by forming a good link. Accordingly, the effects of
transposition are modified to take into account the change in
the number of breakpoints:
(add (= (bpcount)

(- (bpcount)
(relievedbp-transpose ?x ?y ?z))))

where relievedbp-transpose calculates the number of
breakpoints that will be eliminated by a transposition. We
define relievedbp-transpose as follows:
(def-defined-function

(relievedbp-transpose ?x ?y ?z)

(local-vars ?count)
(and (:= ?count 0)

(implies (goodlink ?z ?x)
(:= ?count (+ 1 ?count)))

(exists (?t) (cw ?z ?t)
(implies (goodlink ?y ?t)

(:= ?count (+ 1 ?count))))
(exists (?x1) (cw ?x1 ?x)

(?y1) (cw ?y ?y1)
(implies (goodlink ?x1 ?y1)

(:= ?count (+ 1 ?count))))
(:= relievedbp-transpose ?count)))

This function counts the number of new good links formed
after a transposition. It is important to emphasize here
that, with relievedbp-transpose, breakpoints are not
counted from the scratch at each step: they are counted ini-
tially, and after that the number of breakpoints is decreased
by each applied operator.

We describe the other events similarly. Their descriptions
will be provided in an electronic appendix.

Improvements over the Representation

We have improved the representation of the planning domain
even further to get more accurate solutions more efficiently
(in terms of computation time and the memory used).

Discarding redundant labels: To improve the computa-
tional efficiency, we can remove redundant labels along the
way. For instance, a label is redundant if it has formed the
two good links as expected, i.e., it is in its goal position.
Redundant labels can be discarded by modifying the delete
effects of the operators. Discarding redundant labels reduce
the search space since all operators are using the label infor-
mation in their preconditions. With this method, the com-
putation time has decreased drastically and some large in-
stances (e.g., Chlorella and Chlamydomonas) that required
too much memory could be solved.

Swapping duplicates: Simply renaming the duplicate
genes is something we are trying to avoid since different re-
namings can lead to different length plans. To be able to find
short plans, we introduce an auxiliary action, swap(x, y),
for swapping duplicates. The idea is to assign a cost of 1 to
every action, and 0 cost to swap, and then to try to find a
plan of minimum cost. In the formulation of swap, we en-
force it to relieve a breakpoint, so there is no risk of getting
stuck in an infinite loop.

Assigning priorities to events: To get more accurate re-
sults we incorporate biological information in search by as-
signing priorities to operators in our formulation. For in-
stance, transpositions may occur more often in some species,
then we can define its priority taking into account also the
number of relieved breakpoints. Assigning higher priori-
ties to events that are observed to occur more often has led
to more accurate results (e.g., grouping of chordates with
echinoderms) in mitochondrial genomes of Metazoa. As-
signing priorities has a similar effect of guiding the search
by assigning costs to events as in (Erdem and Tillier 2005),
under the same depth-first search strategy.

Experimental Results

Before we solve the genome rearrangement problem in-
stances, we apply some preprocessing to reduce their sizes.
First, we apply “safe” deletions (resp. insertions) of genes
in the genome g described by cw atoms: if a gene is present
in g (resp. g′) only, we delete (resp. insert) it. After that, we
apply “condensing”: we identify the common subsequences
in the genomes and replace them by some new identifiers.

We have experimented with three sets of data using
TLPLAN: Metazoan mitochondrial genomes (Blanchette,
Kunisawa, and Sankoff 1999), Campanulaceae chloroplast
genomes (Cosner et al. 2000), and chloroplast genomes of
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various land plants and green algae (Cui et al. 2006). Only
in the last data set, genomes are of unequal content with du-
plicate genes.

To analyze the accuracy of our approach, for each data set,
first we have computed a small number of events for each
pair of genomes and constructed a distance matrix, and then
we have constructed a phylogeny using the distance matrix
program NEIGHBOR (Felsenstein 2009).

In all experiments, TLPLAN is run with the depth-best-
first search strategy. The cost of each action is 1 (except
the 0-cost action of swapping duplicates); so the goal is to
find a plan with a small cost (rather than a shortest plan).
The priorities of insertions, deletions, and swaps are much
higher than the other events.

Mitochondrial genomes of Metazoa: Each one of these
11 genomes consists of 36 genes. The priorities of trans-
positions, inversions, transversions are specified as 2, 1, 1
respectively. All 45 plans (each with 1–26 events) are com-
puted in less than 3 minutes. The phylogeny constructed
by NEIGHBOR groups chordates and echinoderms together,
arthropods, molluscs and annelids together; nematodes are
a sister to these two groupings. These results conform with
the results of (Nielsen 2001) based on morphological data.
Groupings of chordates and echinoderms, and molluscs and
annelids also conform with the most widely accepted view
of Metazoan Systematics and Tree of Life, based on the
analysis of molecular data (18S rRNA sequences).

Chloroplast genomes of Campanulaceae: We consider
13 genomes, each with 105 genes. The priorities of trans-
positions, inversions, transversions are specified as 2, 3,
4 respectively (since inversions often occur in chloroplast
genomes). All 66 plans (each with 1–12 events) are com-
puted in less than 1 minute. According to the phylogeny
constructed by NEIGHBOR, the groupings are identical to
the ones in the consensus tree presented in Figure 4 of (Cos-
ner et al. 2000). The major division between the grouping
of Codonopsis, Cyananthus and Platycodon, and the oth-
ers conform with the most recent results (Cosner, Raubeson,
and Jansen 2004) based on the sequence analysis; also this
division corresponds to the distribution of pollen morphol-
ogy characteristics, unlike the previous results.

Chloroplast genomes of land plants and green algae:
These 7 genomes share 85 genes; each genome is of length
87–97. The priorities of transpositions, inversions, transver-
sions are specified as 2, 3, 4 respectively. All 21 plans
(each with 6–47 events) are computed in less than an hour.
(The computation of a phylogeny for these species takes
almost 25 days in (Cui et al. 2006).) The phylogeny
constructed by NEIGHBOR groups Nicotiana and Marchan-
tia with Chaetosphaeridium, thus grouping the land plants
and charophyte algae; it also groups Chlorella and Chlamy-
domonas with Nephroselmis, thus grouping the chlorophyte
algae; Mesostigma is an outlier. These results conform with
the biological evidence based on the analysis of 50 concate-
nated proteins (Cui et al. 2006).

Conclusion
We have introduced a new computational method, based
on AI planning, to solve genome rearrangement problems

with duplicate genes, involving transpositions, inversions,
inverted transpositions, insertions, and deletions. No exist-
ing genome rearrangement software can handle such prob-
lems. We have shown the applicability and the effectiveness
of our planning-based method on real data sets; we have ob-
served that the results are similar to those widely accepted.
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