
The Multi-Round Balanced Traveling Tournament Problem

Richard Hoshino and Ken-ichi Kawarabayashi
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Abstract

Given an n-team sports league, the Traveling Tourna-
ment Problem (TTP) seeks to determine an optimal dou-
ble round-robin schedule minimizing the sum total of
distances traveled by the n teams as they move from
city to city. In the TTP, the number of “rounds” is fixed
at r = 2. In this paper, we propose the Multi-Round
Balanced Traveling Tournament Problem (mb-TTP), in-
spired by the actual league structure of Japanese pro-
fessional baseball, where n = 6 teams play 120 intra-
league games over r = 8 rounds, subject to various
constraints that ensure competitive balance. These ad-
ditional balancing constraints enable us to reformulate
the 2k-round mb-TTP as a shortest path problem on a
directed graph, for all k ≥ 1. We apply our theoretical
algorithm to the 6-team Nippon (Japanese) Professional
Baseball Central League, creating a distance-optimal
schedule with 57836 kilometres of total travel, a 26.8%
reduction compared to the 79067 kilometres traveled by
these six teams during the 2010 regular season.

Motivation
The Traveling Tournament Problem (TTP) is a challenging
topic within the field of sports scheduling that involves tech-
niques in computer science and discrete optimization. The
TTP is a theoretical problem involving an n-team sports
league whose output is a league schedule minimizing the
total distance traveled by the n teams. Since its introduction
(Easton, Nemhauser, and Trick 2001), the TTP has emerged
as a popular area of study within the operations research
community due to its incredible complexity, where challeng-
ing benchmark problems remain unsolved.

In certain sports leagues, such as college basketball and
Latin American soccer, each pair of teams plays two games,
with one game scheduled at each team’s home stadium. As
teams must travel long distances to play all of their regular-
season games, finding a schedule that reduces total travel
distance is essential, for both economic and environmen-
tal reasons. The TTP is the correct framework for these
leagues, as the desired output is a distance-optimal double
round-robin schedule.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, for professional baseball leagues, the TTP is not
the correct framework, as teams play against each other mul-
tiple times during the course of a season. Furthermore, cer-
tain sports leagues impose scheduling constraints that go be-
yond the feasibility requirements of the TTP. In light of this,
we propose a generalization of the TTP, the Multi-Round
Balanced Traveling Tournament Problem (mb-TTP). In ad-
dition to extending the TTP to multiple rounds, we present
additional “balancing” constraints that increase the fairness
of a schedule, motivated by the actual structure of the Nip-
pon Professional Baseball (NPB) league in Japan, where two
leagues of n = 6 teams play 120 intra-league games over 8
rounds against 5 teams. We show that the NPB league sched-
ule can be modeled by the mb-TTP.

In this paper, we present an algorithm that solves the 2k-
round mb-TTP for any k ≥ 1, by reformulating it as a short-
est path problem on a digraph. We then apply our graph-
theoretic algorithm to the NPB Central League to produce
a distance-optimal schedule that reduces the total distance
traveled by 26.8% compared to the 2010 season schedule.
We conclude the paper with directions for future research.

The Multi-Round Balanced TTP
Let there be n teams in a sports league, where n is even.
Let D be the n× n distance matrix, where entry Di,j is the
distance between the home stadiums of teams i and j. By
definition, Di,j = Dj,i for all 1 ≤ i, j ≤ n, and all diagonal
entries Di,i are zero.

Team C T D B G S
C 0 323 488 808 827 829
T 323 0 195 515 534 536
D 488 195 0 334 353 355
B 808 515 334 0 37 35
G 827 534 353 37 0 7
S 829 536 355 35 7 0

Table 1: Distance matrix for the NPB Central League (in km)

For example, the distance matrix for the NPB Central
League is given in Table 1. Each of the six teams (Hi-
roshima Carp, Hanshin Tigers, Chunichi Dragons, Yoko-
hama Baystars, Yomiuri Giants, Tokyo Swallows) is repre-
sented by the first letter of their team name.

106

Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling



In the TTP, a double round-robin schedule is sought,
where each pair of teams plays twice during a tournament
lasting 2(n − 1) days, with each team having one game
scheduled per day. As the context for our paper is baseball,
we will now use sets rather than days to refer to the length
of a tournament. Unlike other sports (e.g. football, soc-
cer, hockey, basketball) where a team visits another city to
play a single match, baseball leagues always involve a team
visiting another city to play multiple games. To avoid any
confusion, we will now re-define the TTP to the scheduling
of 2(n − 1) sets, where each set consists of a fixed number
of games played on consecutive days.

The objective is to minimize the total distance traveled by
the n teams, with the requirement that each team begins the
tournament at home, and returns home after having played
their last away set. When a team is scheduled for a road
trip consisting of multiple away sets, the team doesn’t return
to their home city but rather proceeds directly to their next
away venue. In many ways, the TTP is a variant of the well-
known Traveling Salesman Problem, asking for an optimal
schedule linking venues that are close to one another.

In the TTP, a double round-robin schedule must satisfy
the following conditions:

(a) The each-venue condition: Each pair of teams must play
two sets, once in each other’s home venue.

(b) The at-most-three condition: No team may have a home
stand or road trip lasting more than three sets.

(c) The no-repeat condition: A team cannot play against the
same opponent in two consecutive sets.

To illustrate, Table 2 lists the first ten sets of the NPB
Central League for the 2010 season, where home teams are
marked in bold. We see that this is a double round-robin
schedule satisfying all of the above conditions.

Team 1 2 3 4 5 6 7 8 9 10
Carp D T G S B S D T G B

Tigers B C D G S G B C D S
Dragons C S T B G B C S T G
Baystars T G S D C D T G S C
Giants S B C T D T S B C D

Swallows G D B C T C G D B T

Table 2: First ten sets of the 2010 Central League Schedule.

Given a feasible solution of the TTP, for each team we
define a trip to be a pair of consecutive sets not occurring in
the same city (i.e., any situation where that team doesn’t play
at home in sets s and s+ 1, and therefore has to travel from
one venue to another.) For the case n = 6, each team plays
five home sets and five away sets. Given that a home stand
is at most three sets, it is easy to see that each team must
make at least seven trips. Thus, in any feasible solution of
the TTP, at least 7×6 = 42 total trips are required by the six
teams. For the n = 6 case, this lower bound is known to be
43 (Rasmussen and Trick 2007). Intuitively, the solution of
the TTP that minimizes the objective function of total travel
distance will have around 43 trips. Table 2 has 51 trips, and
is far from optimal!

The TTP involves both integer programming to prevent
excessive travel, as well as constraint programming to create
a schedule of home and away games that meet all the feasi-
bility requirements. While each problem is simple to solve
on its own, its combination has proven to be extremely chal-
lenging, even for small cases such as n = 6 and n = 8 (Eas-
ton, Nemhauser, and Trick 2001). The TTP has attracted
much research in recent years, with sophisticated heuristics
being developed from various areas of discrete optimization.
For details, we refer the reader to two comprehensive survey
articles on sports scheduling (Kendall et al. 2010) and the
TTP (Rasmussen and Trick 2008).

In all of these papers, various algorithms have improved
the upper and lower bounds for the n-team TTP. While
there are several benchmark sets, the most common ones
are based on the teams from MLB’s National League (Eas-
ton, Nemhauser, and Trick 2001). In addition to the trivial
NL4 case, there has been much analysis conducted on NL6,
NL8, NL10, NL12, NL14, and NL16. We remark that in
almost all of these papers, a technique was introduced to
improve upon the known bounds rather than to prove opti-
mality, due to the computational complexity of the problem
for n > 6. The exceptions are two recently-published papers
that successfully determined the optimal solution of NL8 us-
ing a novel branch-and-price approach (Irnich 2010) and a
depth-first search with upper bounding that stored expensive
heuristic estimates in memory to significantly reduce run-
ning time (Uthus, Riddle, and Guesgen 2009). Recently, it
was shown that the TTP is NP-complete (Thielen and West-
phal 2010), thus resolving a long-standing conjecture.

Define a block to be a feasible solution of the TTP, i.e.,
a tournament lasting 2(n − 1) sets. We say that a block
consists of two rounds, with the first round being the first
n− 1 sets and the second round being the last n− 1 sets. In
our multi-round extension, a tournament will have k blocks,
which is equivalent to having 2k rounds, or 2k(n− 1) sets.

While much research has been conducted on the Travel-
ing Tournament Problem, there has been no consideration
given to tournaments lasting longer than two rounds. Con-
ceivably, this is due to the computational complexity of ana-
lyzing a tournament lasting beyond 2(n−1) days. However,
a multi-round tournament is the correct framework for pro-
fessional baseball leagues, and so the design of an optimal
schedule for NPB must take this into account. In addition to
this multi-round extension (from r = 2 rounds to r = 2k
rounds for any k ≥ 1), we propose two additional “balanc-
ing” constraints inspired by the actual league structure of
professional baseball in Japan.

First, the NPB schedule requires each pair of teams to
play exactly one set during each (n − 1)-set round, which
is stronger than the each-venue condition that only requires
the two sets to be played sometime during a two-round
block. As in the each-venue condition, these two sets must
be played at different locations, with one set held at each
team’s home venue. We note that this condition is similar
but not identical to the more stringent mirrored condition of
Latin American soccer leagues (Ribeiro and Urrutia 2004),
which has the rule that if team i hosts team j in set s (where
1 ≤ s ≤ n− 1), then team j hosts team i in set s+ n− 1.

107



Secondly, the NPB schedule requires a balance in the
number of home and away sets played by each team at any
point in the season. More formally, for each ordered pair
(i, s) with 1 ≤ i ≤ n and 1 ≤ s ≤ 2k(n − 1), define Hi,s

and Ri,s to be the number of home and away sets played by
team i within the first s sets. By definition, |Hi,s+Ri,s| = s.
In the NPB, we require that |Hi,s − Ri,s| ≤ 2 for all pairs
(i, s). For example, under this requirement a team cannot
start or end a season with three consecutive home sets, en-
suring that no team gains a momentum-increasing advantage
at a key point in the season.

These two conditions are summarized below.
(d) The each-round condition: Each pair of teams must play

exactly once per round, with their matches in rounds 2t−1
and 2t taking place at different venues (for all 1 ≤ t ≤ k).

(e) The diff-two condition: |Hi,s − Ri,s| ≤ 2 for all (i, s)
with 1 ≤ i ≤ n and 1 ≤ s ≤ 2k(n− 1).
In the following section, we present an algorithm to solve

the the 2k-round mb-TTP satisfying conditions (a)-(e). As
mentioned above, condition (d) automatically implies (a).
It is straightforward to check that Table 2 satisfies all five
conditions of the mb-TTP for k = 1. When we apply our
algorithm to the NPB Central League, we will set k = 4 and
n = 6, since the six teams each play 2k(n− 1) = 40 sets of
three intra-league games over r = 2k = 8 rounds.

The each-round condition allows us to apply the theory
of perfect matchings, since each five-set round represents
a one-factorization of the complete graph K6. And as we
will demonstrate in the following section, the diff-two con-
dition allows us to define a simple “concatenation matrix”
with just four columns to quickly verify the no-repeat and
at-most-three conditions whenever two ten-set blocks are
concatenated. Therefore, adding these two balancing con-
straints actually simplifies our analysis and makes the algo-
rithm computationally feasible for the case n = 6.

We now present our algorithm for solving the 2k-round
mb-TTP, for any fixed k ≥ 1, by reformulating it as a short-
est path problem on a directed graph. We will create a source
node and a sink node and link them to numerous vertices
in a graph whose (weighted) edges represent the possible
blocks that can appear in an optimal schedule. We then ap-
ply Dijkstra’s Algorithm (Dijkstra 1959) to find the path of
minimum weight between the source and the sink, which
is an O(|V | log |V | + |E|) graph search algorithm that can
be applied to any graph or digraph with non-negative edge
weights.

Shortest Path Algorithm for the mb-TTP
The mb-TTP can be formulated as an IP problem with
2k(n − 1) time slots with each slot representing a set. But
such an IP would have k times as many variables as the orig-
inal IP formulation for the 2-round TTP, and even for the
n = 6 case, may not be computationally feasible for large k.
As a result, we propose a graph-theoretic approach to solv-
ing the 2k-round mb-TTP by reformulating the optimization
problem into a shortest path problem on a digraph. While
this methodology is more computationally laborious if k is
small, its utility will be demonstrated for large values of k.

To solve the mb-TTP, we first compute the set of blocks
that can appear in a distance-optimal tournament. We then
introduce a simple “concatenation matrix” to check whether
two pre-computed blocks can be joined together to form
a multi-block schedule, without violating the at-most-three
and no-repeat conditions. As we will explain, to determine
whether blocks B1 and B2 can be concatenated, it suffices
to check just the last two columns of B1 and the first two
columns of B2.

By definition, a block is a two-round tournament satis-
fying the conditions of the mb-TTP, with each of the n
teams playing 2(n − 1) sets of games. Each column of
a block represents a set consisting of n

2 different matches,
with each match specifying the two teams as well as the sta-
dium/venue. Thus, a match identifies the home team and
away team, not just each team’s opponent.

For any column in a block, there are
(

n
n/2

)
ways to select

the home teams. Also there are
(

n
n/2

)
·
(
n
2

)
! ways to specify

the matches of any column, since there are
(
n
2

)
! ways to

map any choice of the n
2 home teams to the unselected n

2
away teams to decide the set of n

2 matches. Hence, there are
m =

(
n

n/2

)2 · (n2 )! different ways we can specify the home
teams of one column and the matches of another column.
For n = 6, we have m =

(
6
3

)2 × 3! = 2400.
There are m ways that the first two columns of a block can

be chosen as described above, with the first column listing
matches and the second column listing home teams. Now
use any method, such as a lexicographic ordering, to index
these m options with the integers from 1 to m. By symme-
try, there are m different ways we can specify the last two
columns of a block, with the last column listing matches and
the second-last column listing home teams. Thus, we use the
same scheme to index these m options. To avoid confusion,
we write the home teams column in binary form, with 1 rep-
resenting a home game and 0 representing an away game.

As an example, consider Table 2. For the 6-team NPB
Central League, there exists some integer p (with 1 ≤ p ≤
2400) that is the index of the instance where the matches
column is (D,B,C,T,S,G)T and the home teams column
is (1, 0, 0,1, 0,1)T . Similarly, there exists some q (with
1 ≤ q ≤ 2400) that is the index of the instance where the
two columns are (B,S,G,C,D,T)T and (0,1, 0,1,1, 0)T .
Table 2 is a block for which the first two columns have index
p and the last two columns have index q.

For each pair (u1, u2), with 1 ≤ u1, u2 ≤ m, define
Cu2,u1

to be the n × 4 concatenation matrix where the first
two columns list the home teams and matches with index u2,
and the next two columns list the matches and home teams
with index u1. For the indices p and q from the previous
paragraph, we have

Cq,p =


0 B D 1
1 S B 0
0 G C 0
1 C T 1
1 D S 0
0 T G 1

 .

108



We now explain the role of m and Cu2,u1 in the construc-
tion of our directed graph. Let G consist of a source vertex
vstart, a sink vertex vend, and vertices xt,u and yt,u defined
for each 1 ≤ t ≤ k and 1 ≤ u ≤ m.

Figure 1: Reformulation of mb-TTP as a shortest path problem.

We now describe how these edges are connected, with a
pictorial representation of G in Figure 1. For notational sim-
plicity, denote v1 → v2 as the directed edge from v1 to v2.

(a) For each 1 ≤ u ≤ m, add the edge vstart → x1,u.

(b) For each 1 ≤ u ≤ m, add the edge yk,u → vend.

(c) For each 1 ≤ t ≤ k, and for each 1 ≤ u1, u2 ≤ m, add
the edge xt,u1 → yt,u2 iff there exists a (feasible) block
for which the first two columns have index u1 and the last
two columns have index u2.

(d) For each 1 ≤ t ≤ k − 1, and for each 1 ≤ u1, u2 ≤ m,
add the edge yt,u2

→ xt+1,u1
iff the concatenation matrix

Cu2,u1
has no row with four home sets, no row with four

away sets, and no row with the same opponent appearing
in Columns 2 and 3.

The following theorem shows that the mb-TTP can be re-
formulated in a graph-theoretic context, for any k ≥ 1.

Theorem 1 Every feasible solution of the mb-TTP can be
described by a path from vstart to vend in graph G. Con-
versely, any path from vstart to vend in G corresponds to a
feasible solution of the mb-TTP.

Proof By the definition of G, any path from vstart to vend
has length 2k+1, and is of the form P = vstart → x1,p1 →
y1,q1 → x2,p2 → y2,q2 → . . .→ xk,pk

→ yk,qk → vend.
We first show that P corresponds to a schedule that is

a feasible solution of the mb-TTP. For each 1 ≤ t ≤ k,
let Bt be any block for which the first two columns have
index pt and the last two columns have index qt. By part
(c) of our construction, since xt,pt

→ yt,qt is an edge of G,
such a block Bt must necessarily exist. Since each Bt is a
(feasible) block, all of the balancing constraints of the mb-
TTP hold within that block: each pair of teams plays exactly
once per round with one match at each venue, no team has a
home stand or road trip lasting more than three sets, a team
does not play the same opponent in consecutive sets, and
|Hi,s −Ri,s| ≤ 2 for all 1 ≤ i ≤ n and 1 ≤ s ≤ 2(n− 1).

We claim that B1, B2, . . . , Bk, the concatenation of these
k blocks, is a feasible solution of the mb-TTP. Clearly each
team plays 2k(n− 1) sets of games, and each pair of teams
plays once per round with their matches in rounds 2t − 1

and 2t taking place at different venues (for all 1 ≤ t ≤ k).
Since each team plays n − 1 home sets and n − 1 away
sets in every block, we have Hi,2t(n−1) = Ri,2t(n−1) for all
1 ≤ t ≤ k. This implies that |Hi,s − Ri,s| ≤ 2 for all 1 ≤
i ≤ n and 1 ≤ s ≤ 2k(n− 1), since this difference function
|Hi,s−Ri,s| resets to 0 at the end of every block. Therefore,
the each-round and diff-two conditions are satisfied.

To complete our claim, we must justify that the at-most-
three and no-repeat conditions are not violated. Based on
the previous paragraph, a violation can only be created in
the concatenation of two blocks, specifically in one of the
following four situations:

(1) The last column of block Bt matches up with the first col-
umn of block Bt+1 in at least one row, i.e., there exists
some team that plays the same opponent in sets 2t(n− 1)
and 2t(n− 1) + 1, thereby violating the no-repeat condi-
tion.

(2) Some row of Bt ends with two home (away) sets and
the same row of Bt+1 begins with two home (away)
sets, thereby violating the at-most-three condition from
set 2t(n− 1)− 1 to 2t(n− 1) + 2.

(3) Some row of Bt ends with three home (away) sets and the
same row of Bt+1 begins with a home (away) set, thereby
violating the at-most-three condition from set 2t(n−1)−2
to 2t(n− 1) + 1.

(4) Some row of Bt ends with a home (away) set and the same
row of Bt+1 begins with three home (away) sets, thereby
violating the at-most-three condition from set 2t(n − 1)
to 2t(n− 1) + 3.
Consider the home teams in the second-last column of Bt,

the matches in the last column of Bt, the matches in the first
column of Bt+1, and the home teams in the second column
of Bt+1. These four columns, representing the sets from
2t(n−1)−1 to 2t(n−1)+2, are precisely the four columns
of the concatenation matrix Cqt,pt+1

. Since the path P in-
cludes the edge yt,qt → xt+1,pt+1

, the matrix Cqt,pt+1
has

no row with four home sets, no row with four away sets, and
no row with the same opponent appearing in Columns 2 and
3. Hence, no team has a four-set home stand or road trip
from set 2t(n− 1)− 1 to 2t(n− 1) + 2, and no team plays
the same opponent in sets 2t(n− 1) and 2t(n− 1)+1. This
proves that neither situations (1) or (2) can occur.

As noted before, Hi,2t(n−1) = Ri,2t(n−1), for all t. If row
i of Bt ends with three consecutive home or away sets, then
|Hi,2t(n−1)−3 − Ri,2t(n−1)−3| = 3 > 2, a contradiction.
Similarly, if row i of Bt+1 begins with three consecutive
home or away sets, then |Hi,2t(n−1)+3 − Ri,2t(n−1)+3| =
3 > 2, a contradiction. This proves that neither situations
(3) or (4) can occur.

We have shown that the concatenation of these k blocks,
namely B1, B2, . . . , Bk, is a feasible solution of the mb-
TTP. To conclude the proof, we establish the converse.

Note that any feasible solution of the mb-TTP can be par-
titioned into k non-overlapping blocks. Let Bt be the tth

block of this feasible solution. For this block Bt, let pt be
the index of the first two columns and let qt be the index of
the last two columns. Since Bt is a (feasible) block, it fol-
lows that each xt,pt

→ yt,qt is an edge in G. Since pairwise

109



blocks can be concatenated without violating the constraints
of the mb-TTP, yt,qt → xt+1,pt+1 in an edge in G for all
1 ≤ t ≤ k − 1. We conclude that P = vstart → x1,p1 →
y1,q1 → x2,p2

→ y2,q2 → . . . → xk,pk
→ yk,qk → vend is

a path in G connecting vstart to vend.

Having constructed our digraph, we now assign a weight
to each edge using the distance matrix D so that the short-
est path (i.e., path of minimum total weight) from vstart to
vend corresponds to the desired solution of the mb-TTP that
minimizes the total distance traveled by the n teams.

For any block, we define its in-distance to be the total
distance traveled by the n teams within that block, i.e., start-
ing from set 1 and ending at set 2(n − 1). Note that the
in-distance does not include the distance traveled by the
teams heading to the venue of set 1 or from the venue of
set 2(n− 1). We will use this definition in part (c) below.

We are now ready to assign the edge weights of G.

(a) For each 1 ≤ u ≤ m, the weight of vstart → x1,u is
the distance traveled by the n

2 teams making the trip from
their home city to the venue of their opponent in set 1.

(b) For each 1 ≤ u ≤ m, the weight of yk,u → vend is the
distance traveled by the n

2 teams making the trip from the
venue of their opponent in set 2k(n − 1) back to their
home city.

(c) For each 1 ≤ t ≤ k, and for each 1 ≤ u1, u2 ≤ m,
the weight of xt,u1

→ yt,u2
is the minimum in-distance

of a block, selected among all blocks for which the first
two columns have index u1 and the last two columns have
index u2.

(d) For each 1 ≤ t ≤ k−1, and for each 1 ≤ u1, u2 ≤ m, the
weight of yt,u2 → xt+1,u1 is the distance traveled by all
the teams that make a trip as they travel from their match
in set 2t(n− 1) to their match in set 2t(n− 1)+1, where
the last two columns of the tth block have index u2 and
the first two columns of the (t+1)th block have index u1.

To illustrate (d), consider the two-block schedule pro-
duced by concatenating two copies of Table 2. Then this
is a feasible solution of the mb-TTP for k = 2, with path
P = vstart → x1,p → y1,q → x2,p → y2,q → vend, having
total weight 1010+15895+1707+15895+1697 = 36204.
The term 1707, representing the weight of edge y1,q → x2,p,
is the distance traveled by the teams from their matches in
set 10 to their matches in set 11. From Table 1, this total is
DC,D +DS,T +DC,T +DD,G +DS,G = 1707.

By this construction, we have produced a weighted di-
graph. For step (c), suppose there exist two blocks B and
B′ for which the first two columns have index u1 and the
last two columns have index u2. If the in-distance of B is
less than the in-distance of B′, then block B′ cannot be a
block in an optimal solution, since we can just replace B′ by
B to create a feasible solution with a lower objective value.
This trivial observation, based on Bellman’s Principle of Op-
timality, allows us to assign the minimum in-distance as the
weight of edge xt,u1

→ yt,u2
, for all 1 ≤ u1, u2 ≤ m.

As a result, we have a digraph G on 2mk + 2 vertices and
at most 2m + (2k − 1)m2 edges, with a unique weight for

each edge. Combined with the previous theorem, we have
established the following.

Theorem 2 Let P = vstart → x1,p1
→ y1,q1 → x2,p2

→
y2,q2 → . . . → xk,pk

→ yk,qk → vend be a shortest path
in G from vstart to vend, i.e., a path that minimizes the total
weight. For each 1 ≤ t ≤ k, let Bt be the block of minimum
in-distance selected among all blocks for which the first two
columns have index pt and the last two columns have index
qt. Then the multi-block schedule S = B1, B2, . . . , Bk, cre-
ated by concatenating these k blocks, is an optimal solution
of the mb-TTP.

Constructing the Digraph
We have shown that the mb-TTP is isomorphic to a finding
the shortest weighted path in the directed graph G. We now
build G for 6-team NPB Central League, applying the dis-
tance matrix from Table 1.

First, note that for steps (c) and (d), these two construc-
tions are independent of t. Thus, to construct the edges
xt,u1 → yt,u2 , it suffices to determine all the edges from
x1,u1

to y1,u2
with the corresponding weights and replicate

that k times. To construct the edges yt,u2
→ xt+1,u1

, it
suffices to determine all the edges from y1,u2

to y2,u1
with

the corresponding weights and replicate that k − 1 times.
Regardless of k, we only need to compute steps (c) and (d)
once, and we will store all of the necessary information in
m × m matrices, which for the n = 6 case would be pre-
computed matrices with dimensions 2400× 2400.

To perform step (c) of the construction, we must ensure
that the weight of each edge x1,u1 → y1,u2 is the minimum
in-distance of a block for which the first two columns have
index u1 and the last two columns have index u2. To accom-
plish this, we adopt a three-phase approach that is a common
heuristic for solving the two-round TTP (Rasmussen and
Trick 2007). Phase one generates double round-robin home-
away pattern (HAP) sets in the form of an n by 2(n − 1)
matrix, phase two converts these HAP sets into timeta-
bles which are assignments of matches to time slots, and
phase three converts timetables into feasible schedules (i.e.,
blocks) by assigning each team a unique row in the matrix.
Once we have enumerated all possible blocks, we will be
able to assign the proper weight to each edge x1,u1

→ y1,u2

by applying the distance matrix D. To illustrate, Table 3 is
a HAP set satisfying the mb-TTP conditions, with a corre-
sponding timetable in Table 4.

Team 1 2 3 4 5 6 7 8 9 10
1 H A A H H H A A A H
2 A H H H A A A H H A
3 A A H H H A A A H H
4 H H A A A H H H A A
5 H A A A H H H A A H
6 A H H A A A H H H A

Table 3: A balanced HAP set.

To turn a timetable into a block, one simply maps the
six Central League teams to any of the 6! permutations of
{1, 2, 3, 4, 5, 6}. We note that any timetable can be turned

110



Team 1 2 3 4 5 6 7 8 9 10
1 2 6 3 5 4 3 5 4 2 6
2 1 3 4 6 5 4 6 5 1 3
3 5 2 1 4 6 1 4 6 5 2
4 6 5 2 3 1 2 3 1 6 5
5 3 4 6 1 2 6 1 2 3 4
6 4 1 5 2 3 5 2 3 4 1

Table 4: A timetable corresponding to this HAP set.

into a block, but a HAP set does not necessarily produce a
feasible timetable. For example, consider a HAP set with
two identical rows, say in rows i and j. Then this HAP set
will not produce a feasible timetable as teams i and j cannot
play one another since there is no time slot where one team
is home while the other is on the road. Using the theory
of one-factorizations, we show that there are 627944 pos-
sible HAP sets, which generate 169728 feasible timetables
(Hoshino and Kawarabayashi 2010).

From these 169728 timetables, we calculate the in-
distance of all 169728 × 6! blocks that can be generated
and determine the indices of their first and last two columns.
From this we determine the 2400 × 2400 matrix M , where
M [u1, u2] is the minimum in-distance of a block, selected
among all blocks for which the first two columns have in-
dex u1 and the last two columns have index u2. We deter-
mine that 2618520 of the 24002 = 5760000 possible en-
tries of M are defined, all of whose values lie in the range
[13075, 22189].

For the other 24002 − 2618520 = 3141480 cases, there
does not exist a feasible block with indices u1 and u2, and
so we define M [u1, u2] := 105 in these cases to ensure that
the matrix M is well-defined. In a shortest path algorithm,
a non-edge can be replaced by a fake edge with massive
weight (such as 105) that dominates the weight of all ac-
tual edges. As a result, all the information on the edges and
edge weights of x1,u1 → y1,u2 can be stored in this single
matrix M , and when we apply Dijkstra’s Algorithm to find
the path that minimizes the total weight, an edge of weight
105 will of course not appear in the output.

Finally, we proceed with step (d) of our construction. We
define a 2400× 2400 matrix N which will store the weights
of all edges y1,u2

→ x2,u1
. By definition, y1,u2

→ x2,u1

is an edge in G iff the concatenation matrix Cu2,u1
has no

row with four home sets, no row with four away sets, and no
row with the same opponent appearing in columns 2 and 3.
We find that 1486320 of the 24002 = 5760000 choices for
Cu2,u1

satisfy the requirements for y1,u2
→ x2,u1

to be an
edge of G. In all these cases, the edge weight N [u2, u1] is
determined from Cu2,u1 by calculating the distance traveled
by all the teams that make a trip from their match in col-
umn 2 to their match in column 3. We find that the 1468320
values of N [u2, u1] lie in the range [79, 3394]. In the other
24002 − 1486320 = 4273680 cases, set N [u2, u1] := 105,
as we did before to ensure a well-defined matrix.

Clearly steps (a) and (b) in our construction each add
2400 edges to G. From above, step (c) adds 2618520k
edges and step (d) adds 1486320(k − 1) edges. There-

fore, graph G consists of 2mk + 2 = 4800k + 2 ver-
tices and 2400 + 2400 + 2618520k + 1486320(k − 1) =
4104840k−1481520 edges. We now apply Dijkstra’s short-
est path algorithm to obtain the k-block 2k-round schedule
that minimizes the total travel distance.

Dijkstra’s Algorithm constructs a shortest path tree from
the initial vertex to every other vertex in the graph. For each
vertex v in G, let w(v) be the weight of the shortest path
from vstart to that vertex. By definition, w(vstart) = 0.
For each 1 ≤ u ≤ m, w(x1,u) is the total distance traveled
by the n

2 teams making the trip from their home city to the
venue of their opponent in set 1.

For each 1 ≤ u ≤ m and 1 ≤ t ≤ k, we have

w(yt,u) = min
1≤u∗≤m

{w(xt,u∗) +M [u∗, u]}.

And for each 1 ≤ u ≤ m and 1 ≤ t ≤ k − 1, we have

w(xt+1,u) = min
1≤u∗≤m

{w(yt,u∗) +N [u∗, u]}.

The last step of this double-recursion generates w(yk,u),
the weight of the shortest path from vstart to each yk,u. For
each u, define last(u) to be the total distance traveled by the
n
2 teams making the trip from the venue of their opponent in
set 2k(n − 1) back to their home city. By symmetry, it is
clear that last(u) = w(x1,u). Therefore, we have

w(vend) = min
1≤u∗≤m

{w(yk,u∗) + w(x1,u∗)}.

The value of w(vend) is the distance of the optimal so-
lution to the k-block mb-TTP, corresponding to some path
P = vstart → x1,p1 → y1,q1 → x2,p2 → y2,q2 → . . . →
xk,pk

→ yk,qk → vend. For each 1 ≤ t ≤ k, let Bt be the
block of minimum in-distance selected among all blocks for
which the first two columns have index pt and the last two
columns have index qt. By Theorem 2, the desired distance-
optimal schedule is the concatenation of B1, B2, . . . , Bk.

Running Time
All of our code was written in Maple and compiled using
Maplesoft 13 using a single Toshiba laptop under Windows
with a single 2.10 GHz processor and 2.75 GB RAM. Var-
ious methods, such as exploiting symmetry, were used to
reduce the computation time.

Maple required 13 hours to generate the 627944 feasible
HAP sets, and required an additional 67 hours of compu-
tation time to turn these HAP sets into the 169728 feasible
timetables. While this process takes over three days of com-
putation time, this procedure needs to be only run once, and
then the 169728 timetables can be stored in a file and ap-
plied to any distance matrix D. For the interested reader, the
authors would be happy to provide the files containing these
169728 timetables, as well as all of the Maple code used in
the production of this paper.

It takes Maple less than 0.1 seconds to complete step (a)
of the digraph construction, assigning a weight to each edge
vstart → x1,u. Step (b), which assigns a weight to each edge
yk,u → vend, also takes 0.1 seconds. Step (d), which deter-
mines the weights of all edges y1,u2

→ x2,u1
, and stores this

111



information in the 2400× 2400 matrix N , takes just 53 sec-
onds. Finally, step (c) takes almost 5 hours (17346 seconds)
of computation time. This is by far the most expensive cal-
culation in the algorithm as we must consider all blocks that
can be generated from our 169728 feasible timetables. For
each block, we determine the indices u1 and u2, calculate
the in-distance, and check whether we need to update the
values of M [u1, u2], M [u2, u1], B[u1, u2], and B[u2, u1].
This information is summarized in the table below.

Process Edge Construction Edges Created (#) Time (s)
Step (a) vstart → x1,u 2400 0.1
Step (b) yk,u → vend 2400 0.1
Step (c) x1,u1 → y1,u2 2,618,520 17346
Step (d) y1,u2 → x2,u1 1,486,320 53

Table 5: Running time for each step of the mb-TTP algorithm.

The weakness of our graph-theoretic approach is the run-
ning time of step (c). One possible time-saving technique is
to store expensive heuristic estimates in memory, so that the
same calculations do not need to be repeated multiple times.
In one recent paper (Uthus, Riddle, and Guesgen 2009), the
authors use this memory-storage technique to solve the 2-
round TTP for the 8-team NL8 benchmark set, reducing the
running time of their depth-first-search algorithm from 26
hours to just 7 minutes on a single processor. Perhaps the
same technique can be applied to reduce the running time of
step (c) of our algorithm from five hours to several minutes.

Finally we apply Dijkstra’s Algorithm. For each k, ap-
plying the above recursive procedure to find the shortest
path from vstart to vend takes approximately 25k seconds.
Hence, incrementing k by one adds only 25 seconds to the
total computation time. Once we have determined the matri-
ces M and N , Dijkstra’s Algorithm enables us to determine
the optimal 100-round schedule (k = 50) in just twenty min-
utes. While our proposed graph-theoretic approach may not
be computationally efficient for small values of k, its utility
is clearly evident for large values of k.

Application to the Japanese NPB League
We apply our shortest path algorithm to optimize the
scheduling for Nippon Professional Baseball (NPB). The
NPB consists of the six-team Central League and the six-
team Pacific League. All teams play 144 games during a sea-
son, with 120 intra-league games and 24 inter-league games.
Specifically, an NPB team plays twelve home games and
twelve away games against each of the other five teams in
its league (24 × 5) in addition to two home games and two
away games against all six teams in the other league (4× 6).
All twenty-four inter-league games take place during a com-
mon five-week stretch beginning in mid-May, right near the
start of the season.

Our algorithm for the mb-TTP will only apply to the 120
intra-league games; the remaining 24 inter-league games
will not be examined in this paper as it is a separate op-
timization problem based on the theory of bipartite tourna-
ments (Hoshino and Kawarabayashi 2011). For the purposes

of this paper, we will assume that the NPB schedule con-
sists of 120 intra-league games, ignoring the 24 inter-league
games and the annual July break for the all-star game. When
we demonstrate that the NPB Central League schedule can
be improved by 26.8% with respect to total travel distance,
we are strictly referring to the scheduling of these 120 intra-
league games.

As in Major League Baseball, nearly all NPB games oc-
cur in sets of three games. Thus, we will adopt the same
structure when building our schedule, so that each of the
n = 6 teams plays 40 sets of three games. Hence, we re-
quire a schedule with k = 4 blocks and r = 2k = 8 rounds,
producing r(n− 1) = 40 sets per team.

Applying our shortest path algorithm to graph G, we de-
termine that w(vend) = 57836 and that the shortest path is
P = vstart → x1,p1 → y1,q1 → x2,p2 → y2,q2 → x3,p3 →
y3,q3 → x4,p4 → y4,q4 → vend, with the edge weights
664, 13131, 729, 13665, 1100, 13075, 1686, 13075, 711, re-
spectively. In this shortest path, we have p3 = p4 and
q3 = q4, which explains why the last two blocks in Table
6 are identical. We remark that the 40-set schedule can be
written backwards to produce another optimal schedule with
the same objective value of 57836.

Team R1 R2 R3 R4
Carp TGBSD BSDTG DTGSB GSBDT

Tigers CDGBS GBSCD BCDGS DGSBC
Dragons BTSGC SGCBT CSTBG TBGCS
Baystars DSCTG CTGDS TGSDC SDCTG
Giants SCTDB TDBSC SBCTD CTDSB

Swallows GBDCT DCTGB GDBCT BCTGD

Team R5 R6 R7 R8
Carp BTDSG DSGBT BTDSG DSGBT

Tigers DCSGB SGBDC DCSGB SGBDC
Dragons TGCBS CBSTG TGCBS CBSTG
Baystars CSGDT GDTCS CSGDT GDTCS
Giants SDBTC BTCSD SDBTC BTCSD

Swallows GBTCD TCDGB GBTCD TCDGB

Table 6: Optimal schedule for the Central League, r = 8 rounds.

During the 2010 NPB season, every Central League team
made at least 33 trips. Under our optimal schedule, no team
would make any more than 29 trips. We compare these two
schedules with respect to the total distance traveled by all six
teams, using Table 1. As seen in Table 7, our optimal sched-
ule achieves a 26.8% reduction in total travel compared to
the existing schedule, in addition to a 14.6% reduction in
total trips taken.

Despite the impressive 26.8% reduction in total distance
traveled, we note that one team (Chunichi Dragons) achieves
a paltry 1.1% reduction under our optimal schedule. This
discrepancy can be corrected by proposing a non-optimal
feasible schedule with an objective value just slightly higher
than 57836 kilometres where the team-by-team percentage
improvement is more equitably distributed.

We repeat the same algorithm for the Pacific League
(Hoshino and Kawarabayashi 2010), producing a distance-
optimal schedule that achieves a 25.8% reduction in total

112



Distance Distance % Reduction
(Existing) (Optimal) in Distance

Carp 17850 11741 34.2 %
Tigers 14304 8712 39.1 %

Dragons 11790 11665 1.1 %
Baystars 13104 8929 31.9 %
Giants 11469 9020 21.4 %

Swallows 10550 7769 26.4 %
Total 79067 57836 26.8 %

Trips Trips % Reduction
(Existing) (Optimal) in Trips

Carp 33 27 18.2 %
Tigers 33 29 12.1 %

Dragons 33 28 15.2 %
Baystars 34 29 14.7 %
Giants 33 28 15.2 %

Swallows 33 29 12.1 %
Total 199 170 14.6 %

Table 7: Comparison of existing and optimal schedules in terms of
total distance traveled and total trips taken.

distance traveled and a 18.8% reduction in total trips taken,
compared to the 2010 NPB schedule.

Naturally, there are additional factors involved with the
actual scheduling of NPB games at these home stadiums.
For example, one of the ballparks hosts a three-day con-
cert each August, and thus must play away games on those
particular dates. Sometimes a league has two outstanding
teams that are bitter rivals, hence officials will deliberately
schedule a match between them to conclude the season, to
add drama and boost TV ratings. These constraints must be
taken into account when producing an optimal schedule that
can be implemented by NPB, to ensure no conflicts occur,
and that the schedule is best possible for all parties involved.

Future Research
We have developed a rigorous algorithm to solve the Multi-
Round Balanced Traveling Tournament Problem (mb-TTP)
for the case n = 6 and applied it to develop optimal intra-
league schedules for the two six-team leagues in Nippon
Professional Baseball, showing how both leagues can reduce
their total traveling distance by over 25%. While our algo-
rithm can be applied to any six-team league, our approach
is unlikely to be computationally feasible for n ≥ 8. Even
for the n = 8 case, we have m =

(
n

n/2

)2 · (n2 )! = 117600,
requiring us to store the edge weights of digraph G in two
117600× 117600 matrices. Hence, we require more sophis-
ticated techniques for solving the mb-TTP for n ≥ 8. Since
the 8-team benchmark set NL8 was recently solved using a
depth-first-search with upper bounding (Uthus, Riddle, and
Guesgen 2009) as well as a branch-and-price approach (Ir-
nich 2010), perhaps these powerful methods could be ap-
plied in conjunction with our Dijkstra formulation to solve
the mb-TTP for n = 8.

Also a natural question is to extend the standard TTP
to multiple rounds, eliminating the each-round and diff-two

conditions of our balanced framework. However, this prob-
lem may be quite difficult as the each-round condition en-
abled us to apply the theory of perfect matchings and one-
factorizations to enumerate our feasible timetables, and the
diff-two condition allowed us to reduce our concatenation
matrix to just four columns. Without the diff-two condition,
we would require six columns rather than four, since we
need to check cases when one team ends a block with three
consecutive home (away) games or starts the next block with
three consecutive home (away) games, to validate the at-
most-three condition. To apply the same shortest path al-
gorithm for the multi-round standard TTP would require us
to set m =

(
n

n/2

)3 · (n2 )!, which requires m = 48000 for
n = 6. Once again, this approach is not likely to be compu-
tationally feasible given the size of the m×m matrices, and
therefore more sophisticated techniques must be developed.

References
Dijkstra, E. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Easton, K.; Nemhauser, G.; and Trick, M. 2001. The travel-
ing tournament problem: description and benchmarks. Pro-
ceedings of the 7th International Conference on Principles
and Practice of Constraint Programming 580–584.
Hoshino, R., and Kawarabayashi, K. 2010. A multi-round
generalization of the traveling tournament problem and its
application to Japanese baseball. European Journal of Op-
erational Research (submitted).
Hoshino, R., and Kawarabayashi, K. 2011. The inter-league
extension of the traveling tournament problem and its appli-
cation to sports scheduling. AAAI Conference on Artificial
Intelligence (submitted).
Irnich, S. 2010. A new branch-and-price algorithm for the
traveling tournament problem. European Journal of Opera-
tional Research 204:218–228.
Kendall, G.; Knust, S.; Ribeiro, C.; and Urrutia, S. 2010.
Scheduling in sports: An annotated bibliography. Comput-
ers and Operations Research 37:1–19.
Rasmussen, P., and Trick, M. 2007. A Benders approach for
the constrained minimum break problem. European Journal
of Operational Research 177:198–213.
Rasmussen, P., and Trick, M. 2008. Round robin schedul-
ing - a survey. European Journal of Operational Research
188:617–636.
Ribeiro, C., and Urrutia, S. 2004. Heuristics for the mir-
rored traveling tournament problem. Proceedings of the 5th
International Conference on the Practice and Theory of Au-
tomated Timetabling 323–342.
Thielen, C., and Westphal, S. 2010. Complexity of the trav-
eling tournament problem. Theoretical Computer Science
DOI:10.1016/j.tcs.2010.10.001.
Uthus, D.; Riddle, P.; and Guesgen, H. 2009. DFS* and
the traveling tournament problem. Proceedings of the 6th
International Conference on the Integration of AI and OR
Techniques in Constraint Programming for Combinatorial
Optimization Problems CPAIOR 2009 279–293.

113




