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Abstract

In a standard Markov decision process (MDP), rewards
are assumed to be precisely known and of quantitative
nature. This can be a too strong hypothesis in some sit-
uations. When rewards can really be modeled numer-
ically, specifying the reward function is often difficult
as it is a cognitively-demanding and/or time-consuming
task. Besides, rewards can sometimes be of qualitative
nature as when they represent qualitative risk levels for
instance. In those cases, it is problematic to use di-
rectly standard MDPs and we propose instead to resort
to MDPs with ordinal rewards. Only a total order over
rewards is assumed to be known. In this setting, we ex-
plain how an alternative way to define expressive and
interpretable preferences using reference points can be
exploited.

1 Introduction
The model of Markov decision processes (MDP) is a general
model for solving sequential decision-making problems un-
der uncertainty (Puterman 1994; Russell and Norvig 2003).
Its exploitation in practice can sometimes be difficult as it
requires a precise knowledge of its parameters (transition
probabilities and rewards). In many real situations, they are
only known imprecisely because it can be difficult or costly,
even impossible to determine them precisely. As the solution
of an MDP can naturally be very sensitive to those parame-
ters, it is then often very delicate to set those values.

This observation has motivated some recent work on find-
ing robust policies in sequential decision-making under un-
certainty problems (Givan, Leach, and Dean 2000; Bag-
nell, Ng, and Schneider 2001; Nilim and El Ghaoui 2003;
Trevizan, Cozman, and de Barros 2007; Jeantet and Span-
jaard 2009; Regan and Boutilier 2009). In those works, prob-
abilities alone or probabilities with rewards are assumed to
be known imperfectly. The parameters can then be repre-
sented for instance by intervals instead of precise values.
Generally, this line of research mainly focused on ignorance
or partial knowledge of probabilities. An exception to that
is the recent work of (Regan and Boutilier 2009) where the
authors propose a method for eliciting numeric rewards with
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the minmax regret criterion. However, the proposed method
has a high computation cost.

Furthermore, in some situations, rewards are really of
qualitative nature as it is the case when they represent quali-
tative risk levels for instance. Then their representation by
additive quantitative values is inappropriate. Possibilistic
MDPs (Dubois et al. 1996; Sabbadin 1999) allow for tak-
ing into account the situations where rewards are qualitative.
However, the uncertainty representation then has to be pos-
sibilistic, which can be unsuitable when the dynamic of the
system is stochastic. To the best of our knowledge, there is
no extension of MDPs allowing for both a probabilistic rep-
resentation of uncertainty and qualitative rewards.

In this work, we are interested in the case where rewards
are qualitative or ill-known while probabilities can be pre-
cisely determined. We think that this case can be common
in practice. Indeed, if there generally exists some means
to evaluate the transition probabilities of a system (exper-
iments and statistical estimation for instance), preferences
entailed by reward values are more difficult to define. On
which grounds shall we choose to set a reward to a certain
value rather than another? The works in preference elicita-
tion in decision theory (Keeney and Raiffa 1976) suggest
that this is a difficult task. That is why we assume in our
framework that only an ordering of the different rewards is
known.

In this paper, we propose a variant of MDPs that only re-
lies on ordinal rewards (OMDPs) and we show how to build
a preference system in that setting by introducing a reference
point. By doing so, we reveal also the assumptions that are
implicitly made in standard MDPs. Although the proposed
reference point-based preference model shares some simi-
larity with that of standard MDPs, their semantics is quite
different. In our ordinal setting, this point is important as
the introduced reference point allows to give a natural in-
terpretation to the constructed preferences over policies. An
optimal policy in our context is a policy that maximizes the
proportion of times it has better rewards than the reference
point. We give some ideas about how to pick a reference
point. Then we show that an OMDP can be interpreted as a
particular MDP with numerical vectorial rewards (VMDP).
We explain how to solve the problem by recasting the orig-
inal problem into a standard MDP. Finally, we illustrate our
proposition with some simple examples.
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2 Background
Markov Decision Processes
The model of Markov decision processes (MDP) is generally
defined as a quadruplet (S,A, P,R) (Puterman 1994): S a fi-
nite set of states,A a finite set of actions, P : S×A→ P(S)
a transition function whereP(S) is the set of probability dis-
tributions over S and R : S × A → X ⊂ IR a reward func-
tion. The transition function provides the probability that
a future state occurs after performing an action in a state.
As usually, we write P (s, a, s′) for P (s, a)(s′). The reward
function gives the immediate reward that the agent receives
after executing an action in a state. The setX – a finite set as
S andA are finite – represents the set of all possible rewards.

A decision rule δ indicates which action to choose in each
state for a given step. It can be deterministic : δ : S → A
is then a function from the set of states S into the set of ac-
tions A. But it can also be randomized : δ : S → P(A)
is then a function from the set of states S into the set of
probability distributions over actions A. The choice of the
action to be executed in a state is therefore chosen randomly
according to the probability distribution associated to that
state. Notice that a deterministic decision rule is simply a
randomized rule whose probability distributions are degen-
erate (only one action having a probability of 1 in each state).
For conciseness’ sake, we write Rδ(s) = R(s, δ(s)) and
P δ(s, s′) = P (s, δ(s), s′) for any δ and all s, s′ ∈ S. A
policy π at an horizon h is a sequence of h decision rules,
denoted π = (δ1, . . . , δh) where each δi is a decision rule.
It is said deterministic when it only contains deterministic
decision rules and randomized otherwise. The set of deter-
ministic policies (resp. randomized) at horizon h is denoted
ΠD
h (resp. ΠM

h ). At the infinite horizon, a policy is simply
an infinite sequence of decision rules. The set of those de-
terministic policies (resp. randomized) is denoted ΠD

∞ (resp.
ΠM
∞). A policy is said stationary if at each decision step, the

same decision rule is applied.
A preference relation %, which is simply a binary relation,

is assumed to be defined over policies. A policy π is said
preferred to or %-dominates (or simply dominates) another
policy π′ when π % π′. We write π � π′ (resp. π ∼ π′)
when π % π′ and not π′ % π (resp. π % π′ and π′ % π).
A policy π is preferred or non %-dominated (or simply non-
dominated) when there is no policy π′ such that π′ � π. It is
optimal when it is preferred to any other policy. Remark that
an optimal policy does not necessarily exist because as the
preference relation can be partial in the general case, some
policies can be incomparable. Solving an MDP amounts to
determining a preferred policy for a certain preference sys-
tem. We now recall how those preferences are defined in the
standard framework.

Histories, which can be finite or infinite correspond to
the following sequences, starting from state s0 ∈ S:
(s0, a1, s1, a2, s2, . . .) where ∀i ∈ IN, (ai, si) ∈ A×S. The
value of a history γ = (s0, a1, s1, a2, s2, . . . , ah, sh) can be
defined in several ways. One can simply sum all the rewards
obtained along a history:

RΣ(γ) =
h−1∑
i=0

r(si, ai+1)

One can also use a discounted sum of the rewards:

Rβ(γ) =
h−1∑
i=0

βir(si, ai+1)

where β ∈ [0, 1[ is a discount factor. Finally, it is possible to
consider the average of the rewards:

Rµ(γ) =
1

h

h−1∑
i=0

r(si, ai+1)

Those values can be extended when the history is infinite.
For the total sum RΣ, there could be convergence problems.
The discounted sum is well defined thanks to the discount
factor. For the reward average, the value of a history is de-
fined as a limit, if there exists:

Rµ(γ) = lim
h→∞

1

h

h−1∑
i=0

r(si, ai+1)

A decision rule δ from an initial state s induces a proba-
bility distribution over histories (of length 1). As a value can
be associated to every history, δ also induces a probability
distribution over the set X of possible rewards. This prob-
ability distribution is equal to P (s, δ(s)). By induction, a
policy π in a given initial state s can be associated to a prob-
ability distribution over histories. Thus a policy also induces
a probability distribution over the values of histories. Con-
sequently, it is possible to define the expected reward that a
policy can yield from an initial state.

The function vπ : S → IR, which associates to each state
s the expected reward that can be obtained from the policy
π is called the value function of π :

vπ(s) = Eπs (R∗(Γ))

where Eπs is the expectation with respect to the probability
distribution induced by the application of π from state s,
∗ ∈ {Σ, β, µ} and Γ is a random variable over histories.
Here, a policy π is preferred to another policy π′ if:

π % π′ ⇔ ∀s ∈ S, vπ(s) ≥ vπ
′
(s)

In the classical framework, the preference relation defined in
such a way guarantees that an optimal stationary determin-
istic policy exists.

Depending on the use of the total sum, the discounted
sum or the average, the value function is said to rely on
the expected total criterion, discounted criterion or aver-
age criterion. Those three criteria are based on expectation,
the difference residing in how histories are valued. In fact,
those criteria are instances of expected utility (Bouyssou et
al. 2000) where the history values play the role of utili-
ties. Thus, they are expected utilities for which one assume
that utilities are additively decomposable. To remain simple,
in the following, we only consider the discounted criterion
to avoid any problem at the infinite horizon. Our approach
could naturally be extended to the other two criteria.

Motivations of this work
The classical approach is not questionable when all the pa-
rameters of the model are numeric and precisely known.
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However, when only an ordering over rewards is known, it
can be problematic to set arbitrarily their values as the pre-
ferred policies can be very sensitive to them. The problem
of determining the values of rewards, called elicitation of
preferences is a thorny problem studied in decision theory
(Bouyssou et al. 2000).

The problem that we consider in this paper only appears
when preferences have a certain degree of complexity, that
is to say when one needs at least two distinct non null values
for defining the reward function. When only one non null
value is sufficient, as it is the case for instance in problems
where there is only one set of goal states (all identical) and
where all the other states are considered equivalent and of
null value, the choice of the two reward values is not impor-
tant (as long as the order is respected) because it does not
influence the optimal policy (or policies if there are more
than one).

Proposition 1. Let r, r′ ∈ IR such that r and r′ are both
positive or both negative. Let an MDP (S,A, P,R) whose
reward function can only take two different values 0 and r.
Define R′ the function from R by substituting r′ for r. Then,
the MDPs (S,A, P,R) and (S,A, P,R′) have the same op-
timal policy (or policies if there are more than one).

Proof. The two MDPs have the same policies. It is sufficient
to show that the preference direction between two policies
remains the same whether R or R′ is used. Notice that it is
possible to transform one into the other by multiplying by a
positive constant r′/r or r/r′, which are positive as r and
r′ have the same sign. As the discounted criterion is linear,
such a transformation preserves the inequalities and thus the
direction of preferences between two policies.

In the case where the reward function needs at least two
distinct non null values, the choice of those values can have
an important impact on the optimal policies as we illustrate
it on a simple example.

Example 2. Consider the following MDP where S = {1, 2}
and A = {a, b}. The discount factor is set at β = 0.5. The
transition function is defined as follows:

P (1, a, 1) = 1 P (1, b, 1) = 0.5 P (2, a, 1) = 1

To simplify, we assume that action b is not possible in state 2.
In this case, there are only two deterministic stationary poli-
cies depending on the choice of the action in the first state.
Assume that we only know R(1, b) > R(1, a) > R(2, a).
R(2, a) represents no reward, R(1, a) a small reward and
R(1, b) a big reward. If the reward function is arbitrarily
defined as follows:

R(1, b) = 2 R(1, a) = 1 R(2, a) = 0

then we can easily check that the best policy is the one con-
sisting in choosing action b in state 1 The value function
obtained in that state equals to 16

5 = 3.2 against 2 for the
other policy.

Now, if the reward function were defined as follows:

R(1, b) = 10 R(1, a) = 9 R(2, a) = 0

the best policy would have been the one choosing action a.
The value function in state 1 would be equal to 18 against
16 for the other policy.

Although the two functions respect the order imposed on
rewards, we observe an inversion of preferences. Thus the
choice of the scale of valuation for rewards can have an im-
portant impact on the optimal policy. This can be problem-
atic in some situations.

3 Ordinal Reward MDP
As the preferences over policies can be sensitive to the
choice of the values of rewards, we propose in this paper not
to introduce arbitrarily this information when it is unknown.
In the situations where only an ordinal information about re-
wards is available, a semi-qualitative model of MDPs, called
Ordinal Reward MDP (OMDP), can be exploited. The re-
ward function R : S × A → E is then defined over a qual-
itative scale (E,>) totally ordered, the number of steps of
this scale being the number of different values that is needed
to model the preferences of the considered problem. The
scale is necessarily finite as the sets S and A are assumed
to be finite. Let n ∈ IN be the number of steps of the scale
E = {r1 > r2 . . . > rn}. We assume that there exists
k0 ∈ {1, . . . , n} such that reward rk0 is considered a neutral
reward, i.e. receiving rk0 is considered neither good nor bad.

Preferences over histories
In the same way as in classical MDPs, before defining
preferences over policies, we need first to define a pref-
erence relation over histories. In OMDPs, a history (s0,
a1, s1, a2, s2, . . .) is valued by a sequence of ordinal re-
wards (R(s0, a1), R(s1, a2), . . .). Exploiting directly those
sequences of rewards to compare histories is infeasible when
the horizon is high or infinite. We propose to summarize the
preferential information contained in a sequence by counting
the number of occurrences of each different ordinal rewards
in that sequence. We will state explictly the assumption we
make after defining how the rewards are counted.

When the horizon h is finite, the preferential information
on a history γ = (s0, a1, s1, . . . , ah, sh) is defined by:

NΣ(γ) = (NΣ
1 (γ), . . . , NΣ

n (γ))

where for any k = 1, . . . , n,NΣ
k (γ) is the number of oc-

currences of reward rk in the sequence of ordinal rewards
associated to γ. The NΣ

k (γ)’s can be defined by:

NΣ
k (γ) =

h−1∑
i=0

χR(si,ai+1)=rk

where χR(si,ai+1)=rk is the indicator function1.
Alternatively, one can introduce a discount factor β ∈

[0, 1[ with the same semantic as in classical MDPs, meaning
that a reward r obtained h steps from now is worth βh−1×r
now. In this case, the preferential information on a history γ
is defined by:

Nβ(γ) = (Nβ
1 (γ), . . . , Nβ

n (γ))

1χR(si,ai+1)=rk = 1 if R(si, ai+1) = rk and 0 otherwise.
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where for any k = 1, . . . , n,Nβ
k (γ) is the discounted num-

ber of occurrences of reward rk in the sequence of ordinal
rewards associated to γ. The Nβ

k (γ)’s can be defined by:

Nβ
k (γ) =

h−1∑
i=0

βiχR(si,ai+1)=rk

Finally, one can also consider the average number of occur-
rences:

Nµ(γ) = (Nµ
1 (γ), . . . , Nµ

n (γ))

where for any k = 1, . . . , n,Nµ
k is the average number of

occurrences of reward rk in the sequence of ordinal rewards
associated to γ. The Nµ

k (γ)’s can be defined by:

Nµ
k (γ) =

1

h

h−1∑
i=0

χR(si,ai+1)=rk

In the same way as in the classical case, those values could
be extended to the infinite horizon when they are well de-
fined.

For the sake of simplicity, we use the same notation for
the preference relations over histories, vectors and policies
as they are of the same nature. The context will tell if they
are defined over histories, over vectors or over policies. We
can then state the following assumptions, for ∗ in {Σ, β, µ}:

H∗. For any two histories γ, γ′, we would have:

γ % γ′ ⇔ N∗(γ) % N∗(γ′)

Depending on how we choose to evaluate a history in
OMDPs, we will assume HΣ, Hβ or Hµ. As a side note,
these natural assumptions are also made in classical MDPs.
Indeed, if E were a numerical scale, we have:

Proposition 1. R∗(γ) =
∑n
k=1N

∗
k rk where ∗ ∈ {Σ, β, µ}

and γ any history.

Preferences over vectors
Under one of the assumptions H∗, comparing histories
amounts to comparing vectors. Therefore, we now need to
define how we compare those occurrence vectors. Let us re-
view some possible preference relations over vectors in IRn.

Pareto Dominance. In our context, we cannot compare
vectors directly with Pareto Dominance2. Indeed, as an or-
der is defined over the different ordinal rewards, we have for
example ei % ej for any i < j, where ei (resp. ej) is the vec-
tor null everywhere except on component i (resp. j) where
it is equal to 1.

Pareto Dominance over Cumulative Vectors. A natural
dominance relation %D can be defined between any two vec-
tors N,N ′ ∈ IRn:

N %D N ′ ⇔ ∀i = 1, . . . , n,
i∑

k=1

Nk ≥
i∑

k=1

N ′k (1)

2A vector x Pareto-dominates a vector y if and only if for all i,
x(i) ≥ y(i) and there exists j, x(j) > y(j)

This relation has a natural interpretation. It states that for
any reward ri, the number of rewards better than ri is higher
in N than in N ′. This dominance is the first-order stochastic
dominance (Shaked and Shanthikumar 1994) expressed in
our settting. It can also be viewed as Pareto dominance over
transformed vectorsL(N) =

(
N1,N1+N2, . . .,

∑n
k=1Nk

)
.

Unfortunately, this dominance is generally not very dis-
criminating as it is a partial order due to the condition “for
all i”. As equation 1 is a rational condition to impose on a
preference relation, it is natural to want to refine it with a
more discriminating preference relation.

Lexicographic Orders. Then, a simple and natural idea
is to rely on the order on scale E to compare the valua-
tion vectors with the lexicographic order as follows, for any
x, y ∈ IRn:

x %L y ⇔ ∃i = 1, . . . , n,

{
∀j < i, xj = yj
et xi > yi

(2)

Its interpretation is simple in our framework. In the com-
parison of two vectors, we want the first component of the
vector to be the highest possible as it corresponds to the best
reward. In case of equality, we would look at the second
component and so on.

However, the drawback with lexicographic order is that
compensation is forbidden between different rewards. Thus,
for instance, e1 would be preferred to 100 × e2, which can
be questionable. Besides, we would prefer to have a higher
degree of expressiveness in the definition of the preferences.

Proposed Criterion. In order to define a reasonable pref-
erence relation % over vectors to use in our setting, we will
use results from Measurement Theory (Krantz et al. 1971).
To that end, we list some natural properties, called axioms,
that we want % to satisfy. Those axioms will define com-
pletely which criterion to use to represent %.

We first assume that the preference relation % over those
vectors satisfies:

A1. % is a complete preorder3.
Axiom A1 implies that any two vectors can be compared and
that the relation is transitive, which is a very natural property
to impose on preference relation %. Then, we assume that,
∀N,N ′ ∈ IRn:

A2. N % N ′⇔ ∀i = 1, . . . , n, N + ei % N ′ + ei
Axiom A2 entails that the common part of any two vec-
tors does not influence the direction of the preference re-
lation. We assume also an Archimedian property, ∀N , N ′,
M , M ′ ∈ IRn:

A3. N � N ′⇒ ∃n ∈ IN, nN +M % nN ′ +M ′

A3 can be interpreted as follows: the preference “difference”
between N and N ′, which is positive as N � N ′, can be

3% over X is a complete preorder iff:

• (complete) ∀x, y ∈ X , x % y or y % x

• (reflexive) ∀x ∈ X , x % x

• (transitive) ∀x, y, z ∈ X , x % y and y % z⇒ x % z
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made great enough to compensate the preference “differ-
ence” of M and M ′ or in English, any positive preference
“difference” can be made as great as we want. Those ax-
ioms are all satisfied in the classical setting for RΣ, Rβ and
Rµ. Using those three axioms, we have the following repre-
sentation theorem:

Theorem 2. The two following propositions are equivalent:
(i) % satisfies Axioms A1, A2 and A3.
(ii) there exists a function u : E → IR such that ∀N,N ′ ∈
IRn:

N % N ′ ⇔
n∑
k=1

Nku(rk) ≥
n∑
k=1

N ′ku(rk)

Proof. (i) ⇒ (ii): By Axioms A1, A2 and A3, we easily
show that the structure (IRn,%,+) is a closed extensive
structure4 where + is the componentwise addition. Then, by
Theorem 1 in Section 3 of (Krantz et al. 1971) that states that
a closed extensive structure can be “measured”, there exists
a function φ : IRn → IR such that ∀N,N ′ ∈ IRn:

N % N ′ ⇔ φ(N) ≥ φ(N ′) (3)
φ(N +N ′) = φ(N) + φ(N ′) (4)

For any N ∈ IRn, we have N =
∑n
k=1Nkek and thus, by

Eq. 4:

φ(N) =
n∑
k=1

Nkφ(ek) (5)

We can finally define a function u : E → IR with u(rk) =
φ(ek) with k = 1, . . . , n.

(ii) ⇒ (i): It is easy to check that the proposed criterion
satisfies the three axioms.

The previous theorem shows what are the assumptions
that are implicitly made when we use a real reward function
in standard MDPs. Remark that u is a function that values
each ordinal reward and therefore allows a numeric reward
function to be defined. As Axioms A1, A2 and A3 seem to
be natural, we want to assume them as well in our ordinal
setting. However, we will interpret the reward function dif-
ferently.

We add two other simple axioms:
A4. e1 % e2 % . . . % en

Axiom A4 simply expresses the preference order over the
ordinal rewards. And, finally, we assume:

A5. N ∼ N + ek0
Axiom A5 states explicitly that rk0 is a null reward.

To ease the exposition, we assume at first that all rewards
are positive feedbacks (k0 = n). For a fixed positive vector

4(A,%, ◦) is a closed extensive structure iff ∀a, b, c, d ∈ A:

• % is a complete preorder
• a ◦ (b ◦ c) ∼ (a ◦ b) ◦ c
• a % b⇔ a ◦ c % b ◦ c⇔ c ◦ a % c ◦ b
• a � b⇒ ∃n > 0, na ◦ c % nb ◦ d

Ñ ∈ IRn
+, called a reference point, we denote φÑ : IRn →

IR a function defined by:

φÑ (N) =
n−1∑
k=1

Nk

n−1∑
j=k

Ñj

By applying the previous theorem, we have the following
representation theorem with criterion φÑ :
Corollary 3. The two following propositions are equivalent:
(i) % satisfies Axioms A1 to A5.
(ii) there exists a reference point Ñ ∈ IRn

+ such that
∀N,N ′ ∈ IRn:

N % N ′ ⇔ φÑ (N) ≥ φÑ (N ′)

Proof. (i) ⇒ (ii): We give the proof for the general case
when k0 = 1, . . . , n and φÑ is defined by Eq. 9. By Ax-
ioms A1, A2 and A3, we know that there exists a function
φ : IRn → IR such that vectors can be compared with:

φ(N) =
n∑
k=1

Nkφ(ek) (6)

Let us define Ñ by:

Ñk = φ(ek) if k = k0

= φ(ek)− φ(ek+1) if k < k0

= φ(ek−1)− φ(ek) if k > k0

(7)

We have Ñk0 = φ(ek0) = 0 as by Axiom A5, φ(ek0) =
φ(ek0) + φ(ek0). By Axiom A4, we have φ(ei) ≥ φ(ej) if
i < j. Thus, ∀k = 1, . . . , n, Ñk ≥ 0. Finally, we can check
that it is equivalent to compare vectors with φ or φÑ .

(ii) ⇒ (i): It is easy to check that the proposed criterion
satisfies the five axioms.

Interpretation. Assume that a reference point Ñ ∈ IRn
+

has been chosen. We will explain later how it could be cho-
sen. Any vector of IRn

+ can be interpreted as the composition
of a bag (or multiset) of rewards. φÑ (N) can then be inter-
preted as the cardinal of the Cartesian product of the bags
defined by N and Ñ with the constraint that the reward in
N is better than that of Ñ . In English, φÑ (N) represents the
number of times N yields better rewards than Ñ .

Remark that for a given initial state s and a given hori-
zon h, in MDPs, we only compare histories of equal length
(which depends on h) and starting from s. Thus, for ∗ ∈
{Σ, β, µ}, when we compare N = N∗(γ) and N ′ =
N∗(γ′) obtained from two histories γ, γ′, as their lengths
are identical, we have

∑n
k=1Nk =

∑n
k=1N

′
k. Quantities

N/
∑n
k=1Nk, where the division is componentwise, repre-

sent the proportion of each reward in the associated history.
Let us define φ′

Ñ
: IRn → IR by:

φ′
Ñ

(N) =
φÑ (N)∑n

k=1Nk
∑n
k=1 Ñk

(8)

Comparing vectors with φÑ or φ′
Ñ

yields the same results
as long as we compare vectors whose sums are equal, which
is the case in MDPs.
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As all rewards are considered positive feedbacks, φ′
Ñ

(N)
could be interpreted as the proportion of times that N has
better rewards than the reference point Ñ . In the probabilis-
tic language, this relation could be interpreted as the proba-
bility that the random variable with probability distribution
N/
∑n
k=1Nk yields a better reward than the random vari-

able with distribution Ñ/
∑n
k=1 Ñk. In other words, a his-

tory γ is valued by the probability that a random drawing of
a reward in the sequence of rewards associated to γ yields a
better reward than an independent random drawing of a re-
ward with respect to a probability distribution defined by the
reference point.

Discussion. As the value φÑ (N) measures the extent to
whichN is better than Ñ , another natural idea for defining a
preference relation over vectors would be to use the follow-
ing relation, ∀N,N ′ ∈ IRn:

N %C N ′ ⇔ φN ′(N) ≥ φN (N ′)

This preference relation could be interpreted in a simple
manner: N is preferred to N ′ if and only if the extent to
which N is better than N ′ is greater than that of the oppo-
site outcome.

Unfortunately, although this preference relation is total,
there can be cycles. We adapt an example from (Perny and
Pomerol 1999) in our context:

Example 4. Assume that E = {r1 > r2 > r3 > r4 > r5}.
Consider three vectors N,N ′, N ′′ over E defined by:

r1 r2 r3 r4 r5

N 0 51 0 0 49
N ′ 0 0 100 0 0
N ′′ 49 0 0 51 0

It is easy to check that N � N ′ � N ′′ � N .

Therefore, this relation cannot be used to define a rational
preference relation.

Preferences over policies
The preference system in an OMDP is completely speci-
fied when a reference point has been chosen. Indeed, the ex-
tension of the previous preference relation over histories to
a preference relation over policies is quite straightforward.
Similarly to classical MDPs, we can value a policy π in a
state by taking the expectation over the values of all histo-
ries generated by π. Here, a policy would be valued in a state
by the vector of expected numbers of occurrences of each re-
ward. Then, a policy π is preferred to a policy π′ for a given
reference point Ñ if and only if for all state s ∈ S:

φÑ (Eπs (N∗(Γ))) ≥ φÑ (Eπ
′

s (N∗(Γ)))

where Eπs is the expectation with respect to the probability
distribution induced by the application of π from the initial
state s, ∗ ∈ {Σ, β, µ} and Γ is a random variable over histo-
ries. Since, for comparing two policies in a state at a certain

horizon, using φÑ or φ′
Ñ

is completely equivalent, the pro-
posed preference system values a policy in a state by the
expected proportion of times it yields better rewards than a
reference point. Thus, an optimal policy in a state is a policy
that maximizes that proportion.

Choosing a Reference Point
We now discuss how a reference point can be chosen for a
given problem.

A first and natural idea would be to choose a step of scale
E as a reference point, i.e. Ñ = ek for a certain k. Such a
choice could be interpreted as the desire of maximizing the
number of rewards better than rk, generated by the optimal
policy. In some situations, it may suitable. But, the drawback
of this approach is that it may lead to not very discriminating
preferences as it amounts to defining a reward function that
can only take one non-null value.

A second idea would be to use a probability distribution
overE (or a vector of proportions of each reward) as a refer-
ence point. Using the probabilistic interpretation of the pro-
posed preference relation, optimizing with such a reference
point amounts to finding a policy π that maximizes the prob-
ability of drawing a reward in a history generated by π better
than one drawn with respect to the probability distribution of
the reference point.

A third idea would be to choose a history as a reference
point. Indeed, depending on the problem that we want to
solve, there may be a natural history that could be used as
a reference point. In Section 5 , we illustrate this case with
a simple problem. Extending this idea, one could also want
to use a set of histories and combine their associated vectors
with a mean for instance.

A final idea would be to choose a policy as a reference
point. In certain situations, it could be easy to pick some pol-
icy as a reference point. For instance, for a problem where
there is already a policy that is implemented and used, one
could pick that policy in order to find a policy that would be
even better. To that effect, the associated VMDP (see next
section) could be utilized to find the expected vector of oc-
currences of the reference policy. We illustrate this case in
Section 5.

Remark that for the last two approaches, the initial state
has to be known as the reward function defined by the refer-
ence point depends on it.

Extension to the General Case
Negative Feedbacks We assume now that k0 = 1, i.e. all
rewards are negative feedbacks. For a reference point Ñ ∈
IRn

+, we define φÑ : IRn → IR by:

φÑ (N) = −
n∑
k=2

Nk

k∑
j=2

Ñj

Corollary 3 applies here as well and shows that if Axiom A1
to A5 are assumed then one should use φÑ with a chosen
reference point Ñ to compare vectors.

287



When comparing histories (or policies) from a certain ini-
tial state and a given horizon, using φÑ or φ′

Ñ
defined by:

φ′
Ñ

(N) = 1 +
φÑ (N)∑n

k=1Nk
∑n
k=1 Ñk

gives the same results. Then, the interpretation is similar to
the positive case: φ′

Ñ
gives the proportion of times that N

has strictly better rewards than Ñ .

Positive and Negative Feedbacks Finally, when 1 <
k0 < n, both positive and negative feedbacks are allowed
in the OMDP. For a reference point Ñ ∈ IRn, we denote
φÑ : IRn → IR a function defined by:

φÑ (N) =

k0−1∑
k=1

Nk

k0−1∑
j=k

Ñj −
n∑

k=k0+1

Nk

k∑
j=k0+1

Ñj (9)

Again, by Corollary 3, Axiom A1 to A5 imply that one
should use φÑ with a chosen reference point Ñ to compare
vectors.

As for histories (or policies) starting from a certain ini-
tial state and a given horizon, using φÑ or φ′

Ñ
(of the pre-

vious subsection) is equivalent. In a probabilistic language,
φ′
Ñ

(N) is the sum of the probability that N yields a bet-
ter rewards than Ñ while Ñ yields a positive reward and
the probability that N yields a strictly better reward than Ñ
while Ñ yields a negative reward.

4 Solving OMDPs
We now show how those ideas can be used to solve an
OMDP. To simplify the exposition, we will assume from
now on that rewards are counted with a discount factor, i.e.
∗ = β.

Vectorial Reward MDP
From the previous section, it is easy to see that an OMDP
can be viewed as a particular MDP with vectorial rewards
(VMDP). The reward function r̂ : S × A → IRn of this
VMDP is defined from R by ∀s ∈ S,∀a ∈ A, r̂(s, a) =
ei if R(s, a) = ri. This VMDP is a standard multicriteria
MDP (Viswanathan, Aggarwal, and Nair 1977) in which a
preference order over criteria is defined.

In the same fashion as in standard multicriteria MDPs, in
this VMDP, we can recursively define the value function v̂πh
of a policy π at a finite horizon h by ∀s ∈ S,∀t > 0:

v̂π0 (s) = (0, . . . , 0) ∈ IRn (10)

v̂πt (s) = r̂δt(s) + β
∑
s′∈S

P δt(s, s′)v̂πt−1(s′) (11)

where π = (δh, . . . , δ1) and the sums and products over
vectors are componentwise. Moreover, those value functions
are also well defined at the infinite horizon thanks to the dis-
count factor β ∈ [0, 1[. They are simply denoted v̂π . Finally,
one can notice that:
Proposition 1.

∀t > 0,∀s ∈ S, v̂πt (s) = Eπs (N∗(Γ))

and
∀s ∈ S, vπ(s) = Eπs (N∗(Γ))

This VMDP is needed if we choose a policy as a reference
point. The previous equations compute the vector Ñ of ex-
pected numbers of occurrences of each reward for a policy.

As a side note, remark that if finally rewards are numeric
and known, it is possible to relate value functions in a stan-
dard MDP and a VMDP.
Proposition 2. We have:

∀t > 0,∀s ∈ S, vπt (s) =
n∑
i=1

(v̂πt (s))iri

and

∀s ∈ S, vπ(s) =
n∑
i=1

(v̂π(s))iri

where (v̂π(s))i is i-th component of v̂π(s).

Building a Reward Function
As seen previously, picking a reference point implicitly de-
fines a reward function. In the proof of Corollary 3, we
showed how one can define a reference point from numeric
reward values. Here, we show how to define reward values
and then the reward function from a reference point.

From a reference point defined by a vector Ñ ∈ IRn, one
can define reward values uÑ : E → IR by, ∀k = 1, . . . , n:

uÑ (rk) = 0 if k = k0

=
∑k0−1
j=k Ñj if k < k0

= −
∑k
j=k0+1 Ñj if k > k0

(12)

Finally, a reward function RÑ can be defined as follows,
∀s ∈ S, a ∈ A:

RÑ (s, a) = uÑ (R(s, a))

Once a reward function has been defined from a chosen
reference point, any standard method for finding an opti-
mal policy can be exploited as searching for optimal policies
in the OMDP (S,A, P,R) with a reference point is equiva-
lent to solving the standard MDP (S,A, P,RÑ ) by Proposi-
tion 2.

5 Examples
In this section, we illustrate some use cases of our approach.
In the first example, rewards are qualitative and the reference
point is chosen as a history. In the second example, rewards
are numeric but difficult to quantify and the reference point
is a policy. In the last example, our approach is used to ob-
tain a policy that could be considered better than an optimal
policy (in a standard MDP) when the policy has to be applied
only once or a few times.

Navigation in a Hostile Environment
Let us first consider the problem of navigation of an au-
tonomous robot in a hostile environment. This problem can
be modeled by an OMDP where the states are the differ-
ent possible positions of the robot, the actions are the di-
rections where it can move to, the transitions are probabilis-
tic as the ground can be slippery, the robot does not control
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perfectly its motors... The rewards represent qualitative risk
levels (safe, mildly dangerous, dangerous, very dangerous).
For example, we know that some zones are more dangerous
than others from past observations. The robot is in an initial
state and wants to reach a goal state. And we would like the
robot to avoid dangerous zones as much as possible.

In this problem, it could be easy to find acceptable histo-
ries, which are simply paths in this context. In those paths,
we could count the numbers of occurrences of the different
risk levels to define a reference point.

Production Planning in a Strategy Game
Now, let us assume that we want to build an AI for a non-
player character (NPC) in a strategy video game, like Strata-
gus (Ponsen et al. 2005). In such games, the NPC has to
decide in which order to build its units and/or its buildings
in order to develop quickly. This problem can be modeled as
an OMDP. A state would then be a description of the game
board. An action would be the unit and/or the building to
build. The transition function would describe the dynamics
of the game. In this problem, it is particularly difficult to
value numerically the feedback for each action. Using or-
dinal rewards could ease this task. In addition, in order to
define completely the preference system, one can then use
as a reference point histories generated by or more generally
the policy of a good human player, which can be deduced
from the recorded past games.

Doing Better than an Optimal Policy
For this last example, we want to show that our approach can
even be exploited when the values of rewards are known. Let
us assume that the planning problem that we want to solve
has already been modeled by an MDP. In that MDP, an op-
timal policy π∗ can be determined. However, π∗ is consid-
ered better than other policies only when it is applied a high
number of times as it is optimal for the expectation criterion.
When we know in advance that we are going to run a pol-
icy only once or a few times, a much better approach can
be adopted. Using π∗ as a reference point in our preference
system, we can find a better policy π∗∗. In the probabilis-
tic language, π∗∗ would be the policy whose probability of
getting rewards better than those of π∗ is the greatest. Our
preference system may permit to obtain reliable policies.

6 Conclusion
We have extended the model of Markov decision processes
(MDP) for taking into account ordinal rewards. We have
shown how to define in such a setting expressive and inter-
pretable preferences. This model is useful in the situations
where rewards are difficult to assess but also to those where
the nature of rewards are really qualitative. Even when re-
wards can be defined easily and naturally, our approach can
be useful for finding good policies when we know in ad-
vance that a policy is going to be applied only once or a few
times, as illustrated in the last example.
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