
Automatic Construction of Efficient Multiple Battery Usage Policies

Maria Fox and Derek Long
University of Strathclyde, UK

Daniele Magazzeni
University of Chieti-Pescara, Italy

Abstract

Efficient use of multiple batteries is a practical problem with
wide and growing application. The problem can be cast
as a planning problem. We describe the approach we have
adopted to modelling and solving this problem, seen as a
Markov Decision Problem, building effective policies for bat-
tery switching in the face of stochastic load profiles. Our so-
lution exploits and adapts several existing techniques from
the planning literature and leads to the construction of poli-
cies that significantly outperform those that are currently in
use and the best published solutions to the battery manage-
ment problem. We achieve solutions that achieve more than
99% efficiency compared with the theoretical limit and do so
with far fewer battery switches than existing policies.
We describe the approach in detail and provide empirical
evaluation demonstrating its effectiveness.

1 Introduction
In this paper we describe an application of planning to an
important problem in battery management. There is a huge
and growing number of systems that depend on batteries for
power supply, ranging from small mobile devices to very
large high-powered devices such as batteries used for lo-
cal storage in electrical substations. In most of these sys-
tems, there are significant user-benefits or engineering rea-
sons to base the supply on multiple batteries, with load being
switched between batteries by a control system. Unfortu-
nately, due to the physical and chemical properties of batter-
ies, it is possible to extract a greater proportion of the energy
stored in a single battery of capacity C than of that stored
in n batteries each of capacity C/n, for n > 1. Through-
out this paper, when we refer to the relative efficiency in
the use of multiple batteries, we mean the proportion of
the charge we extract from them compared with servicing
the same load from a single battery with capacity equal to
the combined collection of batteries and equivalent physical
properties. The key to efficient use of multiple batteries lies
in the design of effective policies for the management of the
switching of load between them. Note that we are concerned
here with a situation in which the load can be serviced en-
tirely by a single battery at a time, so the problem is distinct
from the management of cells within a single battery. An
example of a context in which multiple battery use occurs is

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in laptops equipped with multiple battery bays. More effi-
cient use of multiple batteries can be achieved by exploiting
the phenomenon of recovery, which is a consequence of the
chemical properties of a battery: as charge is drawn from a
battery, the stored charge is released by a chemical reaction,
which takes time to replenish the charge. In general, charge
will be drawn from a battery faster than the reaction can re-
plenish it and this can lead to a battery appearing to become
dead when, in fact, it still contains stored charge. By allow-
ing the battery to rest, the reaction can replenish the charge
and the battery become functional once again. Thus, effi-
cient use of multiple batteries involves carefully timing the
use and rest periods. This problem can be seen as a planning
problem.

The paper is organised as follows: we describe the prob-
lem in detail and then show how the problem can be seen
as a planning problem. We describe the approach we have
adopted in solving the problem and then compare the perfor-
mance of our solution with the best policies currently con-
sidered for multiple battery management.

2 The Multiple Battery Usage Problem
The multiple battery usage planning problem has been ex-
plored by several authors, from an electrical engineering per-
spective (eg (Benini et al. 2003)) and also from a schedul-
ing perspective (Jongerden et al. 2009). Benini et al con-
struct a very accurate battery model, parameterising it to
capture lithium-ion, cadmium-nickel and lead-acid battery
types, and show how hand constructed policies can achieve
efficiency, relative to a single battery, between 70% and
97.5%. To achieve this, the policy is constructed to select
a new battery whenever the voltage of the battery currently
servicing a load drops below a certain threshold. The next
battery is selected according to one of four alternative poli-
cies (Benini et al. 2003):

• Vmax: select the battery pack with highest state of charge.

• Vmin: select the battery pack with lowest state of charge.

• Tmax: select the battery pack that has been unused for the
longest time.

• Tmin: select the battery that has been unused for the
shortest time.

The authors show that Vmax is the best of these policies,
tested on up to four batteries.

74

Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling

Jongerden et al (Jongerden et al. 2009) uses a model
checking strategy, based on UPPAAL, to schedule battery use
given a known load profile. The approach is based on the use
of a different battery model, the Kinetic Battery Model, dis-
cussed in more detail below. This is a non-linear continuous
model and the authors treat it by discretisation and schedul-
ing to a horizon. This approach allows them to find highly
effective schedules, but it does not scale well because of the
need to use a fine-grained discretisation of the temporal di-
mension. It is worth emphasising, since it contrasts with
our approach, that Jongerden et al work with a fixed size
discretisation of time, allowing them to focus on scheduling
the resources (batteries) into the load periods.

In deployed systems, the standard policies are typically
static, based on rapid switching between available batteries.
In fact, an optimal use of multiple batteries can be achieved
theoretically by switching between them at extremely high
frequency, when the behaviour converges on that of a sin-
gle battery. Unfortunately, this theoretical solution is not
achievable in practice because of the losses in the physical
process of switching between batteries, as the frequency in-
creases. Round-robin (which is similar to Tmax above) or
best-of-n (similar to Vmax above) policies applied at fixed
frequencies are the most commonly fielded solutions, but
these often achieve less than 80% efficiency (Benini et al.
2003). The efficiency of the use of multiple batteries can be
assessed both by the relative lifetime compared with a sin-
gle battery (to be maximised) and by the number of switches
required to achieve it (to be minimised).

2.1 Objectives
In this paper our objective is to construct policies for mul-
tiple battery problems, where load is modelled probabilis-
tically using known distributions for load size, load dura-
tion and load frequency (or equivalently, the gaps between
successive loads). The best deployed solutions typically de-
liver less than 80% efficiency, while the best published so-
lutions deliver less than about 95% efficiency. We show that
our approach, based on construction of optimising solutions
to Monte Carlo sampled problem instances and their use in
the construction of appropriate policies, produces robust so-
lutions that deliver better than 99% efficiency, while using
smaller numbers of battery switches than published policies.
We use a well-established continuous battery model as the
basis of our construction of optimising solutions and this
raises challenges in the treatment of the non-linear mixed
discrete-continuous optimisation problem, as we discuss be-
low. The model is a first-order approximation of battery be-
haviour, but analysis has shown that it is one of the most
accurate analytic models available and is, in fact, more ac-
curate than the model used by Benini et al to test their poli-
cies (Jongerden and Haverkort 2009).

2.2 The Kinetic Battery Model
The battery model we use is the Kinetic Battery
Model (Manwell and McGowan 1994; Jongerden et al.
2009), in which the battery charge is distributed over two
wells: the available-charge well and the bound-charge well
(see Figure 1). A fraction c of the total charge is stored
in the available-charge well, and a fraction 1 − c in the

δ

γTotal charge

Bound

charge

charge

Charge flow Load draws

charge

Available

Figure 1: Kinetic Battery Model

bound-charge well. The available-charge well supplies elec-
trons directly to the load (i(t)), where t denotes the time,
whereas the bound-charge well supplies electrons only to
the available-charge well. The charge flows from the bound-
charge well to the available-charge well through a “valve”
with fixed conductance, k. When a load is applied to the bat-
tery, the available charge reduces, and the height difference
between the two wells grows. When the load is removed,
charge flows from the bound-charge well to the available-
charge well until the heights are equal again.

To describe the discharge process of the battery, as
in (Jongerden et al. 2009), we adopt coordinates represent-
ing the height difference between the two wells, δ, and the
total charge in the battery, γ. The change in both wells is
given by the system of differential equations (1), with solu-
tions (2):

dδ
dt =

i(t)
c − k

′δ dγ
dt = −i(t) (1)

δ(t) = i
c ·

1−e−k′t

k′ γ(t) = C − it. (2)

where k′ = k/(1 − c)c, δ(0) = 0 and γ(0) = C, and C is
the total battery capacity.

This model is less sophisticated than that used by
Benini et al (Benini et al. 2001), but a comparison of bat-
tery models by Jongerden and Haverkort (Jongerden and
Haverkort 2009) concludes that the Kinetic Battery Model
(KiBaM) is the best for performance modelling.

2.3 Battery Usage Planning
The KiBaM is a deterministic non-linear continuous model
of battery performance. This lends itself, in principle, to use
in an optimisation problem solver that can find the best bat-
tery usage plan, given a load profile. However, in most real
battery usage problems the load profile is generated by exter-
nal processes, typically controlled directly or indirectly by
user demands. These demands can often be modelled prob-
abilistically, reflecting typical patterns of use. In our work
we assume that the profiles are drawn from a known distri-
bution. The consequence is that the planning problem ceases
to be a deterministic optimisation problem, but a probabilis-
tic problem in which the plan must be a policy.

The problem can be cast as a hybrid temporal Markov
Decision Process, in which the states are characterised
by the states of charge of the batteries, the current load
and the currently active battery. Battery switching ac-
tions are deterministic, but the events that cause load to
change are not. The time between events is also gov-
erned by a stochastic process, but the timing of switch-

75

ing actions is controllable. More formally, for a prob-
lem with n batteries, a state is characterised by the tuple
(sb1, sa1, sb2, sa2, ..., sbn, san, B, t, L), where sbi is the
bound charge in battery i, sai is the available charge in
battery i, B is the number of the battery currently servic-
ing load (1 ≤ B ≤ n), t is the time of the state and L
is the current load. Out of each state there is a determin-
istic action, Use B′, which causes a transition to the state
(sb1, sa1, sb2, sa2, ..., sbn, san, B

′, t, L), in which battery
B′ is the battery servicing load. There is also a non-
deterministic action, wait(T), where T is a time interval,
which causes a transition to a state in which time has ad-
vanced to time t′ ≤ t+T , the state of charge of battery B is
updated according to the battery model and the load might
be different (according to the probability distribution gov-
erning loads). The interpretation of the action is that it ad-
vances time to the next event, which will be when a battery
is depleted of available charge, or when the load changes, or
when T time has passed, whichever is first.

A variety of approaches have been proposed for solving
continuous Markov Decision Processes. Meuleau et al pro-
pose hybrid AO* search (Meuleau et al. 2009), using a dy-
namic programming approach to guide heuristic search for
problems involving continuous resources used by stochas-
tic actions. This approach does not handle time-dependent
resource consumption, but it appears that the above MDP
could be modelled for solution by this approach. The au-
thors give empirical data for solution of problems with
up to 25,000 states. Our model, with an appropriate dis-
cretisation, contains more that 1086 states for 8 batteries.
Mausam and Weld (Mausam and Weld 2008) describe a
planner for concurrent MDPs, which are MDPs with tempo-
ral uncertainty. Again, these problems are similar to ours,
although their planner does not manage continuous time-
dependent resources, so is not directly applicable to our
problem. Furthermore, the largest problems they consider
contain 4,000,000 states and take more than an hour to solve.

In solving very large MDPs, researchers have identified
a variety of techniques that can help to overcome the pro-
hibitive cost of policy iteration or value iteration, the clas-
sical techniques for solving MDPs. In general, these tech-
niques approximate the solution, often focussing on those
parts of the policy that apply to states that are likely to be
visited along the trajectory. Relevant techniques are dis-
cussed in (Bertsekas and Tsitsiklis 1996). We use a variant
of hindsight optimisation (see eg (Chang, Givan, and Chong
2000)), in which we solve a deterministic sampled problem
using an optimising solver, to generate an ideal trajectory
for the problem instance. Using a collection of such sam-
ples as our base, we then learn a classifier that characterises
the policy for the part of the space we have sampled. A clas-
sifier is simply a function from one space to another. In
our case, we learn a function from the state space to the
actions. This approach is similar to other work built on
the use of machine learning applied to policy rollout sam-
ples, particularly due to Fern, Yoon and Givan (2004; 2006;
2007), however that work addresses propositional domains
while here we are interested in continuous problems.

In general, the samples-based approach works well when
the policy structure is less complex to represent than the
value function for the problem space. To extend the learned

classifier to a complete policy involves ensuring that an ac-
tion is assigned to every possible state. This can be achieved
by adding some default behaviour to cover states that are
otherwise not handled by the classifier, or else by managing
run-time errors in the use of an incomplete policy in a way
appropriate to the application.

2.4 Our Approach
We adopt an approach based on a combination of two ideas.
Firstly, we sample from the distribution of loads to arrive at
a deterministic problem, which we then solve using the con-
tinuous KiBaM as our battery model. This leads to an inter-
esting continuous non-linear optimisation problem, which
we solve using a discretise and validate approach. Currently
we are using UPMurphi (Della Penna et al. 2009) to solve
the deterministic instances but, after discretisation, any met-
ric temporal planner could be used. Secondly, we combine
the solutions to the sample problem instances to arrive at a
policy for the MDP from which the problems are drawn. Our
approach is domain-specific in some respects:

• Our discretisation scheme, while based on general princi-
ples, is selected for the problem domain and load distri-
bution.

• We use a search heuristic that, while not restricted to the
battery problem alone, is not suited to all problems.

• The aggregation of solutions into a policy also makes use
of an entirely general approach, but the extent to which
the approach yields good policies will depend on the na-
ture of the problem space in which it is applied.

We make use of existing tools as far as is possible, to sim-
plify the construction of our solution.

3 Solving Deterministic Multiple Battery
Problems

In this section we consider the multiple battery manage-
ment problem as an optimisation problem, when faced with
a known and deterministic load profile.

3.1 A PDDL+ Battery Model
PDDL+ (Fox and Long 2006) is an extension of the stan-
dard planning domain modelling language, PDDL, to cap-
ture continuous processes and events. The dynamics of
KiBaM can be captured very easily in PDDL+. In Figure 2
we show the two processes, consume and recover, that gov-
ern the behaviour of cells and the event triggered by attempt-
ing to load a cell once its available charge is exhausted. In
addition, there is a durative action of variable duration that
allows the planner to use a cell over an interval. The two pro-
cesses are active whenever their preconditions are satisfied,
meaning that they usually execute concurrently. Together,
they model both the draining of charge and the recovery that
are described in the differential equation dδ/dt. An event is
triggered if there is ever a positive load and no active service.

The use of PDDL+ as our modelling language grants sev-
eral benefits. Firstly, it allows us to use VAL (Howey, Long,
and Fox 2004) to validate solutions analytically against the

76

(:process consume
:parameters (?c - cell)
:precondition (switchedOn ?c)
:effect (and (decrease (gamma ?c) (* #t (load)))

(increase (delta ?c) (* #t (/ (load) (cParam ?c))))))

(:process recover
:parameters (?c - cell)
:precondition (>= (delta ?c) 0)
:effect (and

(decrease (delta ?c) (* #t (* (kprime ?c) (delta ?c))))))

(:event cellDead
:parameters (?c - cell)
:precondition

(and (switchedOn ?c)
(<= (gamma ?c) (* (-1 (cParam ?c)) (delta ?c))))

:effect (and (not (switchedOn ?c)) (dead ?c)))

Figure 2: Part of PDDL+ encoding of KiBaM dynamics

continuous model, allowing us to confirm that the discretisa-
tion we use during construction of solutions does not com-
promise the correctness of the plan. Secondly, it provides us
with a semantics for our model in terms of a timed hybrid au-
tomaton (following from (Fox and Long 2006)). Finally, we
can make use of existing tools that construct and search in
spaces defined by PDDL+ models, such as UPMurphi (Della
Penna et al. 2009).

3.2 The Discretise and Validate Approach
Our system is based on a discretise-and-validate approach,
in which the continuous dynamics of the problem are relaxed
into a discretised model, where discrete time steps and corre-
sponding step functions for resource values are used in place
of the original continuous dynamics. This relaxed problem
is solved using a forward reachability analysis and then so-
lutions are validated against the continuous model using the
validator, VAL (Howey, Long, and Fox 2004). The valida-
tion process is used to identify whether a finer discretisation
is required and guide remodelling of the relaxed problem.
VAL provides analytic solutions to differential equations in-
volved in the models. Although Jongerden et al also use a
discretisation approach, they fix the granularity of the time-
step in advance. In contrast, we use a variable sized discreti-
sation, by allowing a range of alternative sized step sizes to
be considered during search.

We now introduce the formal statement of the determinis-
tic version of the problem we are interested in. A hybrid sys-
tem is a system whose state description involves continuous
as well as discrete variables. We approximate the system by
discretising the continuous components of the state (which
we assume to be bounded) and their dynamic behaviours so
obtaining a finite number of states.
Definition 1 (Finite State Temporal System) A Fi-
nite State Temporal System (FSTS) S is a 5-tuple
(S,s0,A,D,F), where: S is a finite set of states, s0 ∈ S
is the initial state, A is a finite set of actions, D is a
finite set of durations and F : S × A × D → S is the
transition function, i.e. F (s, a, d) = s′ iff the system
can reach state s′ from state s via action a having a
duration d. For each state s ∈ S, we also define the set
EnAct(s)= {a ∈ A|∃d ∈ D : F (s, a, d) ∈ S}, as the set of
all the actions enabled at state s.

In an FSTS, each state s ∈ S is assumed to contain a special
temporal variable t denoting the time elapsed in the current

path from the initial state to s. In the following we use the
notation t(s) for the value of variable t in state s. For all si,
sj ∈ S such that F (si, a, d) = sj , t(sj) = t(si) + d.

Definition 2 (Trajectory) A trajectory in the
FSTS S = (S, s0,A,D, F) is a sequence π =
s0a0d0s1a1d1s2a2d2 . . . sn where, ∀i ≥ 0, si ∈ S is
a state, ai ∈ A is an action, di ∈ D is a duration and
F (si, ai, di) = si+1. If π is a trajectory, we write πs(k),
πa(k) and πd(k) to denote the state sk, the action ak and
the duration dk, respectively. Finally, we denote with |π| the
length of π, given by the number of actions in the trajectory,
and with π̃ the duration of π, i.e. π̃ =

∑|π|−1
i=0 πd(i).

In order to define the planning problem for such a sys-
tem, we assume that a set of goal states G ⊆ S has been
specified. Moreover, to have a finite state system, we fix a
finite temporal horizon, T, and we require a plan to reach the
goal within time T . In the case of the battery usage planning
problem, this horizon is very important because it represents
the target duration for the service provided by the battery. In
fact, a good upper bound can be found for the battery prob-
lem, which is discussed further in section 3.3.

Definition 3 (Planning Problem on FSTS) Let S =
(S, s0,A,D, F) be an FSTS. Then, a planning problem
(PP) is a triple P = (S, G, T) where G ⊆ S is the set
of the goal states and T is the finite temporal horizon. A
solution for P is a trajectory π∗ in S s.t.: |π| = n, π̃ ≤ T ,
π∗s (0) = s0 and π∗s (n) ∈ G.

The constraints we add to the temporal planning problem
are parameterised and can be iteratively relaxed in order to
explore successively larger spaces for plans. We use a finite
collection of possible durations for segments of processes
(Definition 2). This set can be refined by the addition of
smaller durations if successive searches fail to find a solu-
tion. Allowing different durations within the same search
enables the planner to construct states that interact with ex-
ecuting processes at different time points, while stepping
quickly along the timeline where there are no interesting fea-
tures.

To use variable discretisation efficiently, we break the
symmetry in the structure of the search space that arises
from the possible orderings of different length action in-
stances. Redundancy is eliminated by disallowing the use
of long duration actions immediately following shorter du-
ration versions of the same actions. Long duration actions
can only be used if an event or other action has intervened
since the last short action in the family. We also disallow the
repeated consecutive use of short duration actions beyond
the accumulated duration of the next longer duration action.
The longest duration action can be repeated arbitrarily of-
ten.

3.3 The Monotonicity Property and Planning
The battery domain has an important property that supports
a simple heuristic evaluation function for states: the charge
in the battery monotonically decreases over time and the op-
timal solution is the one that gives the longest possible plan.
An upper bound on the duration of the solution can be found
using the observation that the optimal duration cannot ex-
ceed that of a single battery with combined capacity equal

77

����������������

�����������������

��������	�������������������������

��������
��������������	
��������

����������������

��������

��	
�	

��������	���������

��������
���������

�

�

�

�

�

����
�

������

��� ��� ��� �� �� ��

�����	��

Figure 3: Example of search using variable discretisation

to the sum of the capacities of the multiple batteries (as-
suming the same discharging and flow behaviours). Once
we have a horizon, we construct and search our discretised
search space. To make this approach practical, it is essen-
tial that we have an informed heuristic to search the space.
For this domain, duration of the plan to the current state plus
total remaining charge is admissible, but completely unin-
formative, but duration plus total available charge is highly
informative. This is also equivalent to minimising the total
bound charge. We then use a best-first search to efficiently
explore the reachable space.

This heuristic is suitable for a class of domains: any do-
main where there is a monotonically decreasing resource,
and the longest plan is required (such as the satellite domain
against a finite amount of resources), a heuristic that sums
plan duration with available resource will be informative.

3.4 Plan Search with Variable Discretisation
We now illustrate the way in which the range of differently
sized duration intervals can lead to significant benefits in the
size of the set of visited nodes in the search space, compared
with using a fixed duration increment.

Consider the load profile shown at the top of Figure 3.
The planning problem for two cells is defined according to
definitions 1 and 3, with G = {s ∈ S|t(s) = 2.42}, i.e.
the goal is to service the whole load profile. The temporal
horizon T is set to the duration of the profile as well. The
definition of the FSTS is straightforward: the set of actions
is A = {useC1,useC2,wait} where the former actions
refer to the cell being used while the latter one is applicable
when there is no active service. The set of durations we use
for this example is D = {0.01, 0.4, 0.5, 1.0} (measured in
minutes). In practice, to define the set of durations we start
with a minimum value given by the time required for the de-
cision making process, then we add exponentially increasing
values up to a maximum duration given by the longest inter-
val between different events (i.e., load variations). In partic-
ular, the smallest duration is included in order to handle very
sensitive interactions.

In the initial state s0 there is no load and no active ser-
vice and both cells have a limited initial capacity. In this
setting, the plan search with variable discretisation proceeds

as follows:

1. No cell is used for a period of 1 minute (when the load is
idle). The corresponding transition is shown in Figure 3.

2. After one minute a load is applied and cell 1 is used. This
corresponds to transition < s1,useC1, 1.0, s2 >. How-
ever, for sake of simplicity, let us assume that, due to their
limited capacity, cells cannot be used continuously for 1
minute. The transition is thus not valid and a shorter du-
ration has to be considered.

3. Cell 1 is used for 0.5 minute. Then, since a load is still
applied, the second cell is used. As before, the transition
< s2,useC2, 1.0, s3 > can be considered, but in this
case there would be an active service and no load.

4. Cell 2 is used for 0.5 minute. In the next period no
load is applied, then no cell is used. The transition
< s3,wait, 0.5, s4 > is considered, but it would lead
to a positive load and no active service, so the duration of
action wait has to be reduced to 0.4.

5. To service the last load period of 0.02 minute, cell 1 could
be used. However, in this sample instance let us assume
that the remaining charge in cell 1 allows it to service only
0.01 minute. So, finally, cell 2 is used until the end of the
load profile.

The validity of a transition is dynamically checked dur-
ing the search since invalid transitions trigger specific events
(e.g. event cellDead is triggered at step 2 and event
disaster is triggered at step 4) which, in turn, violates the
invariant conditions of corresponding actions (a cell must
not die during use). Moreover, with variable discretisation
only 6 states have to be visited in order to reach the goal,
while using a uniform discretisation it is necessary to ex-
plore at least 242 states since the finest discretisation of 0.01
must be used in order to correctly handle the interactions in
steps 5 and 6.

A further benefit of the use of differently sized durations
in the discretisation is that favouring longer durations re-
duces the number of switches in the solutions we generate,
leading to solutions that are better in practical terms than
those based on a high frequency switching between batter-
ies, as is shown in subsequent results.

3.5 Performance on Deterministic Load Problems
We now present a first set of experimental results to show the
performance of our solver on the deterministic battery usage
optimisation problem. We use the same case study proposed
in (Jongerden et al. 2009), where two types of jobs are con-
sidered, a low current job (250 mA) and a high current job
(500 mA), according to the following load profiles:

• continuous loads: one load with only low current jobs
(CL 250), one with only high current jobs (CL 500) and
one alternating between a low current job and a high cur-
rent job (CL alt);

• intermittent loads with short idle periods of one minute
between the jobs: one with only low current jobs
(ILs 250), one with only high current jobs (ILs 500), and
one alternating between a low current job and a high cur-
rent job (ILs alt);

78

load best-of-two UPPAAL-KiBaM DD-KiBaM 8 batteries B2

profile lifetime lifetime lifetime (visited states) lifetime (number of switches)
B1 B2 B1 B2 B1 B2 best-of-8 DD DD-Policy

CL 250 12.16 46.92 12.04 N/A 12.14 (194) 46.91 (691) 310.6 (31072) 307.6 (485) 307.6 (992)
CL 500 4.59 12.16 4.58 N/A 4.59 (116) 12.14 (194) 134.7 (13472) 133.4 (266) 133.4 (571)
CL alt 7.03 21.26 6.48 N/A 7.03 (136) 21.2 (350) 192.8 (19280) 190.8 (355) 190.8 (806)

ILs 250 44.79 132.8 40.80 N/A 44.76 (552) 132.7 (1068) 660.7 (33076) 654.1 (495) 654.1 (904)
ILs 500 10.82 44.79 10.48 N/A 10.8 (131) 44.76 (552) 308.7 (15476) 305.7 (293) 305.7 (513)
ILs alt 16.95 72.75 16.91 N/A 16.92 (159) 72.55 (599) 424.8 (21280) 420.6 (357) 420.6 (614)
ILl 250 84.91 216.9 78.96 N/A 84.88 (488) 216.8 (1123) 1008.9 (33692) 998.8 (471) 998.8 (822)
ILl 500 21.86 84.91 18.68 N/A 21.85 (173) 84.88 (488) 480.9 (16090) 476.1 (295) 476.1 (597)

Table 1: System lifetime (in minutes) for all load profiles according to different battery usages

• intermittent loads with long idle periods of two min-
utes between the jobs: one with only low current jobs
(ILl 250) and one with only high current jobs (ILl 500).
As a first step, we used these load profiles to validate our

variable-range discretisation KiBaM model (DD-KiBaM),
and to find an appropriate discretisation for the continuous
variables involved in the system dynamics (i.e. variables γ
and δ and process durations). To do this we used VAL to
validate solutions for the discretised model against the con-
tinuous model, using single cell batteries. As in (Jonger-
den et al. 2009), we considered two battery types, one with
capacity 5.5 Ahr (B1) and one with capacity 11 Ahr (B2).
Both battery types have the same parameters: c = 0.166
and k′ = 0.122hr−1. We discretised γ and δ, rounding
them to 0.00001, and, for all the load profiles above and
for both battery types, we obtained the same lifetimes com-
puted with the original KiBaM and validated in (Jongerden
and Haverkort 2008).

To generate the scheduling plans for multi-
cell batteries, we used the approach described
in sections 3.2 and 3.3 and the set of durations
D = {0.01, 0.02, 0.05, 0.1, 0.25, 0.5, 1.0}. We compared
our solutions to those obtained using the UPPAAL-based
approach. The resulting lifetimes are shown in Table 1
where the second column shows the theoretical upper
bound given by an extremely high-frequency switching. In
all load profiles considered we observe that our approach
outperforms significantly the UPPAAL-based one, providing
solutions that achieve more than 99% efficiency compared
with the theoretical limit. The key points described in the
preceding parts of this section allow the resulting search
to efficiently prune the state space and quickly find the
solutions. In particular, by using variable discretisation it is
possible to consider a much finer discretisation for variables
γ and δ than is used in (Jongerden et al. 2009) and to handle
very sensitive interactions. This is crucial, particularly
when the available charge in the cells is almost exhausted.
Jongerden et al (2009) describe their plans as optimal, but
it is important to note that this is only with respect to the
discretisation that they use; a finer-grained discretisation
offers the opportunity for a higher quality solution to be
found at the cost of a much larger state space. Despite the
very large state space our model creates, the solver visits a
very small collection of states (as shown in the table). These
problems are all solved in less than a second.

Moreover, when dealing with larger batteries of type B2,
the state space becomes so large that any exhaustive ap-
proach is infeasible. Indeed, in (Jongerden et al. 2009;
Jongerden and Haverkort 2008) the authors were not able
to handle this second case. We also found high quality solu-
tions for batteries of typeB2, an example is shown in Figure
4 compared with the Vmax solution, showing the huge im-
provement we can obtain over this policy. Note that the slic-
ing of the load periods occurs towards the end of the plan,
and this is a phenomenon we have observed in all our plans.

Our results also show performance on a 8 battery system
(see Figure 5), showing that we can scale effectively to much
larger problems. Notice that the number of switches we
use to produce the results is very significantly smaller than
the best-of-8 policy, however the resulting solutions achieve
more than 99% efficiency. The final column, labelled DD-
Policy, shows the performance of the policies we discuss in
the next section, applied to these load profiles. These gener-
ate slightly worse performance in switches, but maintain the
lifetime performance.

4 From Plans to Policies
Having shown how to generate high quality plans for de-
terministic multiple battery management problems, we now
turn our attention to the stochastic problem we are really in-
terested in solving. In general, we cannot know in advance
what will be the load profile applied to the batteries, but we
assume that a probability distribution characterising typical
use of the batteries is available. To manage the batteries in
this setting we need a policy. Our policy will be a func-
tion that determines which battery to use when load must be
serviced, using the current states of charge of the available
batteries as the basis for making the decision.

One way to approach this problem is to see the mapping
as a classification, where the state of the batteries is mapped
to a class corresponding to the correct choice of battery. We
can use the solutions to the determinised problems as the
basis of a classifier construction problem and use an existing
machine learning approach to build a good classifier.

Several important observations can be made. Firstly, the
successful construction of a classifier depends on there be-
ing exploitable structure in the space defined by the solu-
tions to the determinised problems. Secondly, the states are
described by continuous variables: we discretise these for
the purpose of building the classifier. Thirdly, our solution

79

 0

 2

 4

 6

 8

 10

 12

 0 1000 2000 3000 4000 5000 6000 7000

ch
ar

ge
 (

A
hr

)

time (0.01 min)

total charge cell 1
 total charge cell 2

available charge cell 1
available charge cell 2

battery schedule

(a) Vmax (based on the feasible frequency
switching used in (Jongerden et al. 2009))

 0

 2

 4

 6

 8

 10

 12

 0 1000 2000 3000 4000 5000 6000 7000

ch
ar

ge
 (

A
hr

)

time (0.01 min)

total charge cell 1
total charge cell 2

available charge cell 1
available charge cell 2

battery schedule

(b) DD-KiBaM

Figure 4: ILs alt load test with two batteries of type B2

set will generally not cover the whole space of reachable
states, so it is important that we complete the policy with a
sensible default rule when the input state is too distant from
any of the previously encountered states. In our case, the
default rule is a best-of-n rule, which is the best of the pub-
lished hand-constructed policies for this problem. Finally,
we note that deployment of the final policies will require
that they can be efficiently implemented in cheap hardware.
Simple classifier rule systems can be very effectively im-
plemented in look-up tables, which are ideal for implemen-
tation on Field Programmable Gate Arrays (FPGAs) or as
purpose-built hardware.

4.1 Policy Learning through Classification
WEKA (Hall et al. 2009) is a machine learning framework,
developed at the University of Waikato, that provides a set
of classification and clustering algorithms for data-mining
tasks. WEKA takes as input a training set, comprising a list
of instances sharing a set of attributes. In order to perform
the classification on the battery usage problem data, we con-
sider inputs with the form τ = (σ1, γ1, . . . , σN , γN , B, L),
where σi and γi denote the available charge and total charge
of the ith battery, respectively, B is the currently active bat-
tery and L is the current load (this is essentially the state, as
described in section 2.3, but without the time label, since we
want our policy to operate independently of time). In this
setting, the attribute used as the class is the battery B.

 0

 2

 4

 6

 8

 10

 0 5000 10000 15000 20000 25000

lo
ad

 a
m

pl
itu

de
 /

ba
tte

ry
 in

 u
se

time (0.01 min)

battery schedule
load

Figure 5: DD policy for 8 batteries with a stochastic load

We used stochastic load profiles with distributions:
• the load amplitude l ∈ [100 . . . 750] mA;
• the load/idle period duration d ∈ [0.1 . . . 5] min;
• the load frequency f ∈ [0.3 . . . 0.7].

This leads to load profiles that are very irregular (see the
bottom of Figure 5) and therefore harder to handle than the
very regular profiles considered by Jongerden et al. We
generated a set of stochastic load profiles and for each of
them we produced a near-optimal plan using the determinis-
tic solving described in Section 3. This set of plans has been
used as the training set for the classification process.

In order to select the most suitable classification algo-
rithm, we applied all the classifiers provided by WEKA to
a data set of 10,000 training examples. We first evaluated
their performance as the number of correctly classified in-
stances during the cross-validation. We discarded classifiers
providing less than 70% correctness. We then considered
the memory and the time required to use the classifier. The
output of the classification process is a model encoding the
resulting decision tree. In some cases, the generated model
requires significant memory to store (more than 500Mb of
RAM memory), or it is too slow to be used. These param-
eters have also been used to determine the number of train-
ing examples to classify, as the bigger the training set, the
better the performance and the higher the memory and time
requirements.

According to these criteria, we selected the J48 classi-
fier, which implements the machine learning algorithm C4.5.
The output is a decision tree whose leaves represent, in our
case study, the battery to be used. This classifier proved
well suited to this task, as 99% of instances were correctly
classified during the cross-validation performed by WEKA.
For the cardinality of the training set, an empirical evalua-
tion showed that the best result is obtained using 250,000
training examples (note that this involves considering about
4 · 106 real values) since further extending the training set
does not make any significant improvement in the perfor-
mance but increases memory and time requirements.

4.2 Results from Policies
In order to use the decision tree we embedded the WEKA
classes for loading the classification model into our battery
simulation framework. The model for the 8 battery case is
represented by a tree with 61 levels and consists of 7645

80

load best-of-8 DD-Policy
profile time(σ) sw(σ) time(σ) sw(σ)

R100 792.6(15.5) 71383(1379) 786.2(15.4) 1667(161)

R250 369.8(1.91) 28952(853) 366.7(2.02) 1518(143)

R500 226.7(2.13) 14671(512) 224.6(2.27) 987(122)

R750 188.3(0.8) 11519(463) 186.4(0.7) 302(33)

Table 2: Average system lifetime and number of switches
for stochastic load profiles for 8 battery systems

nodes, each one containing a comparison between one of the
state variables and a threshold. Applying this decision tree
to determine which battery to load at each decision point
takes negligible time.

To evaluate the performance of the policy we considered
four probability distributions with different average value
for the load amplitude, namely 100, 250, 500, 750 mA. For
each distribution we generated 100 stochastic load profiles
and we used the policy to service them. Table 2 shows the
average value and standard deviation for the system lifetime
and the number of switches obtained using the best-of-8 pol-
icy at high frequency switching and our policy.

Also in this case, we observe that our policy achieves
more than 99% efficiency compared with the theoretical up-
per bound given by the best-of-8 policy executed at very
high frequency (recall that this is infeasible in practice).
Moreover, the number of switches involved by the policy is
slightly greater than in the corresponding deterministic solv-
ing, but it remains completely acceptable.

5 Conclusions and Future Work
In this paper we have presented an effective solution to an
increasingly important multiple battery management prob-
lem. The best existing solutions are capable of delivering
no better than 95% efficiency compared with a single bat-
tery, while our solution achieves better than 99% efficiency.
Although this margin is small, in many applications a small
margin can be of considerable added value. Our approach
adapts several existing technologies for automated planning,
to solve a problem that can be seen as a MDP. We use a
form of hindsight optimisation, generating samples of de-
terminised load profiles and solving these problems using
an optimal deterministic solver, before combining the solu-
tions to form a policy. Our policy construction approach
adapts the use of machine learning to construct a classifier.
In the construction of high quality solutions to determinis-
tic problems, we use a special variable-range discretisation
to solve a non-linear continuous optimisation problem with
very high accuracy, while exploring a very small proportion
of the state space.

Our approach is scalable and effective. Although our
solution is domain-specific in several respects, the compo-
nents are general. The elements that are most tailored to
our problem are the selection of the discretisation range and
the search heuristic. We are currently exploring techniques
to automatically generate an appropriate discretisation range
for a problem, based on an analysis of the problem instance
characteristics and the nature of the dynamics in the domain
description. We believe that the characteristics of this prob-
lem are shared, in outline, by other domains and we are ex-

ploring a more careful characterisation of the problem class
to which the general framework can be applied.

Acknowledgements
The authors wish to thanks Marijn Jongerden and Boudewijn
Haverkort for introducing them to this problem and for early dis-
cussions on approaches to solving it.

References
Benini, L.; Castelli, G.; Macii, A.; Macii, E.; Poncino, M.; and
Scarsi, R. 2001. Discrete-time battery models for system-level low-
power design. IEEE Trans. Very Large Scale Integration Systems,
9(5):630 –640.
Benini, L.; Macii, A.; Macii, E.; Poncino, M.; and Scarsi, R. 2003.
Scheduling battery usage in mobile systems. IEEE Trans. Very
Large Scale Integration Systems 11(6):1136 – 1143.
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic Pro-
gramming. Athena Scientific.
Chang, H. S.; Givan, R.; and Chong, E. K. P. 2000. On-line
scheduling via sampling. In AIPS, 62–71.
Della Penna, G.; Intrigila, B.; Magazzeni, D.; and Mercorio, F.
2009. UPMurphi: a tool for universal planning on PDDL+ prob-
lems. In Proc. 19th Int. Conf. Automated Planning and Scheduling
(ICAPS), 106–113.
Fern, A.; Yoon, S. W.; and Givan, R. 2004. Learning domain-
specific control knowledge from random walks. In ICAPS, 191–
199.
Fern, A.; Yoon, S. W.; and Givan, R. 2006. Approximate policy
iteration with a policy language bias: Solving relational markov
decision processes. J. Artif. Intell. Res. (JAIR) 25:75–118.
Fox, M., and Long, D. 2006. Modelling mixed discrete-continuous
domains for planning. J. Artif. Intell. Res. (JAIR) 27:235–297.
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.;
and Witten, I. H. 2009. The WEKA data mining software: An
update. SIGKDD Explorations 11(1).
Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic plan
validation, continuous effects and mixed initiative planning using
PDDL. ICTAI 00:294–301.
Jongerden, M., and Haverkort, B. 2008. Battery modeling. Techni-
cal Report TR-CTIT-08-01, Centre for Telematics and Information
Technology, University of Twente.
Jongerden, M., and Haverkort, B. 2009. Which battery model to
use? IET Software (Special Issue on Performance Engineering)
3(6):445–457.
Jongerden, M.; Haverkort, B.; Bohnenkamp, H.; and Katoen, J.-
P. 2009. Maximizing system lifetime by battery scheduling. In
Proc. 39th Annual IEEE/IFIP Int. Conf. on Dependable Systems
and Networks (DSN 2009), 63–72.
Manwell, J., and McGowan, J. 1994. Extension of the kinetic bat-
tery model for wind/hybrid power systems. In Proc. 5th European
Wind Energy Association Conf. (EWEC), 284–289.
Mausam, and Weld, D. S. 2008. Planning with Durative Actions
in Stochastic Domains. J. of AI Res. (JAIR) 31:33–82.
Meuleau, N.; Benazera, E.; Brafman, R. I.; Hansen, E. A.; and
Mausam. 2009. A Heuristic Search Approach to Planning with
Continuous Resources in Stochastic Domains. J. of AI Res. (JAIR)
34:27–59.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. Using learned policies
in heuristic-search planning. In Proc. Int. Joint Conf. on AI (IJCAI),
2047–2053.

81

