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Abstract

The paper proposes a method that uses topological in-
formation to guide path planning in any 2D workspace.
Our method builds a topological environment based on
the workspace to compute homotopy classes, which
topologically describe how paths go through the ob-
stacles in the workspace. Then, the homotopy classes
are sorted according to an heuristic estimation of their
lower bound. Only those with smaller lower bound are
used to guide a planner based on the Rapidly-exploring
Random Tree (RRT), called Homotopic RRT (HRRT),
to compute the path in the workspace. Simulated and
real results with an Autonomous Underwater Vehicle
(AUV) are presented showing the feasibility of the pro-
posal. Comparison with well-known path planning al-
gorithms has also been included.

Introduction
The main goal of this research project is to design a motion
system to safely and deliberatively guide and Autonomous
Underwater Vehicle (AUV) towards a goal waypoint. The
vehicle must be able to sense the environment to build a lo-
cal map of the robot surroundings to compute a safe path
towards the goal. Once a path has been found, it is as-
sumed to be reached by a path following algorithm. To
achieve real-time requirements, the motion system has to
be able to update the map and the path according to the
information obtained from the unknown environment in a
reduced amount of time (less than 10-15s). Although path
planning for AUVs is naturally formulated in 3D, for cer-
tain scenarios of interest the problem can be simplified to
2D. For instance, let us consider a survey and/or search mis-
sion where the robot is supposed to fly at a fixed altitude, in
bottom-following mode, while acquiring opto-acoustic im-
agery. Under these conditions, we can consider a 2D map
parallel to the seafloor, where any area with a slope greater
than a certain threshold behaves as a 2D obstacle. This is the
case for applications like benthic habitat mapping, underwa-
ter archeology or cable/pipe inspection, being also the target
for the system proposed in this paper.

This paper addresses the design of the path planning al-
gorithm to generate a path in the local map in a very short
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time. Our approach assumes that the local map is con-
structed just for navigation purposes. This kind of appli-
cation requires fast path planning. Therefore, anytime plan-
ners (Ferguson, Likhachev, and Stentz 2005) are the most
suitable ones: they find a first solution, possibly highly sub-
optimal, very quickly and then they refine it until time runs
out. Usually, the anytime path planners require a multipli-
cation factor ε to control the cost of the generated solution
and a decrement factor to decrease ε at each iteration until
ε = 1 if time does not expire before (Likhachev et al. 2005;
Ferguson and Stentz 2007). For example, the Anytime Re-
pairing A* (ARA*) (Likhachev, Gordon, and Thrun 2004)
inflates the heuristic function using the ε value to guide the
search towards those states which are close to the solution
whose final cost is ensured not to be more than ε times the
cost of the optimal path. Although at each iteration the so-
lution is intended to be improved by decreasing ε, the gen-
eration of a new/better path is not ensured (the same path as
in the previous iteration of the algorithm can be obtained),
which means a waste of computation time in a critical con-
text since the available time to perform the path planning is
very limited.

Recently, (Ferguson and Stentz 2006) developed a prob-
abilistic anytime algorithm called Anytime-RRT (ARRT). It
is a sampling-based planner that works by generating a se-
ries of RRTs where each new tree reuses the cost informa-
tion from the previous tree to control its growth and thus im-
prove the quality of the resultant path. Unlike the ARA*, the
ARRT scarcely reutilizes data between iterations because
each new tree is almost built from scratch.

Using homotopy constrains is another way to tackle the
path planning problem. Two paths that share the start and
the end point belong to the same homotopy class if one can
be deformed into the other without encroaching any obsta-
cle. There are several approaches that deals with homotopy
classes: (Jenkins 1991; Cabello et al. 2002) assume that
obstacles are points without area. Grigoriev and Slissenko
(Grigoriev and Slissenko 1998) propose a method to con-
struct the shortest path for a given homotopy class in a sce-
nario with semi-algebraic obstacles. Recently, Bhattacharya
(Bhattacharya, Kumar, and Likhachev. 2010) proposed a
method that assigns a value to represent the homotopy class
during the computation of shortest path. Then, to obtain
a different path, this value is used to constrain the search.
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However, it is difficult to configure the path planner to fol-
low a specific homotopy class without finding its path and
hence, its value.

This paper proposes the use of homotopy classes to guide
topologically a path planning algorithm. Using the topo-
logical information, the planner does not have to explore
the whole space but the space confined in a homotopy
class. Then, using a lower bound criterion the homotopy
classes that most-probably contain the lower cost solutions
are known. Thus, the algorithm can generate some good so-
lutions very fast and, therefore, act as an anytime algorithm.
Moreover, the homotopy classes allow us to reach the goal
position by avoiding the obstacles in different ways, which
has interest when the robot is surveilling a particular area.

The paper presents an extension of the method proposed
by (Jenkins 1991) to generate homotopy classes that can
be followed in any 2D workspace. Then, the homotopy
classes are sorted according their quality given by a lower
bound estimator. In order to maximize the number of ho-
motopy classes that can be explored, the proposed plan-
ner, called Homotopic RRT (HRRT), is based on the RRT
algorithm which has been shown to be very efficient in
time, even in complex workspaces (Lavalle S. M. 1999;
Kim and Ostrowski 2003). The HRRT algorithm does not
require the setting of the ε nor decrement value. Instead of
starting the search with a highly suboptimal path that is im-
proved over time, it starts looking for a path in the homotopy
class that has a high probability of containing the optimal
solution. The method is proved to be complete because in
case the goal is not reachable, no homotopy classes will ex-
ist and, consequently, no paths will be generated. On the
other hand, it is important to note that the homotopy class of
the global optimal path is guaranteed to be generated by the
algorithm. Finally, in order to evaluate the feasibility of the
work in a motion system of an AUV, the paper presents the
results obtained with an underwater robot. An underwater
environment was built to allow the testing of the path plan-
ning algorithm in a water tank. The robot moved through
the environment, perceiving the obstacles and generating an
Occupancy Grid Map (OGM). Then, the HRRT was applied
generating a path for each homotopy class on the map.

The Jenkins Method
Given a workspace with obstacles, (Jenkins 1991) proposes
a method to generate a topological representation of the en-
vironment which is used to extract all the different homo-
topic paths from the starting to the ending point. Two paths
are homotopic if they go trough the obstacles in the same
manner.

Formally, given a region R defined by the workspace,
let P be the set of all continuous, obstacle-avoiding paths
from a starting point to an ending point. Then, two paths
pi, pj ∈ P are homotopic if they can be mapped to each
other through a continuous function without encroaching
any obstacle. The homotopy relation is reflexive, symmet-
ric, and transitive, and forms an equivalence relation. Thus,
the homotopic functions in P form equivalence classes, and
these are called homotopy classes (Jenkins 1991).

Reference Frame

The reference frame determines, in the metric space, the
topological relationships between obstacles and it is used to
name the homotopy classes. The construction method pro-
posed by (Jenkins 1991) in a scenario with n obstacles starts
by choosing a random point for each obstacle, which is la-
beled as bk, where k = 1..n. Then, a central point c is ran-
domly selected. This point cannot be inside an obstacle nor
be inside the n(n − 1)/2 lines determined by the pairwise
choices of distinct bk. Finally, n lines lk joining c with each
bk are constructed. Each line is partitioned into two directed
semifinite rays: the ray emanating from bk and away from c
is labeled βk and the ray from bk that contains c is labeled
αk. Figure 1a shows an example of a reference frame in a
scenario with two obstacles.

Using the reference frame, any path p can be defined by
the sequence of labels of the rays being crossed in order from
the starting to the ending point. For instance, the path in Fig-
ure 1a is labeled α2β1α2α2α2. Nevertheless, there are two
special cases: when p crosses no rays then p = ∅ and when p
crosses through cmeaning that all the α’s are simultaneously
crossed. In such a latter case, all αk are added in subindex
order to the sequence.

Two paths are homotopic if they have the same canoni-
cal sequence, which is the simplest representation of a path
without changing its topology. Using Jenkins notation, it is
computed by sorting the α’s substrings of the path in non-
decreasing order of subindex and then removing all the ele-
ments of the sequence by pairs that have the same character.
This process is repeated until no changes are made to the
sequence. In Figure 1 the canonical sequence of the path
α2β1α2α2α2 is α2β1α2.

Topological Graph

The topological graphG, whose construction is based on the
reference frame, provides a model to describe the topolog-
ical relationships between regions of the metric space. The
reference frame divides the metric space into wedges which
are represented as nodes of G. Each node is connected with
its neighbors with one or two edges depending on the seg-
ments traversed between wedges. These edges are labeled
according to the segment crossed in the reference frame.

In the reference frame, a path is defined according to the
segments it crosses whereas in G it turns into traversing the
graph from the starting node to the ending node1. Figure 1a
depicts a path in the reference frame and Figure 1b its equiv-
alent description in the topological graph.

Once the topological graph is constructed, Jenkins pro-
poses to traverse it using a modified version of the Breadth-
First Search algorithm (BFS) to generate all the homotopy
classes that are not self-crossing nor duplicated. For exam-
ple, in Figure 1 the homotopy classes would be: α1, α1α2β2,
α1β2α2, α2β1α2 (depicted), α2β1β2 and α1β2α1β1β2.

1Starting and ending nodes are those wedges in the reference
frame -nodes in G- where the starting and ending points are lo-
cated.
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a) Reference frame b) Topological graph

Figure 1: Topological path represented in the reference
frame as p = α2β1α2α2α2 and its canonical sequence
(α2β1α2) in the topological graph.

Applicability to the Path Planning Problem
We propose to use the Jenkins method to guide a path plan-
ning algorithm following a topological path. Thus, the
topological information of the homotopy classes has to be
turned into metric paths in the workspace by using the ref-
erence frame as a link between the topological graph and
the workspace. Therefore, in order to find a path in the
workspace that follows a specific homotopy class, it is re-
quired for a path planning algorithm to be modified to look
for the intersections with the desired segments of the refer-
ence frame.

During the reference frame construction, each obstacle of
the map is represented by a bk point without area in order
to ensure that each line of the reference frame only crosses
one obstacle; and the topological graph is built under this
assumption. However, depending on the reference frame
construction and the particular shape of the obstacles it is
possible that a line of the reference frame intersects with
more than one obstacle. In some cases, there will be ho-
motopy classes that cannot be followed in the workspace.
Figure 2 depicts this problem: the homotopy class to follow
is β1α2, which is shown as a path in Figure 2a in the ref-
erence frame with its equivalence in the topological graph
(Figure 2b). However, in Figure 2c the metric path cannot
be followed because obstacle 2 is crossing l2 and l1. No-
tice that this problem would not arise if points c and b1 were
more carefully selected to avoid the intersection of the ob-
stacle 2 with l1. However this solution cannot be applied in
complex scenarios with more obstacles.

Extension of the Jenkins Method
In order to avoid the problem found in the previous sec-
tion, this paper proposes an extension of the Jenkins method
which takes into account the shape of the workspace ob-
stacles during the construction of the reference frame and
the creation of the topological graph. The homotopy classes
would be computed according to the intrinsic restrictions of
the scenario keeping the coherence between the topological
path and its metric representation in the workspace.

Reference Frame
As in Jenkins method, each obstacle k has to be represented
as a single point bk. However, it is necessary to distinguish
different segments when other obstacles intersect line lk.
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Figure 2: Example of a valid homotopy class (β1α2) in the
reference frame (a) and in the topological graph (b) that can-
not be followed in the workspace (c) because at least one line
(l1 or l2) in the reference frame intersects more than one ob-
stacle.

Thus, we extend the notation of the segments to describe this
fact. The whole construction process can be summarized in
three steps:

1. Select a random point for each obstacle and label it as bk,
where k = 1..n.

2. Select the central point c of the reference frame. This
point cannot be inside an obstacle nor being inside the
n(n − 1)/2 lines determined by the pairwise choices of
distinct bk.

3. Construct n lines lk joining c with each bk. Each line is
partitioned into m + 1 segments, where m is the number
of obstacles that intersect with lk in the workspace. The
segments from bk and away from c are labeled with βks ,
and the segments in the opposite direction are labeled αks ,
where s = 0..u with u ∈ Z+ for the segments of lk from
c that passes through bk and s = 0..v with v ∈ Z− for the
segments in the opposite direction.

This kind of labeling allows us to distinguish differ-
ent segments created by the lk-obstacle intersections in the
workspace. Figure 3a depicts the new reference frame for
the scenario in which we had problems with the original
Jenkins topological description.

Topological Graph
The method to construct the topological graph G has been
modified to take into account the extended reference frame.
Its construction can be divided in three steps:

1. The lines of the reference frame divide the metric space
into regions or wedges and the obstacles that intersect
with more than one line at the same time split these
wedges into sub-wedges. Each sub-wedge represents a
node of G.

2. Each node of G is labeled according to the wedge w and
sub-wedge sw using the notation w.sw. w ∈ N is num-
bered counterclockwise. For each w, its corresponding
sw ∈ N are numbered sequentially starting by 1 for the
one closest to c.

3. Two nodes of G are interconnected according to the num-
ber of segments they share in the reference frame. Each
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Figure 3: Example of a reference frame and its corre-
spondent topological graph using the extension of Jenkins
method.

edge of G is labeled with the same label of the segment
that crosses in the reference frame.

As can be seen in Figure 3b, now the topological graph
takes into account the visibility between regions according
to the representation of the obstacles in the reference frame,
which contains the restrictions of the workspace intrinsi-
cally. Notice that any topological path of the topological
graph can now be followed in the workspace. Hence, the
homotopy class β1α2, which is represented β11α20 with the
new notation, is not valid anymore to describe a path from s
(node 1.2) to g (node 3.2).

Generation of Homotopy Classes
The topological graph is traversed using the version of the
BFS algorithm proposed by Jenkins. Unlike the standard
BFS, which stops when all vertexes of the graph have been
visited, it continues until there are no more homotopy class
candidates to explore or the length of the last homotopy class
candidate is larger than a given threshold.

During the BFS execution, several restriction criteria are
applied to avoid the generation of any homotopy class which
either self-intersects or whose canonical sequence is dupli-
cated and has already been considered. All classes that ac-
complish any of the following restrictions criteria are ig-
nored to avoid using them as a root for future homotopy
classes:

• Simple Wrap. Any string that contains a substring of the
form αks ...χkt ...αku or βks ...χkt ...βku where χ = (α, β)
with s = u represents a class that wraps around an obsta-
cle and is self-crossing.

• Wrap. Any string that contains a substring of the form
χks ...χkt ...χku where χ = (α, β) with s, t, u ≥ 0 and
s > t < u or with s, t, u ≤ 0 and s < t > u represents a
class that wraps around an obstacle and is self-crossing.

• Self-crossing. Any string that contains a substring of
the form χks ...βmt

...αmu
...χkv where χ = (α, β) with

s, v ≥ 0 and s < v or with s, v ≤ 0 and s > v rep-
resents a class that self-crosses. The reversed substring
χks ...αmt

...βmu
...χkv with s, v ≥ 0 and s > v or with

s, v ≤ 0 and s < v also represents a class that self-
crosses.
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Figure 4: Examples of the restriction criteria.

Figure 4a depicts an example of the simple wrap criterion
with path βk1αk0βk1 . Figure 4b shows a wrap with the
path αm0

αk0βk2αk1 and Figure 4c depicts an example of
the self-crossing criterion with path βk1βm1

αm0
βk2 .

• Duplicated strings are not allowed in the list of homo-
topy class candidates. If a string is not in its canonical
form, it can be simplified without modifying its topology.
Then, it is ensured that the resultant string has been al-
ready computed by the BFS algorithm because it would
be shorter than the input string. Finally, the algorithm
cannot traverse through the same edge on two consecu-
tive occasions. By doing that, a string with a repeated
pair would be generated. Consequently, the pair would be
simplified and the string discarded for being duplicated.

Lower Bound
Depending on the number of homotopy classes generated by
the BFS algorithm, it is not possible to compute all their cor-
respondent paths in the workspace in real-time. Therefore,
we have modified the funnel algorithm (Chazelle 1982) to
obtain a quantitative measure for each homotopy class esti-
mating their quality. This algorithm computes the shortest
path within a channel, which is a polygon formed by the
vertexes of the segments of the reference frame that are tra-
versed in the topological graph. The modification consists
of accumulating the Euclidean distance between the points
while they are being added to the shortest path. Hence, the
result of the funnel algorithm is a lower bound of the optimal
path in the workspace of the selected homotopy class. It is
used to set up a preference order to compute the homotopy
classes path in the workspace when operating under time re-
strictions. Notice that the segments of the reference frame
constrain the region where the paths can go through, but do
not take into account the shape of the obstacles. For that rea-
son, a homotopy class with a smaller lower bound may have
a longer path in the workspace than an another homotopy
class with a higher lower bound.

Guided Path Planning
Once the homotopy classes are computed and sorted accord-
ing to their lower bound, a path planning algorithm has to
find a path in the workspace that follows a given homotopy
class, which essentially implies turning a topological path
into a metric path. The only link between the workspace
and the topological space is the reference frame. It allows
checking whether a metric path in the workspace is fol-
lowing a topological path by following the intersections –in
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order– from the initial configuration to the current configu-
ration. Our proposal is a variation of the goal-biased RRT
algorithm called Homotopic RRT (HRRT). It allows a con-
strained growing of the tree only in those directions that sat-
isfy a given homotopy class. Before adding a new node into
the tree, the topological path traversed is checked to ensure
that belongs to the homotopy class by computing the inter-
sections of the path with the reference frame.

The algorithm is detailed in Algorithm 1. It receives as
input a candidate homotopy class to follow (tPath) and
the reference frame (refFrame). The nodes of the tree
T are tuples that contain the configuration of the robot q
and the topological path from qstart to q. These values
are accessible through the functions Q and P respectively.
Just like the RRT, the function Extend (line 31) iteratively
extends the tree T until the distance between the configu-
ration of nnew (Q(nnew)) and ngoal (Q(ngoal)) is lower
than a distThreshold. In this function, ComputeQRand
selects a random configuration qrand from the workspace.
Then, the NearestNeighbor function returns the nearest
node nnearest regarding a random configuration qrand by
looking for the node whose topological path is closer to
P (ngoal) (line 4). If there is more than one candidate, the
node selected is the closest to the goal according to the Eu-
clidean distance. After qnew is computed using the func-
tionComputeQNew, FindIntersections (line 21) checks
whether the segment [Q(nnearest), qnew] intersects with
any segment of the reference frame F 2. The function returns
the intersected edges sorted by distance from Q(nnearest).
Then the function UpdatePath (line 22) generates the new
topological path according to the intersections. No intersec-
tion with F means that the tree grows in the nnearest wedge
and hence, the function returns P (nnearest). If there are
intersections and these intersections follow the topological
path, the function returns P (nnearest) ∪ I in order to create
a candidate new node nnew to be added to the tree; otherwise
a null path is returned and no node is added to the tree.

Results

The extension of the Jenkins method and the path planning
algorithm we propose have been implemented and tested in
different scenarios. To identify the obstacles of the scenar-
ios, we have adapted a Component-Labeling algorithm (CL)
that efficiently labels connected cells and their contours in
greyscale images at the same time (Chang, jen Chen, and
Lu 2004). For the construction of the reference frame, the c
point has been set at a fixed position in order to ensure the
same topological graph construction –and homotopy classes
generation– through different executions. The homotopy
classes have been set at a maximum of 20 characters length.
In order to show all the possible results, no time restrictions
have been taken into consideration.

2Notice that it is possible to intersect with more than one
segment of the reference frame depending on the step between
nnearest and qnew and how close these nodes are to the c point.

Algorithm 1 Homotopic RRT
NearestNeighbor(T, qrand)

1: n← T ; d← Distance(Q(n), qrand)
2: for all c← T.Children() do
3: [n′, d′]← NearestNeigbor(T, qrand)
4: if (|P (n′)| > |P (n)|) or (|P (n′)| = |P (n)| and d′ < d)

then
5: n← n′; d← d′

6: end if
7: end for
8: return {n, d}
FindIntersections([qnearest, qnew], F )

9: r ← ∅
10: for i← 1 to |F | do
11: if p← Intersection([qnearest, qnew], F [i]) 6= null then
12: r ← r ∪ {Edge(i), Distance(qnearest, p)}
13: end if
14: end for
15: r ← SortByDistance(r)
16: return r

Extend(T, ngoal, F )

17: nnew ← {∞, null}
18: qrand ← ComputeQRand()
19: nnearest ← NearestNeighbor(T, qrand)
20: qnew ← ComputeQNew(Q(nnearest), qrand)
21: I ← FindIntersections([Q(nnearest), qnew], F )
22: path← UpdatePath(P (nnearest), I}
23: if (path 6= null) then
24: nnew ← {qnew, path}
25: nnearest.Add(nnew)
26: end if
27: return nnew

HRRT()

28: nnew ← {qstart, ∅}; ngoal ← {qgoal, tPath}
29: T.Add(nnew)
30: while Distance(Q(nnew), Q(ngoal)) > distThreshold do
31: nnew ← Extend(T, ngoal, refFrame)
32: end while

Simulated Results
Figure 5 depicts paths of two homotopy classes in a 200x200
pixels bitmap used as cluttered environment to test exten-
sion of the Jenkins method and the HRRT algorithm. The
construction of the reference frame, the topological graph
and the generation of the homotopy classes with their lower
bound computation took 7.9ms. Table 1 shows the homo-
topy classes sorted by their lower bound with the path cost
and the accumulated computation time, which takes into ac-
count the homotopy classes computation and the path gen-
eration. The lower bound and the path cost have been nor-
malized with the optimal path cost computed with the A*
algorithm. The time to build the topological graph, gener-
ate the homotopy classes with their lower bound and com-
pute the path with the HRRT for the 13 homotopy classes
is 281.11ms. To ensure the stability of the results, the path
cost and time are the average of 100 executions.

Path Planners Comparison The scalability of the method
has been tested in a bitmap of 1000x1000 pixels with 15 ir-
regular obstacles (Figure 6). The construction of the refer-
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Figure 5: Paths of the homotopy classes with the smaller
lower bound (index 2) and with the best path cost (index 1)
in Table 1.

Idx Homotopy class Lower bound Cost Cumulative
time (ms)

2 α21
α11

β41
α31

α51
0.83 1.35 22.53

8 β22α11β41α31α51 0.84 1.44 36.18
3 α21

α11
β41

α31
β52

0.90 1.50 50.43
9 β22

α11
β41

α31
β52

0.91 1.49 55.09
1 α50

α30
α40

α10
α20

0.98 1.18 61.62
11 β22

β12
β42

α32
β52

0.99 1.71 81.10
10 β22β12β42α32α51 1.01 1.64 99.31
13 β22

β12
β43

β33
β52

1.05 1.31 120.67
5 α21

β12
β42

α32
β52

1.16 2.06 139.83
4 α21β12β42α32α51 1.18 2.16 170.06
12 β22

β12
β43

β33
α51

1.19 1.80 193.43
7 α21

β12
β43

β33
β52

1.22 1.69 243.37
6 α21β12β43β33α51 1.36 2.34 281.11

Table 1: Homotopy classes of Figure 5 environment sorted
by their lower bound.

ence frame, the topological graph and the generation of 112
homotopy classes with their lower bound computation took
0.304s. Figure 7 depicts the normalized cost with respect to
the optimal path cost and the computation time for each ho-
motopy class sorted by their normalized lower bound. Each
path has been generated 50 times and the figure represents
the average of them.

It is difficult to compare our proposal because, to best
of the authors’ knowledge, there is no other probabilis-
tic sampling-based path planning algorithm that guides the
search topologically. Nevertheless, we have implemented
the A*, the RRT and their respective anytime versions
(ARA* and ARRT) to enhance the comparison. As a re-
sult of the HRRT, we have chosen the five homotopy classes
with the smaller lower bound. These classes are listed in
Table 2 and their possible paths are depicted in Figure 6.

The results of the RRT and ARRT planners are the av-
erage of 100 executions. As shown in Figure 8, the RRT
algorithm took 0.012s to compute a path with a cost of 1.48
times the optimal. The ARRT took around 2s to obtain the
first solution and 52s to obtain all of them, but it ensured that
any new generated solution was closer to the optimal one.
The A* returned the optimal path in 11.9s and the ARA*
generated the first solution in 8.32s and found the optimal
solution after 301s. Our method computed the best solu-
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Figure 6: Paths of the five homotopy classes with the smaller
lower bound. The class associated to the index can be found
in Table 2.

Idx Homotopy class
25 α15−1

α90α120α10α40α60α50α81α3−1
α112α132β72 ...

...α2−2
α142

β102

26 α15−1
α90

α120
α10

α40
α60

α50
α81

α3−1
α112α132β72 ...

...α2−2
β143

β102

5 α10−1
α14−1

β21
α7−1

α13−1
α11−1

α30
α80

β51
α61

α4−1
...

...α1−2
α122

β92
α152

1 α10−1
α14−1

β21
α7−1

α13−1
α11−1

α30
α80

α50
α60

α40
...

...α1−2
α122β92α152

41 α15−1
α90

α120
α10

β41
α6−1

α5−1
α81

α3−1
α112

α132
β72

...

...α2−2
α142β102

Table 2: The five homotopy classes of Figure 6 environment
with the smaller lower bound with their index.

tion (index 25) in 0.373s with a cost 1.39 times the optimal
and obtained the path for the five homotopy classes with the
smaller lower bound in 0.603s.

The HRRT computation time was better than the deter-
ministic approaches and the ARRT. The reduced computa-
tion time of the RRT could not be reached due to the compu-
tation of the homotopy classes and the extra load of check-
ing the topological restrictions of the HRRT. Despite the
first homotopy class according to its lower bound (index 25)
had a lower cost than the RRT solution, the difference was
small. However, following a homotopy class added infor-
mation about how the obstacles were avoided. As a subject
of the further research work, we think it could be possible
to speed up the HRRT by guiding the random sampling to-
wards the regions of the reference frame that follow the ho-
motopy class instead of preventing the tree growing out of
them.
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computation time for paths generated with the HRRT for
each homotopy class.
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Figure 8: Comparison of the HRRT paths of the five ho-
motopy classes with the smaller lower bound vs A*, RRT,
ARA* and ARRT algorithms.

Experimental Results
The algorithm described in this paper has been tested with
the SPARUSAUV (Figure 9a). It is a 35Kg torpedo shaped
vehicle of 1.22m length x 0.23m diameter whose motion
is controlled by three Seabotix thrusters. It is equipped
with an embedded computer with an IntelrCoreTM Duo
Processor U2500@1.2GHz. Among its sensor suit, the
robot has a MTi Motion Reference Unit (MRU) from XSens
Technologies, a Micron Mechanical Scan Imaging Sonar
(MSIS) from Tritech, and a Doppler Velocity Log (DVL)
from LinkQuest which also includes a compass/tilt sensor.

The experiment took place in the Underwater Robotics
Lab. of the University of Girona. In order to put obstacles of
different shapes and sizes stacked in the water tank, we built
a set of plates, each one made of a 1.20x0.60x0.04m roof
insulator panel covered with a plastic mesh and concrete in
both sides.

For the experiment, a triangular and squared obstacles
where set up. Each panel was stack at 3m depth using
weights (Figure 9b). The MSIS was configured to scan the
whole 360◦ sector and it was set to fire up to a 5m range
with a 0.1m resolution and a 1.8◦ angular step. The tra-
jectory of the robot is based on dead-reckoning, computed
using the velocity readings coming from the DVL and the
heading data obtained from the MRU sensor, both merged
with an Extended Kalman Filter (EKF).

During the experiment, the robot was teleoperated
through the obstacles as shown in the trajectory of Fig-

a) SPARUSAUV b) Underwater environment

Figure 9: Real experiment set up.
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Figure 10: Trajectory of the robot and the reference frame
plotted in the 18x16m C-Space with 0.1m resolution and its
topological graph.

ure 10a. While navigating at 3m depth, the vehicle was
building a 18x16m OGM with a 0.1m resolution using the
navigation from the EKF and the beam information received
from the MSIS (Hernández et al. 2009). The inverse sensor
model of the MSIS was implemented as a modified version
of a regular sonar sensor with an overture of 3◦. Figure 10a
also depicts the Configuration Space (C-Space) based on the
OGM, the obstacles identified by the CL algorithm, the ref-
erence frame and its topological graph (Figure 10b). Us-
ing the modified version of the Jenkins method, four homo-
topy classes were generated. Table 3 shows the homotopy
classes with their path lengths and Figure 11 depicts each
path with its corresponding tree generated with the HRRT
algorithm. The process of applying the CL algorithm, the
reference frame and topological graph construction and the
generation of the paths in the C-Space using the HRRT took
less than 100ms.

Conclusions and Future Work
This paper proposes a method to guide path planning algo-
rithms with topological information. Given a map with ob-
stacles, we first use an extension of the Jenkins method to
construct a reference frame which allows representation of
any path in the workspace as a topological sequence. The ex-

Homotopy class Lower bound (m) Length (m)
α20

β11
7.47 13.62

α10
α20

7.53 12.42
β21β11 7.65 11.15
β21

α10
7.91 14.24

Table 3: Homotopy classes generated for the Underwater
Robotic Lab. environment with their length sorted according
to the lower bound.
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Figure 11: Paths and trees generated with HRRT using ho-
motopy classes from Table 3. The squared and the circular
points correspond with the start and goal points.

tension of the Jenkins method constitutes the main and first
contribution of this paper. As a second contribution, we have
developed the HRRT, a path planning algorithm that gener-
ates paths in the workspace following the homotopy classes
previously found and sorted according to a lower bound.
The effectiveness of the algorithm has been shown in sim-
ulated scenarios. As a third contribution of this paper, our
proposal has also been tested in real conditions with an un-
derwater robot in a controlled unknown environment to test
its applicability to real applications. While navigating, the
robot was generating the C-Space based on an OGM, built
using navigation and MSIS data. The robot identified the
obstacles of the scenario with the CL algorithm, applied the
modified Jenkins method to generate the reference frame,
the topological graph, and generated the path for each ho-
motopy class using the HRRT algorithm in less than 100ms,
which is enough to accomplish our robot real-time specifica-
tions. Future work will consist in using the paths generated
by the HRRT to guide the robot autonomously. The algo-
rithm will allow generating new paths each time that sub-
stantial changes will be detected in the OGM.

The HRRT algorithm we propose is based on an imple-
mentation of the RRT that guides the random sampling to-
wards the goal without considering that it has to follow a
particular homotopy class. The current implementation of
the HRRT just prevents the tree to grow out of the regions of
the reference frame that do not follow the homotopy class.
Therefore, we think it is possible to improve the perfor-
mance and the quality of the solution of the HRRT by guid-
ing the random sampling towards the regions of the refer-
ence frame that follow the homotopy class.
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