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Abstract

In this paper optimal state space planning is parallelized
by exploiting the processing power of a graphics card.
The two exploration steps, namely selecting the actions
to be applied and generating the successors, are per-
formed on a graphics processing unit. Duplicate detec-
tion, however, is delayed to be executed on the central
processing unit. Multiple cores are employed to bypass
main memory latency. To increase processing speed for
exact duplicate detection, the hash tables are lock-free.
Moreover, a bucket-based representation enhances the
concurrent distribution of frontier states.
The planner supports cost-first exploration and is able
to deal with a considerable fraction of current PDDL,
including numerical state variables, complex objective
functions, and goal preferences. It can maximize the
net-benefit. Experimental findings show visible perfor-
mance gains especially for larger benchmark problems.

Introduction
There is no doubt that the success of planners is sensitive
to the amount of computational resources available. It is
not hard to predict that – due to economic pressure – par-
allel computing on an increased number of cores both in
central processing units (CPUs) and in graphics processing
units (GPUs) will be essential to solve challenging problems
in the future. The currently fastest computer (Tianhe-Ia)
has more than 14,000 (Intel Xeon X5670 6-core) CPUs and
7,000 (Nvidia Tesla M2050) GPUs, while a combination of
powerful multicore CPUs and many-core GPUs is becoming
standard technology for the consumer market.

Planners trying to catch up with these hardware trends en-
hance state space planning using, e. g., different multicore
CPU approaches (Kishimoto, Fukunaga, and Botea 2009;
Vidal, Bordeaux, and Hamadi 2010; Burns et al. 2009b).
Often, suboptimal planning is addressed (Kishimoto, Fuku-
naga, and Botea 2010; Burns et al. 2009a; Nakhost, Hoff-
mann, and Müller 2010), but also a sizable number of op-
timal parallel planners has been developed in the last few
years (e. g., Zhou and Hansen 2007, and Zhou et al. 2010).

GPU-support has been shown as effective for enhanc-
ing single-agent search problems (Edelkamp, Sulewski, and
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Yücel 2010). Unfortunately, so far no domain-independent
planner has been proposed that utilizes the GPU. This is
partly due to the fact that the single instruction multiple data
architecture of GPUs is more closely related to a vector com-
puter that induces a distinguished programming model.

In this paper, we propose a domain-independent planner
for which precondition checks and successor generation are
executed on the GPU. As GPUs usually have no cache hier-
archy and are relatively slow in accessing the global memory
on the graphics card, duplicate detection is executed in the
RAM using the CPU. Although we can restrict the planner to
one core for duplicate detection, we found that running mul-
tiple CPU cores is beneficial to avoid memory latency. For
large state spaces the planner supports exploration on disk,
together with either delayed duplicate detection (Korf 2008)
or bit-state hash tables (Bloom 1970). As our main inter-
est is optimal planning, for this work we implemented a so-
called lock-free hash table, a promising data structure based
on low-level compare-and-swap operations that avoids us-
ing variables for locking (Laarman, van de Pol, and Weber
2010; Enzenberger and Müller 2009).

Imposed by the demands of the GPU we design a cost-first
planner that differs substantially from existing ones. As a
surplus, our planner can deal with a considerable fraction of
current PDDL: propositional and numerical variables, ADL
constructs like negative and disjunctive preconditions, ac-
tion costs (including zero-cost actions), linear and non-linear
objective functions, and preferences, which results in opti-
mizing the (net-)benefit.

The paper is structured as follows. After brief introduc-
tions to the supported planning problems and to GPU pro-
gramming we provide insights to the architecture of our
multi- and manycore planner. We show how the checks for
satisfied preconditions and the generation of successor states
are executed on the GPU, and how duplicates are detected in
lock-free hash tables on the CPU for fast memory access.
We briefly reflect implementation refinements to standard
planning algorithms. In the experiments we study improve-
ments obtained wrt. other competitive planning systems.

Planning Problems
A classical planning problem is a tuple P = (F ,A, I,G)
with F being a set of fluents, A a set of actions, I ⊆ F
the fluents that hold in the initial state and G ⊆ F the fluents
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that need to be satisfied in any goal state. An action a ∈ A is
a tuple a = (P,A,D), with P ⊆ F being the precondition
that needs to be satisfied so that action a can be applied,
A ⊆ F the set of fluents that are added to the current state
and D ⊆ F the set of fluents that are removed from it after
applying the action.

The aim is to find a plan, i. e., a sequence of actions, that
transforms the initial state into a goal state. In case of opti-
mal planning, this plan must be minimal.

In cost-based planning, actions can be assigned certain
costs, so that the planning problem is extended to the tuple
Pc = (F ,A, cost , I,G) with cost : A 7→ N+

0 . For such
a problem, the total cost of the resulting plan is the sum of
the costs of all actions within the plan and in case of optimal
planning, a plan with minimal total cost has to be found.

Oversubscription planning is the extension of classical
planning to so-called soft goals, i. e., goals that may be sat-
isfied but are not obligatory. Thus, the problem is a tuple
Po = (F ,A, I,G, utility) with utility : 2F 7→ N a func-
tion that assigns a certain reward for achieving a soft goal.
The utility of the resulting plan is the utility of the achieved
goal state and the aim is to maximize it.

Finally, net-benefit planning contains action costs and
soft goals, i. e., the net-benefit planning problem is a tuple
Pnb = (F ,A, cost , I,G, utility). The net-benefit of a plan
is the utility achieved by the plan minus the total action cost
needed to achieve it and in case of optimal planning we are
interested in finding a plan that maximizes this net-benefit.

All these definitions are based on STRIPS planning (Fikes
and Nilsson 1971). Nowadays, the planning domain defi-
nition language PDDL (McDermott 1998) is the most fre-
quently used formalism for modeling and it additionally
supports, among others, complex Boolean formulas for the
preconditions of actions and the goal descriptions, numer-
ical state variables, and rational action costs (which we
scale to integers). Matching the formalization above, our
planner assumes a grounded problem representation with a
fully instantiated PDDL description as input (e. g., provided
by Haslum’s pddlcat, Helmert’s translate, or Hoffmann’s
adl2strips).

GPU Programming
Graphics processing units (GPUs) are general purpose mul-
tithreaded data parallel co-processors having hundreds of
cores compared to the small number of cores a typical CPU
contains. GPU power can been leveraged for many com-
putationally intense operations, not only for graphics (Hwu
2011). However, it is a challenge to effectively use these
massively parallel processors to achieve efficiency and per-
formance goals. This imposes restrictions on the programs
that should be executed on GPUs and leaves options for ex-
ploiting multicore parallelization on the CPU.

GPUs are programmed through kernels which are exe-
cuted as sets of threads. Each thread of the kernel exe-
cutes the same code. Threads of a kernel are grouped in
blocks. Each block is uniquely identified by its index and
each thread is uniquely identified by the index within its
block. The dimensions of the thread and the thread block
are specified at the time of launching the kernel.

Programming GPUs is facilitated by application program-
ming interfaces (APIs). Programs are often C-like with ex-
tensions such as special declarations to explicitly place vari-
ables in some of the memories (e. g., shared, global, local),
predefined keywords (variables) containing the block and
thread IDs, synchronization statements for cooperation be-
tween threads, runtime API for memory management (allo-
cation, deallocation), and statements to launch functions on
the GPU. This minimizes the software’s dependence of the
given hardware.

The memory model loosely maps to the program thread-
block-kernel hierarchy. Each thread has its own on-chip reg-
isters which are fast and off-chip local memory, which is
quite slow. Per block there is also an on-chip shared mem-
ory. Threads within a block cooperate via this memory. For
blocks executed in parallel the shared memory is equally
split between them. All blocks and threads within them have
access to the off-chip global memory at the speed of RAM.
Usually, global memory is mainly used for communication
between the host and the kernel. Threads within a block can
communicate also via light-weight synchronization barriers.

The GPU architecture consists of a set of multiprocessor
units. Communication with the off-chip device memory is
relatively slow compared to the enormous peak computa-
tional power. This is usually the main performance bottle-
neck. To fully exploit the capacity of the GPU parallelism
this memory latency must be minimized. Another issue that
can lead to a performance degradation is unnecessary syn-
chronization between thread blocks. The inter-thread com-
munication within a block is cheap via the fast shared mem-
ory, but the accesses to the global and local memories are
more than a hundred times slower.

Unlike CPU threads, GPU threads are light-weight with
negligible overhead of creation and switching. This allows
GPUs to use thousands of threads, whereas multicore CPUs
use only a few. Usually more threads and blocks are created
than the number of streaming processors, which allows the
GPU to maximally use the capacity via smart scheduling –
while some threads/blocks are waiting for data, the others
that have their data ready are assigned for execution. Thus,
another way to maximize the parallelism is by optimizing
the thread mapping. This is often tightly coupled with the
optimization of the memory access. One should strive to-
wards an alignment of the data in the memory such that
threads of the same block access memory locations which
are as close as possible. In this case we have so-called co-
alesced accesses. Thus, threads that access physically close
memory locations should be grouped together such that they
can be provided data with the same memory access. Finally,
in order to minimize the access to the slow global memory,
one should exploit data reuse. The parts of the computa-
tion are localized to thread blocks which are synchronized
as loosely as possible. These threads use local data as much
as possible and the global results are written only at the end
of the computation.

Planner Architecture
Our planner implements two different kernels, one designed
to generate successors for cost-optimal planning and one
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that deals with optimal planning for oversubscribed and net-
benefit planning problems. Both kernels are able to deal with
numbers. The main difference of the two kernels is that the
former stops at expanding the first goal node, while the lat-
ter overwrites the action after being executed with the metric
value of the state.

Successor Generation on the GPU
For successor generation on the GPU we check the satisfac-
tion of the preconditions of actions against the state set that
has been copied to the GPU and apply the effects to the ones
that have passed the test. As this is a considerable amount
of work for each GPU core, we exploit the postfix represen-
tation of the propositional and numerical expressions that
appear in the precondition and effects. These representa-
tions are precomputed and broadcasted in the GPU. Exten-
sive tests showed that using the postfix representation en-
hances checking the validity of a precondition and the com-
putation of the assignment to an effect variable on the GPU
due to using a flat evaluation stack.

Conceptually (and as illustrated in the simplified pseudo-
code in Algorithm 2), for each track we have one kernel for
parallel state expansion on the GPU. In our practical imple-
mentation, however, successors are generated in two steps
on the GPU. In a first step, the preconditions of the actions
are checked against the states in the GPU. We allow rather
complex Boolean and numerical expressions and check the
preconditions of all actions against the state (without apply-
ing any static filter).

Splitting the kernels into two implies that we copy data
from the CPU to the GPU and back twice for each expan-
sion set. The reason is that we completely avoid dynamic
memory allocation on the GPU, so that in the first kernel
we determine the number of possible successors, and for the
second kernel we provide sufficient space to actually com-
pute the successors. This way we also save GPU memory
and can exploit a higher degree of parallelism.

We also tried the one step approach by Edelkamp, Su-
lewski, and Yücel (2010), copying the states only once to
the GPU. However, here the GPU has to check all actions
for applicability twice, once for space allocation, once for
generation of the successors. While performing this step in
board games is faster then copying the data, in planning,
where checking the applicability is more complex, we found
it to be the slower solution.

Duplicate Detection on the CPU
After porting the successor generation to the GPU, duplicate
detection turned out to be the most time consuming step in
the whole planning process. We analyzed several techniques
to port this step to the GPU and decided not to do so. A
pure GPU-based approach would assume to store the closed
and open list in the memory of the graphics card which is
inefficient due to the available size. The alternative is to
store already seen states externally and utilize the GPU to
speed up the checking process. This strategy was already
evaluated by us in model checking (Edelkamp and Sulewski
2010) and has shown to be superior compared to other exter-
nal approaches. Since in this work we compare to internal

planners which utilize only RAM this method is too slow
because of moving the states to the hard disk and back.

To support large-scale problem solving, duplicate detec-
tion can be delayed to be executed on the disk, or by one-
(or multi-) bit-state hash tables that can produce false pos-
itives but with very low probability. When experimenting
with these filters we found that due to the efficiencies of the
GPU, memory latency on the CPU (namely addressing the
bits in RAM for reading and writing) was the bottleneck in
the implementation, which urged us to consider using mul-
tiple CPU cores for duplicate detection.

As our main interest in this paper is optimal planning, we
cannot use approximate hashing. Therefore, we have imple-
mented lock-free hashing, a new trend for using hash tables
in a multicore scenario.

The goal was to realize an efficient shared state storage for
duplicate detection. Traditional hash tables associate a piece
of data to a unique key in the table. Here, we only need to
store and retrieve state vectors. Thus, the key is the state
vector itself. The time efficiency of the lookup should scale
with the number of cores executing it in parallel. Pointers
and memory allocations are avoided. The implementation of
the hash table uses open addressing tuned to use the cache
more efficiently by small-sized linear probing. Lock-free al-
gorithms guarantee system-wide progress in modern CPUs.
They implement a compare-and-swap operation (CAS), so
that always some thread can continue its work.

In our solution, however, we avoid explicit locks by CAS,
but provide only statistical progress guarantees, which leads
to a simpler implementation at no penalty in performance.
Strictly speaking, our algorithm locks in-situ – it needs no
additional variables for implementing the locking mecha-
nism. CAS ensures atomic memory modification while at
the same time preserving data consistency. This can be done
by reading the value from memory, performing the desired
computation on it and writing the result back.

The problem with lock-free hashing is that it relies on
low-level CAS operations with an upper limit on the data
size that can be stored (one memory cell). In order to store
planning states that usually exceed the size of a memory cell,
we need two arrays: the index, where the locking mecha-
nism is realized by CAS and the data array. An index stores
memorized hashes and the write status bit of the data in the
data array. If h is the memorized hash, the possible values of
the index are thus: (−,>) for being empty, (h,⊥) for being
blocked for writing and (h,>) for a released lock.

Since comparing large data vectors in main memory is
a costly operation, the index table is used to avoid this if
unnecessary. When checking if s is present in the closed
list its hash value h(s) along with the position in the hash
table p = h(s) mod tablesize is computed and a block
of the index table index i,...,j with i 6= j and i ≤ p ≤ j
is transferred into the cache of the CPU. Here we compare
indexp with h(s) and increment p by one if they differ until
indexp = (−,>) or p = j. In the first case, h(s) is stored
in the index table and the vector is stored in the data table.
In the second case we set p = i. This strategy assures that
a complete vector comparison is performed only for states s
and s′ if h(s) = h(s′).
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GPU Planning Algorithm
In domains with uniform action costs a breadth-first enu-
meration of the search space is sufficient, while in domains
with action costs optimal path finding resorts to some form
of cost-first shortest path exploration. If the action costs are
integers, a cost-based implementation of Dijkstra’s shortest
path algorithm on buckets is possible (Dial 1969).

For smaller problems we encountered that a strict cost-
wise exploration of the search space can be unfortunate,
since the overhead for copying the data from and to the GPU
may dominate the run time.

Subsequently, with a buffer-filling implementation vari-
ant, we feature eager state expansion on the GPU, similar
to Edelkamp and Schrödl (2000) by means that states may
be expanded earlier than dictated by the monotonic non-de-
creasing ordering of the costs. For this case the first ex-
panded goal state no longer necessarily has optimal solution
cost. However, given that costs are non-negative, states can
be omitted if the current cost exceeds the best one found
so far. The performance gains due to improved parallel
processing can exceed the additional amount for expanding
more states than necessary.

Moreover, we relax duplicate elimination. While the algo-
rithm prevents inserting states with larger costs than the one
stored in the hash table, inserting states with smaller costs
than the ones stored in the hash table does not imply that
the latter ones are removed. This can result in significant
re-expansions.

The pseudo-code of the eager buffer-filling planning al-
gorithm is shown in Algorithm 1 with an expansion kernel
routine for the GPU sketched in Algorithm 2.1 Open is im-
plemented as a hash map of lists (with the costs being the
keys). This sparse representation of a virtual bucket array of
lists, where all states in a bucket have the same action costs,
allows to deal with larger action costs present in some of the
domains. Closed is implemented as a (lock-free) hash ta-
ble. All other structures are implemented as simple vectors
or lists.

For the sake of clarity, the code abstracts from the imple-
mentation. We write of Locking and Unlocking the buckets
of Open, but apply internal duplicate detection with lock-
free hashing based on the buffer and data arrays. Moreover,
as indicated above, for a better exploitation of the memory
on GPU, in the implementation we have two GPU kernel
routines for expansion, one that checks preconditions and
outputs a vector of applicable actions, and a second one that
applies the effects for the actions found to be applicable in
the first step.

Considering net-benefit planning, the net-benefit is com-
puted as the utility for each soft goal established minus the
label of the cost layer (line 14). The continuously improv-
ing bound best records the best net-benefit found so far and
terminates the exploration in case the optimum has been
proven. As a result (and as a side effect of the eager buffer-
filling approach), net-benefit problems can also be solved
optimally with Algorithm 1.

1Throughout the algorithms we use square brackets to denote
concepts only relevant in net-benefit planning.

Algorithm 1 Optimal Eager Buffer-Filling GPU Planning
Algorithm.

Input: Pc[nb] = (F ,A, cost , I,G[, utility ])
Output: Optimal [value of utility minus] action cost

1. best :=∞; i := 0
2. Openi := {I}; Closed := {(I, 0)}
3. loop
4. if (∀j ≥ i : Openj = ∅)
5. if (best =∞)
6. return unsolvable
7. else
8. return best
9. Buffer := ∅
10. while (∃j ≥ i : Openj 6= ∅) and (|Buffer| < Max)
11. i′ := min{j ≥ i | Openj 6= ∅}
12. for (v ∈ Openi′) and (|Buffer| < Max)
13. Insert (v, i′) in Buffer
14. if (G ⊆ v) best := min{best, [utility(v)−]i′}
15. Remove v from Openi′
16. Copy Buffer to GPU
17. Succs := GPU-Expand(Pc[nb],Buffer)
18. Copy Succs to CPU
19. for (v, c) ∈ Succs
20. c′ := Search(v) in Closed
21. if (c < c′)
22. Insert (v, c) in Closed
23. if (c < best)
24. Lock Openc
25. Insert v in Openc
26. Unlock Openc
27. i := min{j | Openj 6= ∅}

Theorem 1. (Optimality) For cost-based optimal planning
problems Pc and net-benefit planning problems Pnb the ea-
ger buffer-filling planning algorithm on the GPU computes
an optimal solution.

Proof. States are only eliminated from the Open list in
case a strictly better (in terms of accumulated action costs)
matching state has been found in the Closed list or if the
non-decreasing accumulated metric value (measured either
in accumulated action cost or net-benefit) is worse than the
currently best established goal metric value (measured either
in accumulated action cost or net-benefit).

Theorem 2. (Efficiency) For cost-based optimal planning
problems Pc and net-benefit planning problems Pnb the ea-
ger buffer-filling planning algorithm expands each state at
most once for every action cost-layer of the search frontier.

Proof. As in each cost-layer we apply full duplicate detec-
tion, any state can appear at most once per layer.

As the number of re-expansions in other cost-layers de-
pends on the domain, for the experiments we kept a version
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Algorithm 2 Kernel GPU-Expand executed on the GPU.

Input: Pc[nb] = (F ,A, cost , I,G[, utility ]), Buffer
Output: Succs

1. Succs := ∅
2. for each GPU-thread
3. select state-cost pair (u, c) in Buffer
4. for a ∈ A
5. if u satisfies precondition of a
6. v := compute result of applying a in u
7. Insert (v, c+ cost(a)) in Succs
8. return Succs

that avoids buffer-filling and performs a Dijkstra-like state-
space traversal. The changes for the pseudo-code are mod-
erate. For cost-based planning we stop at the first goal to be
expanded. In both cases the loop starting at line 10 is pruned
to one iteration with i′ being substituted by i.

Experiments
The benchmark domains are those of the sequential opti-
mal and optimal net-benefit tracks of IPC 2008.2 The com-
petitors are the two best planners in each track. For se-
quential optimal planning these are the organizers’ base-
line planner, performing explicit-state Dijkstra search im-
plemented as A* with a zero-heuristic and based on the effi-
cient search code of Lama (Richter, Helmert, and Westphal
2008), as well as Gamer (Edelkamp and Kissmann 2009),
a BDD-based bidirectional cost-first planner. The optimal
net-benefit planners are Gamer (featuring BDDs and unidi-
rectional cost-first branch-and-bound planning) and MIPS-
XXL (Edelkamp and Jabbar 2008), an explicit-state breadth-
first external-memory planner.

The computer infrastructure is an Intel i7 (4-core) 920
CPU with 2.67GHz and 24GB RAM as well as a hard disk
drive with a capacity of 1TB. The graphics card used is an
NVIDIA 480 GTX with a 700MHz GPU and 1.5GB on-
board memory, programmed in CUDA. All experiments are
canceled after exhausting memory or 15 minutes of wall-
clock time.3 For lock-free hashing, our implementation uses
the GNU gcc compiler for 64-bit x86 target platforms. A gcc
built-in is used for the CAS operation and reads and writes
from and to indexes are marked volatile.

In Figures 1 and 2 we have plotted the running time in
seconds for each instance of a domain if it was solved by a
planner. To score the planners we use the same system as
in the last IPC, i. e., for each domain the number of solved
instances is accumulated. If a domain is available in dif-
ferent formulations we use the maximum number of solved
instances over all these formulations.

In Figure 1 we have displayed the results obtained in the
six benchmarks of the optimal net-benefit track. Due to a

2http://ipc.informatik.uni-freiburg.de
3For the version of Gamer used in the sequential optimal track

we set the time for the backward search to 450 seconds.

bug in our planner’s parserwe were not able to handle the
Peg-Solitaire domain, so that we decided to omit it.

For the other domains the GPU Planner with buffer-filling
enabled can solve 43 problems, the GPU Planner with-
out buffer-filling 52, MIPS-XXL 22 and Gamer the highest
number of 57 problems. However, investigating the cause
for unsolved instances we can report that while Gamer was
killed due to reaching the limit of 15 minutes, the GPU
Planner without buffer-filling never reached this timeout. In
many of the instances the lock-free hash table was com-
pletely filled and the planner stopped. Thus, a larger amount
of main memory, or an effective compression strategy for the
states would turn the picture in favor of the GPU Planner.

The plots also depict another fact about the GPU Plan-
ner, i. e., it depends on hard problems. In all plots but the
Crewplanning domain we see that there is a threshold where
the GPU Planner is significantly faster than the other plan-
ners. Furthermore, in Crewplanning we see advantages for
buffer-filling while in the others this strategy is less effec-
tive. Currently we are uncertain of the reason for this, the
only facts we could make out is that the state space of this
domain is rather flat, i. e., each cost layer is small. A flat
state space means a better distribution of states into separate
layers and thus fewer re-expansions.

We cannot compare numbers of expanded nodes due to
the basic differences of the planners. MIPS-XXL, using ex-
ternal memory, and Gamer, executing a symbolic search, are
not comparable in this respect with the explicit state internal
memory GPU-based planner.

In Figure 2 we have displayed the results obtained in the
eight STRIPS benchmarks of the sequential optimal track.

The GPU planner with buffer-filling solves 124 problems,
the GPU planner without buffer-filling 138 problems, the
baseline planner 134 problems and Gamer 127 problems.
The advantage used by the GPU planner here is the large
amount of Boolean fluents in the problem description. Due
to the usage of only one bit per fluent, compared to 32 bits
for integer fluents, the vector identifying the state is smaller
and more vectors fit into the hash table, enabling the planner
to examine larger state spaces and better utilizing the com-
putation power of the GPU.

The plots emphasize the advantages of using the GPU. In
every domain a threshold exists where the GPU planner is
faster then the CPU based baseline planner. Unfortunately,
even 24GB of RAM are not enough to solve the hardest
problems and demonstrate the achievable speed. In the best
cases the speedup factor, defined as the running time of base-
line divided by the running time of the GPU planner, exceeds
a factor of seven, rising with the size of the problem.

The GPU planner with buffer-filling behaves satisfactorily
only in the Parcprinter domain, being slower than the other
planners on all the remaining ones. Here we also experience
a flat state space, in this case due to the strong divergence of
the costs, keeping the number of re-expansions small.

We also performed additional experiments for the do-
mains of the sequential optimal track with a timeout of 30
minutes. In these, the GPU planner can solve four additional
instances, the baseline planner only one and Gamer eight, so
that the GPU planner still beats both competitors.
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(a) Crewplanning.
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(b) Elevators Numeric.
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(c) Elevators Strips.
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(d) Openstacks.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

R
u
n
ti
m

e
 [
s
]

Problem

Gamer (net-ben)
MIPS-XXL

GPUPlan (bufferfill)
GPUPlan

(e) Transport.
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(f) Woodworking.

Figure 1: Performance Results Optimal Net-Benefit Track.

Conclusion and Discussion

In this paper we have proposed the first domain-independent
planner that exploits processing power available on the
graphics card. To enhance precondition checks as well as
assignments to effect variables on the GPU, we use a postfix
notation of the expressions. For duplicate detection, we em-
ploy lock-free hash tables that certify optimal solutions in
algorithms like cost-first search. Variable locks are needed
only once for each cost-layer. We exploit the distribution of
successors to enhance parallelism for pushing states into the
search frontier.

The expressiveness of the planner is considerable as it

can handle a substantial fraction of grounded PDDL. The
support of a multi-valued variable encoding may be utilized
based on SAS+ information inferred during the instantiation
process (we tested that state vectors can be compressed and
uncompressed on the GPU). To support multi-valued vari-
ables we prefer to re-write the input, so that preconditions
and effects become numerical. The planner also supports
indirect variable addressing, a feature recently introduced in
PDDL but not present in most of the current benchmarks.

The approach is distinct to existing multicore approaches
as multiple cores on the CPU are only used for delayed
duplicate detection. In contrast, other parallelizations dis-
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(a) Elevators.
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(b) Openstacks.
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(c) Parcprinter.
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(d) Peg Solitaire.
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(e) Scanalyzer.
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(f) Sokoban.
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(g) Transport.
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(h) Woodworking.

Figure 2: Performance Results Sequential Optimal Track.
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tribute the search space based on different sorts of hash-
partitioning, e. g., HDA* (Kishimoto, Fukunaga, and Botea
2009) combines ideas from a parallel version of A* (Evett
et al. 1995) and transposition-driven scheduling (Romein
et al. 2009), while PBNF (Burns et al. 2009b) extends the
idea of parallel structured duplicate detection (Zhou and
Hansen 2007), exploiting the locality of a search space. Ar-
vand (Nakhost, Hoffmann, and Müller 2010) is a planner
based on Monte-Carlo searches and random restarts. As dif-
ferent starts are independent, assuming sufficient memory,
these searches can be parallelized easily. The results are
promising but solutions are typically sub-optimal. (Multi-
core) UCT, a dynamical tree-growing learning algorithm on
top of Monte-Carlo search, can be used for finding optimal
solutions in the limit, but has not yet been implemented.

For STRIPS-like actions a known filter neglects actions
that do not have any propositions in the preconditions match-
ing the proposition of the current state. Such specialized ker-
nel precomputing lists of actions linked to the precondition
they contain has not yet been implemented.

While we are mainly interested in optimal plans and blind
search, it is not difficult to add heuristics to enhance the
planning process. For consistent heuristics A* is a variant
of Dijkstra’s algorithm. Moreover, adapting the search to
algorithms like BFHS (Zhou and Hansen 2004) itself does
not pose a large implementation overhead, and duplicate de-
tection by lock-free hashing virtually remains the same. The
crucial point for efficient heuristic search is the parallel com-
putation time for the heuristic. If calculated on the GPU, the
restriction is that the heuristic does not consume much space
to exploit shared memory best.

Acknowledgments
Thanks to DFG for support in projects ED74/8-1 and
ED74/11-1. We also wish to thank Alfons Laarman and
Michael Weber for the access to their lock-free hash table
implementation.

References
Bloom, B. 1970. Space/time trade-offs in hashing cod-
ing with allowable errors. Communication of the ACM
13(7):422–426.
Burns, E.; Lemons, S.; Ruml, W.; and Zhou, R. 2009a.
Suboptimal and anytime heuristic search on multi-core ma-
chines. In ICAPS, 42–49.
Burns, E.; Lemons, S.; Zhou, R.; and Ruml, W. 2009b.
Best-first heuristic search for multi-core machines. In IJCAI,
449–455.
Dial, R. B. 1969. Shortest-path forest with topological or-
dering. Communications of the ACM 12(11):632–633.
Edelkamp, S., and Jabbar, S. 2008. MIPS-XXL: Featur-
ing external shortest path search for sequential optimal plans
and external branch-and-bound for optimal net benefit. In
IPC.
Edelkamp, S., and Kissmann, P. 2009. Optimal symbolic
planning with action costs and preferences. In IJCAI, 1690–
1695.
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