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Abstract

Considering directed graphs on n vertices and m edges
with real (possibly negative) weights, we present two new,
efficient algorithms for computing all-pairs shortest paths
(APSP). These algorithms make use of directed path consis-
tency (DPC) along a vertex ordering d. The algorithms run
in O

(
n2wd

)
time, where wd is the graph width induced by

this vertex ordering. For graphs of constant treewidth, this
yieldsO

(
n2

)
time, which is optimal. On chordal graphs, the

algorithms run in O (nm) time. We show empirically that
also in many general cases, both constructed and from real-
istic benchmarks, the algorithms often outperform Johnson’s
algorithm, which represents the current state of the art with
a run time of O

(
nm+ n2 logn

)
. These algorithms can be

used for temporal and spatial reasoning, e.g. for the Simple
Temporal Problem (STP), which underlines its relevance to
the planning and scheduling community.

1 Introduction
Finding shortest paths is an important and fundamental
problem in communication and transportation networks, cir-
cuit design, graph analysis—e.g. for computing the be-
tweenness (Girvan and Newman 2002)—and is a sub-
problem of many combinatorial problems, such as those
that can be represented as a network flow problem. In
particular, in the context of planning and scheduling, find-
ing shortest paths is important to solve the Simple Tempo-
ral Problem (STP) (Dechter, Meiri, and Pearl 1991), which
in turn appears as a sub-problem to the NP-hard Tempo-
ral Constraint Satisfaction Problem (TCSP) and Disjunc-
tive Temporal Problem (DTP) classes, powerful enough to
model job-shop scheduling problems. The shortest path
computations in these applications can account for a sig-
nificant part of the total run time. These topics have re-
ceived substantial interest in the planning and schedul-
ing community (Satish Kumar 2005; Bresina et al. 2005;
Shah and Williams 2008).

Instances of the STP, called Simple Temporal Net-
works (STNs), have a natural representation as directed
graphs with real edge weights. The canonical way of solv-
ing an STP instance (Dechter et al.) is by computing all-
pairs shortest paths (APSP) on its STN, e.g. with the Floyd–
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Warshall algorithm. The state of the art for computing APSP
is Johnson’s algorithm, which runs in O

(
n2 log n+ nm

)
time using a Fibonacci heap (Fredman and Tarjan 1987).

Recently there has been specific interest in STNs stem-
ming from hierarchical task networks (HTNs) (Castillo,
Fdez-Olivares, and González 2006; Bui and Yorke-Smith
2010). These graphs have the “sibling-restricted” property:
each task, represented by a pair of vertices, is connected only
to its sibling tasks, its parent or its children. In these graphs
the number of children of a task is restricted by a constant
branching factor, and therefore the resulting STNs also have
a tree-like structure.

In this paper we present two new algorithms for APSP in
Section 3. One algorithm is based on a point-to-point short-
est path algorithm by Chleq (1995), and another is similar to
Planken et al.’s (2008) algorithm for enforcing partial path
consistency (P3C). These algorithms advance the state of
the art in computing APSP. In graphs of constant treewidth,
such as the sibling-restricted STNs based on HTNs, the
run time is bounded by O

(
n2

)
, which is optimal since

the output is Θ(n2). In addition to these STNs, examples
of such graphs are outerplanar graphs, graphs of bounded
bandwidth, graphs of bounded cutwidth, and series-parallel
graphs.

When the algorithms are applied to chordal graphs, they
have a run time of O (nm), which is a strict improvement
over the state of the art (Chaudhuri and Zaroliagis 2000, with
a run time of O

(
nmw2

d

)
; wd is defined below). Chordal

graphs are an important subset of general sparse graphs: in-
terval graphs, trees, k-trees, directed path, and split graphs
are all special cases of chordal graphs (Golumbic 2004).
Moreover, any graph can be made chordal using a so-called
triangulation algorithm. Such an algorithm operates by
eliminating vertices one by one, connecting the neighbours
of each eliminated vertex and thereby inducing cliques in the
graph. The induced width wd of the elimination ordering d
is defined to be equal to the cardinality of the largest set of
neighbours thus connected. The upper bound of the run time
of both proposed algorithms on these general graphs, then,
is O

(
n2wd

)
; this is better than the bound on Johnson’s al-

gorithm if wd ∈ O (log n).
Finding an elimination ordering of minimum induced

width is an NP-hard problem. This minimum induced width
is the tree-likeness property of the graph mentioned above,
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Algorithm 1: DPC (Dechter, Meiri, and Pearl 1991)
Input: A weighted directed graph G = 〈V,E〉 and a

vertex ordering d : V → {1, . . . , n}
Output: CONSISTENT if DPC could be enforced on G;

INCONSISTENT if a negative cycle was found

1 for k ← n to 1 do
2 forall i < j < k such that {i, k}, {j, k} ∈ E do
3 wi→j ← min{wi→j , wi→k + wk→j}
4 wj→i ← min{wj→i, wj→k + wk→i}
5 E ← E ∪ {{i, j}}
6 if wi→j + wj→i < 0 then
7 return INCONSISTENT

8 return CONSISTENT

i.e. the treewidth, denotedw∗. In contrast, the induced width
is not a direct measure of the input (graph), so the bound of
O
(
n2wd

)
is not quite proper. Therefore, we experimen-

tally establish the computational efficiency of the proposed
algorithms in Section 4 on a wide range of graphs, varying
from random scale-free networks, parts of the road network
of New York City, to STNs generated from HTNs, and job-
shop scheduling problems. However, we start by introduc-
ing the concepts of induced width, treewidth, chordal graphs
and triangulation in more detail.

2 Preliminaries
Both algorithms for all-pairs shortest paths presented in this
paper rely on the fact that the graph has already been made
directionally path-consistent along a certain vertex ordering.
In this section, we therefore briefly discuss the algorithm for
directed path consistency (DPC) and how to find a vertex
ordering required for DPC.

Directed Path Consistency
Dechter, Meiri, and Pearl (1991) proposed DPC, included
here as Algorithm 1, for checking whether an STP instance
is consistent (i.e. the graph contains no negative cycles).
This algorithm takes as input a weighted directed graph
G = 〈V,E〉 and a vertex ordering d, which is a bijection
between V and the natural numbers {1, . . . , n}. In this pa-
per, we simply represent the ith vertex in such an ordering
as the natural number i. The weight on the arc from i to j
is represented as wi→j ; further, our shorthand for the exis-
tence of an arc between these vertices, in either direction, is
{i, j} ∈ E. Finally, we denote by Gk the graph induced on
vertices {1, . . . , k}, so Gn = G.

In iteration k, the algorithm adds edges (in line 5) between
all pairs of lower-numbered neighbours i, j of k, thus trian-
gulating the graph. Moreover, assuming i < j and given
a path π between such a pair of neighbours that except for
its endpoints lies outside Gi, a defining property of DPC is
that it ensures that wi→j is no higher than the total weight of
this path. This implies in particular that after running DPC,
w1→2 and w2→1 are labelled by the shortest paths between
vertices 1 and 2.

The run time of DPC depends on a measure wd called the
induced width relative to the ordering d of the vertices. This

induced width is exactly the highest number of neighbours
j < k encountered during the DPC algorithm. It is not a
property of the graph that forms DPC’s input per se; rather,
it is dependent on both the graph and the vertex ordering
used. With a careful implementation, DPC’s time bound is
O
(
nw2

d

)
if this ordering is known beforehand.

The edges added by DPC are called fill edges and make
the graph chordal (sometimes also called triangulated). In-
deed, DPC differs from a triangulation procedure only by its
manipulation of the arc weights. In a chordal graph, every
cycle of length four or more has an edge joining two ver-
tices that are not adjacent in the cycle. By definition of the
induced width, the number of edges in such a chordal graph,
denoted by mc ≥ m, is O (nwd).

Finding a Vertex Ordering
In principle, DPC can use any vertex ordering to make the
graph both chordal and directionally path-consistent. How-
ever, since the vertex ordering defines the induced width, it
directly influences the run time and the number of edges mc

in the resulting graph. As mentioned above, finding an
ordering of minimum induced width and determining the
treewidth is an NP-hard problem in general. Still, the
class of constant-treewidth graphs can be optimally triangu-
lated in O (n) time (Bodlaender 1993); and if G is already
chordal, we can find a perfect elimination ordering (result-
ing in no fill edges) in O (m) time, using maximal cardinal-
ity search (MCS) (Tarjan and Yannakakis 1984).

For general graphs, various heuristics exist that often pro-
duce good results. We mention here the minimum degree
heuristic (Rose 1972), which in each iteration chooses a ver-
tex of lowest degree. Since the ordering produced by this
heuristic is not fully known before DPC starts but depends
on the fill edges added, an adjacency-list-based implemen-
tation will require another O (log n) factor in DPC’s time
bound. However, for our purposes in this article, we can af-
ford the comfort of maintaining an adjacency matrix, which
yields bounds of O

(
n2 + nw2

d

)
time and O

(
n2

)
space.

3 All-Pairs Shortest Paths
Even though, to the best of our knowledge, a DPC-based
APSP algorithm has not yet been proposed, algorithms for
computing single-source shortest paths (SSSP) based on
DPC can be obtained from known results in a relatively
straightforward manner. Chleq (1995) proposed a point-
to-point shortest path algorithm that with a trivial adapta-
tion computes SSSP; Planken, de Weerdt, and Yorke-Smith
(2010) implicitly also compute SSSP as part of their IPPC
algorithm. These algorithms run in O (mc) time and thus
can simply be run once for each vertex to yield an APSP
algorithm with O (nmc) ⊆ O

(
n2wd

)
time complexity.

Below, we first show how to adapt Chleq’s algorithm to
compute APSP; then, we present a new, efficient algorithm
named Snowball that relates to Planken et al.’s (2008) P3C.

Chleq’s Approach
Chleq’s point-to-point shortest path algorithm, simply called
“Min-path” and reproduced here as Algorithm 2, runs in
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Algorithm 2: Min-path (Chleq 1995)
Input: Weighted directed DPC graph G = 〈V,E〉;

(source, destination) pair (s, t)
Output: Distance from s to t

1 ∀i ∈ V : D[i]←∞
2 D[s]← 0
3 for k ← s to 1 do
4 forall j < k such that {j, k} ∈ E do
5 D[j]← min{D[j], D[k] + wk→j}

6 for k ← 1 to t do
7 forall j > k such that {j, k} ∈ E do
8 D[j]← min{D[j], D[k] + wk→j}

9 return D[t]

Algorithm 3: Chleq-APSP
Input: Weighted directed DPC graph G = 〈V,E〉
Output: Distance matrix D

1 for i← 1 to n do
2 D[i][∗]← Min-paths(G, i)

3 return D

O (mc) time because each edge is considered exactly twice.
This algorithm can be used for SSSP as well within the same
time bounds by setting t = n and returning the entire ar-
ray D instead of just D[t]. Algorithm 3 then calls this SSSP
algorithm (Min-paths) n times to compute APSP.

The Snowball Algorithm
In this section, we present an algorithm that computes APSP
(or full path-consistency), dubbed Snowball, that has the
same worst-case time bounds but is more efficient about it.

The idea behind the algorithm is that we grow a clique of
computed distances, one vertex at a time, starting with the
trivial clique consisting of just vertex 1. When adding ver-
tex k to the clique, we compute the distance to (from) each
vertex i < k. We are then ensured by DPC that there exists
a shortest path to (from) i that has an edge {k, j} for some
j < k as its first (last) edge. This means that the algorithm
only needs to look “down” at lower-numbered vertices.

The name of our algorithm derives from its “snowball ef-

Algorithm 4: Snowball
Input: Weighted directed DPC graph G = 〈V,A〉
Output: Distance matrix D

1 ∀i, j ∈ V : D[i][j]←∞
2 ∀i ∈ V : D[i][i]← 0
3 for k ← 1 to n do
4 forall j < k such that {j, k} ∈ E do
5 forall i ∈ {1, . . . , k − 1} do
6 D[i][k]← min{D[i][k], D[i][j] + wj→k}
7 D[k][i]← min{D[k][i], wk→j +D[j][i]}

8 return D

fect”: the clique of computed distances grows quadratically
during the course of its operation. Let us now formally prove
the algorithm’s soundness and complexity.
Theorem 1. The Snowball algorithm computes all-pairs
shortest paths in O (nmc) ⊆ O

(
n2wd

)
time.

Proof. The proof is by induction. After enforcing DPC,
w1→2 and w2→1 are labelled by the shortest path between
vertices 1 and 2. For k = 2 and i = j = 1, the algorithm
then sets D[1][2] and D[2][1] to the correct values.

Now, assume that D[i][j] is set correctly for all vertices
i, j < k. Let π : i = v0 → v1 → · · · → v`−1 → v` = k
be a shortest path from i to k, and let hmax = max{h |
vh ∈ π}. By DPC, if hmax > k, there exists a path of the
same weight where a shortcut vhmax−1 → vhmax+1 is taken.
This argument can be repeated to conclude that there must
exist a shortest path π′ from i to k that lies completely inGk

and, except for the last arc, in Gk−1. Thus, by the induction
hypothesis and the observation that the algorithm considers
all arcs from the subgraph Gk−1 to k, D[i][k] is set to the
correct value. An analogous argument holds for D[k][i].

With regard to the algorithm’s time complexity, note that
the two outermost loops together result in each of the mc

edges in the chordal graph being visited exactly once. The
inner loop always has fewer than n iterations, yielding a
run time of O (nmc) time. From the observation above
that mc ≤ nwd, we can also state a looser time bound of
O
(
n2wd

)
.

We now briefly discuss the consequences for two special
cases: graphs of constant treewidth and chordal graphs. For
chordal graphs, we can just substitute m for mc; further, as
described above, a perfect elimination ordering exists and
can be found in O (m) time. This gives the total run time of
O (nm). We also stated above that for a graph of constant
treewidth w∗, a vertex ordering with wd = w∗ can be found
in O (n) time. Then, omitting the constant factor wd, the
algorithm runs in O

(
n2

)
time. This also follows from the

algorithm’s pseudocode by noting that every vertex k has a
constant number (at most w∗) of neighbours j < k.

We note here the similarity between Snowball and the
P3C algorithm by Planken, de Weerdt, and van der Krogt
(2008). Like P3C, Snowball operates by enforcing DPC,
followed by a single backward sweep along the elimination
ordering. P3C then computes shortest paths only for the arcs
present in the chordal graph, in O

(
nw2

d

)
time.

4 Experiments
We evaluate the two algorithms together with efficient im-
plementations of Floyd–Warshall and Johnson’s algorithm
with a Fibonacci heap1 across six different benchmark sets.2

The properties of the test cases are summarised in Table 1.
This table lists the number of test cases, the range of the

1For Johnson’s algorithm we used the corrected Fibonacci heap
implementation by Fiedler (2008), since the widely used pseu-
docode of Cormen et al. (2001) contains mistakes.

2Available at
http://dx.doi.org/10.4121/uuid:
698db457-499f-48a1-bb26-5a54070b4dbe
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Table 1: Properties of the benchmark sets

type #cases n m wd

Chordal
– Figure 1 400 200 985–19,900 5–199
– Figure 2 130 214–3,125 22,788–637,009 211
Scale-free
– Figure 3 190 150 296–2,240 14–103
– Figure 4 426 100–200 460–891 38–58
Diamonds 504 51–379 49–379 2
New York 180 108–4,882 113–8,108 2–51
Job-shop 600 5–241 8–3,840 3–62
HTN 121 500–625 748–1,515 2–144

Table 2: The total induced width, triangulation, and total
run time of Snowball over all experiments on general graphs
show that the minimum degree heuristic is the best choice.

heuristic wd time (s) Snowball (s)
min-fill 26127 1410 1539
min-degree 26673 141 270
static min-fill 32085 168 365
static min-degree 32363 156 356
MCS 33127 189 438
random 47966 285 675

number of vertices n, edges m, and the induced width wd

produced by the minimum degree heuristic. More details on
the different sets can be found below. Each STP instance is
ensured to be consistent by modifying the constraint weights
while leaving its structure intact.

All algorithms were implemented in Java.3 The experi-
ments were run using Java 1.6 in server mode, on Intel Xeon
E5430 CPUs. All times we report are the measured CPU
times. For Chleq and Snowball, this includes the time that
was spent triangulating the graphs. Each instance was run
ten times, which was averaged to obtain the run time for that
particular instance. The only exception to this is the New
York set: because of the long run times on the larger of these
graphs, we only averaged over two runs for each instance.

Triangulation As discussed in Section 2, finding an opti-
mal vertex ordering (with minimum induced width) is NP-
hard, but several efficient triangulation heuristics for this
problem exist. We ran our experiments with six different
heuristics: the minimum fill and minimum degree heuristics,
static variants of both (taking into account only the origi-
nal graph), an MCS ordering on the original graph, and a
random ordering. All of these, except minimum fill, have
time complexities within the bound on the run time of Chleq
and Snowball. We found that the minimum degree heuris-
tic gave on average an induced width only 2% higher than
that found by minimum fill, but with drastically lower run
time. All other heuristics, though themselves faster, yielded
an induced width at least 20% higher, resulting in a longer

3Our implementations are available in binary form at
http://dx.doi.org/10.4121/uuid:
177969ea-0ca3-4090-a363-1fe37cd35017
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Figure 1: Run times on generated chordal graphs of a fixed
size 200 and varying treewidth.
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Figure 2: Run times on generated chordal graphs of a fixed
treewidth of 211.

total triangulation time and at least a 30% longer total run
time of Snowball (see the summary of the results over all
benchmarks given in Table 2). This confirms earlier work
on finding good heuristics (Kjærulff 1990). In the experi-
mental results included below we therefore only show the
results based on the minimum degree heuristic.

Chordal Graphs To evaluate the performance of the new
algorithms on chordal graphs, we construct chordal graphs
of a fixed size of 200 with a treewidth ranging from five up to
the number of vertices, thus yielding a complete graph at the
high end (see Figure 1). Overall, and especially for sparse
graphs, the run time of the new algorithms is well below that
of Johnson. Figure 2 shows the run times on chordal graphs
of a constant treewidth and increasing size. Here, the two
new algorithms outperform Johnson by nearly an order of
magnitude (a factor 9.3 for Snowball around n = 1300),
confirming the expectations based on the theoretical upper
bounds.
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Figure 3: Run times on the scale-free benchmarks for
graphs of 150 vertices and varying induced width.
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Figure 4: Run times on the scale-free benchmarks for
graphs of induced widths 38 to 58 and varying sizes.

General Graphs
For general graphs, we expect from the theoretical analysis
that Chleq and Snowball are faster than Johnson when the
induced width is low, and that Johnson is faster on sparse
graphs of a large induced width. The main question is at
which induced width this changeover occurs.

Scale-Free Graphs To see at which induced width John-
son is faster, we compare the run times on graphs of size
150 and an induced width from 14 to 103 (more than half
the number of vertices). The number of edges varied from
296 to 2240 along these runs. The results of this experiment
can be found in Figure 3. Here we see that up to an induced
width about 80, Snowball is the most efficient, and for higher
induced widths Johnson is fastest. A consistent observation
but from a different angle can be made from Figure 4, where
the induced width is between 38 and 58, the number of edges
is between 460 and 891 and the size of the graph is varied
from 100 to 200. Here we see that for small graphs up to
110 vertices, Johnson’s algorithm is the fastest, but after that
Snowball overtakes it (this holds for all results up to a very
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Figure 5: Run times on the diamonds benchmarks for
graphs of varying size.
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Figure 6: Run times on the New York benchmarks for sub-
graphs of varying sizes.

sparse graph of almost 700 vertices).

STNs from Diamonds The “diamond” graphs used in
the this benchmark set, defined by Strichman, Seshia, and
Bryant (2002), feature two parallel paths of equal lengths
starting from a single node, and ending in another single
node. From the latter node, two paths start again, to con-
verge on a third node. This pattern is repeated a number of
times (depending on the size of the graph). The final node is
then connected to the very first one. Their main property is
that they are very sparse. We looked at 504 graphs, ranging
in size from 51 to 379 vertices, with an induced width of 2.
The induced width is clearly extremely small, which trans-
lates into Chleq and Snowball being considerably faster than
Johnson, as evidenced by Figure 5.

Selections from New York Road Network More inter-
esting than the artificially constructed graphs are graphs
based on real networks, for which shortest path calculations
are relevant. The first of this series is based on the road
network of New York City, which we obtained from the
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Figure 7: Run times on the job-shop benchmarks for graphs
of varying size.

DIMACS challenge website.4 This network is very large
(with 264,346 vertices and 733,846 edges) so we obtained
several subgraphs of varying sizes using a simple breadth-
first search from a random starting location. The results
of all algorithms on these subgraphs can be found in Fig-
ure 6. Here we observe the same ranking of the algorithms
as on the chordal graphs of a fixed treewidth and for dia-
monds: Floyd–Warshall is very slow with its Θ(n3) run time
(and produces the expected straight line), then for Johnson,
Chleq, and Snowball, each is significantly faster than its pre-
decessor. This can be explained by considering the induced
width of these graphs. Even for the largest graphs the in-
duced width is around 30, which is considerably smaller
than the size of the graph.

Note that these graphs are planar and tailored algorithms,
mentioned below in Section 5, exist for this class. We feel,
however, that our results are still of interest.

STNs from Job-Shop Scheduling Each of the 600 in-
stances in the job-shop set is generated from a job-shop in-
stance randomly drawn from the job-shop problems in the
SMT-LIB (Ranise and Tinelli 2003). The most striking ob-
servation for the experiments on these STNs is that the dif-
ference between Johnson and the two new algorithms is not
significant for the problem sizes in the benchmark set. The
run times for Floyd–Warshall are better for some instances
with up to 100 variables, while for larger graphs the other
algorithms are significantly faster.

STNs from HTNs Finally, we consider a benchmark set
whose instances imitate so-called sibling-restricted STNs
originating from Hierarchical Task Networks. This set is
therefore particularly interesting from a planning point of
view. In these graphs, constraints may occur only be-
tween parent tasks and their children, and between sibling
tasks (Bui and Yorke-Smith 2010). We consider an ex-
tension that includes landmark variables (Castillo, Fdez-
Olivares, and González 2002) that mimic synchronisation
between tasks in different parts of the network, and thereby

4http://www.dis.uniroma1.it/˜challenge9/
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Figure 8: Run times on the HTN benchmarks for graphs
from 500 to 625 vertices and varying induced width.

cause some deviation from the tree-like HTN structure. We
generate HTNs using the following parameters: (i) the num-
ber of tasks in the initial HTN tree (fixed at 250; note that
tasks have a start and end point), (ii) the branching factor,
determining the number of children for each node (between
4 and 7), (iii) the depth of the HTN tree (between 3 and 7),
(iv) the ratio of landmark time points to the number of tasks
in the HTN (randomly drawn from [0, 0.5]), and (v) the prob-
ability of constraints between siblings (when possible; ran-
domly drawn from [0, 0.5]).

These settings result in graphs of between 500 and 625
vertices, with induced widths varying between 2 and 144.
Figure 8 shows the results of these experiments as a func-
tion of the induced widths of the graphs. We can see that
only for the larger induced widths, Johnson and Chleq come
close. These large induced widths are only found for high
landmark ratios of 0.5. The results indicate that for the ma-
jority of STNs stemming from HTNs, Snowball is more ef-
ficient than Johnson.

Induced Width on General Graphs
On general graphs, the run time of the proposed algorithms
depends on the induced width of the ordering produced in
the triangulation. In this experiment we analyze the induced
width for all problem instances in the previous experiments
and compare it to a lower bound x ≤ w∗ on the treewidth.
Neither for the used triangulation heuristic (minimum de-
gree) nor for the lower bound we are aware of any theoret-
ical guarantee on the quality with respect to the treewidth,
but we can calculate the ratio wd/x to get an upper bound
on the ratio wd/w

∗.
These results can be found in Figure 9. The curves repre-

sent functions wd(x) = cxk that express the relation of the
induced width to the lower bound x. We find for New York
k = 4.55, for HTN k = 2.52, for scale-free k = 1.24, and
for job shop k = 1.05 with very small constants c < 0.05
for New York and HTN and c around 1 for the other two.
Since the x in these functions is (just) a lower bound on the
treewidth w∗, we tentatively conclude that in most settings

175



 1

 2

 4

 8

 10

re
la

tiv
e 

in
du

ce
d 

w
id

th
 (v

s.
 lo

w
er

 b
ou

nd
)

lower bound on treewidth

New York
HTN
scale-free
job shop

Figure 9: An upper bound on the induced width can be
determined experimentally by comparing it to a lower bound
on the treewidth.

wd(x) is O
(
w∗2.5

)
and the run time of the algorithms thus

is O
(
n2w∗2.5

)
.

An alternative to a triangulation heuristic would be to
use an approximation algorithm with a bound on the in-
duced width that can be theoretically determined. For ex-
ample, Bouchitté et al. (2004) give a O (logw∗) approxi-
mation of the treewidth w∗. Using such an approximation
would give an upper bound on the run time of Snowball of
O
(
n2w∗ logw∗

)
. However, the run time of obtaining this

approximate induced width is O
(
n3 log4 nw∗5 logw∗

)
and

has a high constant as well, so their work is—for now—
mainly of theoretical value.

5 Related Work
For dense, directed graphs with real weights, the state-of-
the-art APSP algorithms run in O

(
n3/ log n

)
time (Chan

2008; Han 2008). These represent a serious improvement
over the O

(
n3

)
bound on Floyd–Warshall, but do not profit

from the fact that in most graphs that occur in practice, the
number of edges m is significantly lower than n2.

This profit is exactly what algorithms for sparse graphs
aim to achieve. Recently, an improvement was published
over Johnson’s O

(
nm+ n2 log n

)
algorithm: an algorithm

for sparse directed graphs running inO
(
nm+ n2 log logn

)
time (Pettie 2004). With an efficient implementation, this
algorithm is thus faster than Johnson (in worst cases, for
large graphs) when m ∈ o (n log n). The upper bound of
O
(
n2wd

)
on the run time of Snowball is smaller than this

established upper bound when the induced width is small
(i.e. when wd ∈ O (log logn)), and, of course, for chordal
graphs and graphs of constant treewidth.

We are familiar with one earlier work to obtain shortest
paths by leveraging low treewidth. Chaudhuri and Zaro-
liagis (2000) present an algorithm for answering single-
source shortest path (SSSP) queries with preprocessing
O
(
w3

dn log n
)

and query time O
(
w3

d

)
. A direct extension

of their results to APSP would imply a run time ofO
(
n2w3

d

)

on general graphs and O
(
nmw2

d

)
on chordal graphs. Our

result of computing APSP on general graphs in O
(
n2wd

)
and in O (nm) on chordal graphs is thus a strict improve-
ment.

Other restrictions on the set of graphs for which shortest
paths are computed lead to other algorithms, sometimes with
tighter bounds. For example, for unweighted chordal graphs,
APSP lengths can be determined in O

(
n2

)
time, but only

after for each vertex edges are added to all neighbours of
its neighbours (denoted by G2) (Han, Sekharan, and Sridhar
1997). Considering only planar graphs, recent work shows
that APSP be found in O

(
n2 log2 n

)
(Klein, Mozes, and

Weimann 2010).
In the context of planning and scheduling, a number

of similar APSP problems need to be computed sequen-
tially, potentially allowing for a more efficient approach
using dynamic algorithms. Even and Gazit (1985) pro-
vide a method where addition of a single edge can re-
quire O

(
n2

)
steps, and deletion O

(
n4/m

)
on average.

Demetrescu and Italiano (2006) and Thorup (2004) later
give an alternative approach with an amortized run time of
O
(
n2(log n+ log2 n+m

n )
)
.

6 Conclusions and Future Work
In this paper we give two algorithms for all-pairs short-
est paths with a run time bounded by (i) O

(
n2

)
for

all graphs of constant treewidth, matching earlier results
that also gave O

(
n2

)
(Chaudhuri and Zaroliagis 2000);

(ii) O (nm) on chordal graphs, improving over the earlier
O
(
nmw2

d

)
; and (iii) O

(
n2wd

)
on general graphs, showing

again an improvement over previously known tightest bound
of O

(
n2w3

d

)
. In these bounds, wd is the induced width of

the ordering used; experimentally we have tentatively deter-
mined this to be bounded by the treewidth to the power 2.5.
In addition, we provided extensive experiments showing that
Snowball is faster than Chleq, and both consistently outper-
form Johnson and Floyd–Warshall in most settings (e.g. for
STNs stemming from HTNs of size around 600 when the
induced width is below 140).

The similarity to P3C suggests an improvement to Snow-
ball for aO

(
nw2

d + n2s
)

run time, where s is the size of the
largest minimum separator in the chordal graph. This im-
provement is of importance when separators are small while
the treewidth may not be. HTN-based sibling-restricted
STNs, for instance, always have separator size s = 2.
Letting the branching factor rise as high as O (

√
n), the

improved Snowball algorithm would still have an optimal
O
(
n2

)
time complexity. We plan to implement this im-

provement in the near future.
In other future work, we would like to also experimentally

compare our algorithms to the recent algorithms by Pettie
(2004) and the algorithms for graphs of constant treewidth
by Chaudhuri and Zaroliagis (2000). In addition, we are in-
terested in more efficient triangulation heuristics, or triangu-
lation heuristics with a guaranteed quality, to be able to give
a guaranteed theoretical bound on general graphs. Another
direction, especially interesting in the context of planning
and scheduling, is to use the ideas presented here to design
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a faster algorithm for dynamic APSP, for example, building
upon work by Demetrescu and Italiano (2006) and Planken,
de Weerdt, and Yorke-Smith (2010).
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