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Abstract

Multi-modal transportation is a logistics problem in which a
set of goods have to be transported to different places, with
the combination of at least two modes of transport, without
a change of container for the goods. The goal of this paper
is to describe TIMIPLAN, a system that solves multi-modal
transportation problems in the context of a project for a big
company. In this paper, we combine Linear Programming
(LP) with automated planning techniques in order to obtain
good quality solutions. The direct use of classical LP tech-
niques is difficult in this domain, because of the non-linearity
of the optimization function and constraints; and planning al-
gorithms cannot deal with the entire problem due to the large
number of resources involved. We propose a new hybrid algo-
rithm, combining LP and planning to tackle the multi-modal
transportation problem, exploiting the benefits of both kinds
of techniques. The system also integrates an execution com-
ponent that monitors the execution, keeping track of failures
and replans if necessary, maintaining most of the plan in exe-
cution. We also present some experimental results that show
the performance of the system.

Introduction

Since the logistics domain was defined (Veloso 1992), logis-
tics problems have been traditionally used by planning prac-
titioners to show the performance of their systems. It was a
simplified version of a real problem, which represents an im-
portant task for companies that have to transport many goods
among different places. In this paper, we describe the work
we have done on trying to apply current automated planning
techniques to solving a real logistics problem. In our case,
we deal with multi-modal transportation, that is character-
ized by the combination of at least two modes of movement
of goods, such as road, rail, or sea (Muller 1999). The de-
velopment of multi-modal transportation has been followed
by an increase in multi-modal transportation research —see
e.g. (Macharis and Bontekoning 2004). Thus, it provides
a real and challenging domain for researchers working on
Artificial Intelligence (AI) planning and scheduling. How-
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ever, there are relatively few applications to solve the multi-
modal transportation problem. The logistics research usu-
ally focus on only one mode of movement of goods, whether
by road (Ropke and Pisinger 2006), rail (Salido and Bar-
ber 2009) or sea (Imai, Shintani, and Papadimitriou 2009).
Multi-modal transportation is more complex than the uni-
modal one. Beyond the obvious remark that multi-modal
transportation problems induce state spaces which are or-
ders of magnitude larger than the state space of each partic-
ular uni-modal transportation problem, there are two obser-
vations that make multi-modal transportation problems quite
challenging: on one hand, the optimal path is not the short-
est path anymore; instead, additional costs have to be con-
sidered at the nodes where a new transpotation mean is ap-
plicable —e.g., money and/or time. On the other hand, a
new class of constraints has to be observed which (to make
things harder) is dependant on each node —e.g., operat-
ing an exchange of transportation mean can actually involve
other subproblems as it happens when moving freights from
a truck to a ship.

In this paper, we deal with a real-world problem and in par-
ticular we focus on intermodal freight transport. Our con-
tribution attempts to provide a new application, TIMIPLAN,
to solve problems of this kind. The planning component of
TIMIPLAN consists of two phases: in phase one, for each set
of goods to be picked up and delivered, the containers and
trucks with minimum estimated cost to complete the service
are selected. In this phase, several assignment models are
constructed and solved as linear programming problems. In
phase two, an AI planner is used to select the best (cheapest)
plan to serve each service: from a first pick-up point to the
last delivery point over the transportation route. The plan
should fulfill a given set of constraints (temporal and regu-
latory), and will include the sequence of the transportation
modes to be used. Although some of the application areas
addressed in AI and Operations Research (OR) are very sim-
ilar (e.g., planning, scheduling), the methods that are used
to solve these problems are substantially different. In this
paper, we describe the application we have developed for a
big logistics company, discuss the difficulties on using “as
is” current AI planning technology for solving this task, and
provide some experimental results that evaluate the software
in real situations extracted from the customer database.
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The remainder of this paper is organized as follows. Section
Related Work gives a brief summary of the transportation
problem in its uni-modal and multi-modal versions, intro-
ducing some of the main approaches used to solve it. Sec-
tion Problem Description describes the multi-modal trans-
port problem. Section TIMIPLAN presents the TIMIPLAN

application. Section Evaluation includes experiments rela-
tive to the algorithms used in TIMIPLAN. Lastly, Section
Conclusions presents the conclusions and further research.

Related Work

There have been already many approaches that deal with the
uni-modal transport problem. An overview can be found
in (Nanry and Wesley Barnes 2000). In the multi-modal
transport problem there has also been some work done,
though none of these works solves the complete logistics
problem, being centered in other problems associated with
multi-modal transportation or in subproblems that do not
represent all the constraints. In (Macharis and Bontekon-
ing 2004), the authors discuss the opportunities for OR in
intermodal freight transport. The paper reviews OR mod-
els that are currently used in this emerging transportation
research field and defines the modeling problems which
need to be addressed. In (Eibl, Mackenzie, and Kidner
1994), the authors present a case study applying an inter-
active vehicle routing and scheduling software to a brew-
ing company in the UK. They explain how a commercial
tool was applied to schedule the day-by-day (operational)
vehicle routing and scheduling to distribute the goods. This
tool was specific for the brewing problem, and the opera-
tor that manages the tool needs a previous training process
to manage all variables involved. In our case, the solution
is quite domain-independent, with less user knowledge re-
quirements. In (Catalani 2003), a statistical study is pre-
sented to improve the intermodal freight transport through
Italy, by using the road-ship and road-train transports. In this
study, only the main points of origin or destination are taken
into account, so the study does not deal with the complete
network complexity problem, as we do. In (Qu and Chen
2008), the authors pose the multi-modal transport problem
as a Multicriteria Decision Making Process (MCDM). They
propose a hybrid MCDM by combining a Feed-forward Ar-
tificial Neuronal Network with a Fuzzy Analytic Hierarchy
Process. The case study is a network in which nodes repre-
sent terminals, and edges represent different transportation
modes (road, ship and train). The model can deal with sev-
eral cost functions and constraints, but they only define six
nodes, while our maps can have thousands of nodes.

Problem Description

We define a logistics problem as the tuple
< G,F,C,R,B, S > where G is the network graph,
F , C, R and B are the sets of trucks, containers, trains
and ships respectively and S the services that should be

fulfilled. The nodes in G represent the locations where the
goods should be picked up or delivered. A service s ∈ S
specifies pickup and delivery operations, each one with a
location and service time, that indicates the time at which
the corresponding location is available for the pick-up or the
time at which a delivery service should be performed. To
complete a service only a container c ∈ C is required, but it
can be moved by using a combination of vehicles: trucks,
trains and/or ships. Each truck t ∈ F has information
relative to the location and time at which it will be available
and its corresponding driver’s accumulated driving time.
If a truck is used, it should travel to pick the container up,
and either visit all locations of the transportation request
(pick up and delivery locations), or transport it to the next
transportation means (train station or port), where the rest
of the plan might involve one or several other transportation
vehicles. Trains and ships have a timetable specifying their
movement actions and the load and unload actions can only
be executed when they are in a station/port. The resulting
plan should satisfy the given service times of the locations.
For instance, if the truck and container arrive early, they
have to wait at the location until it is available. If the truck
and container arrive late, there will be a cost penalty.

In multi-modal transportation, several trucks are usually
needed. For example, Figure 1 shows how, in order to com-
plete the service, there are five available trucks, one con-
tainer, two trains and two ships. The first truck with the con-
tainer picks the shipment up from Pick–Up

1
and transports

it to Pick–Up2 using either road or train. If the train option
is selected, another truck will be necessary to transport the
container to Pick–Up

2
. Also, there are two other decision

points related to the use of Ship1 and Train2. The use of
Ship2 and Truck4 is mandatory for reaching the Pick–Up3

point.

Figure 1: Example of multi-modal transportation graph.

Thus, there are several kinds of resources, each one with
different kinds of costs (e.g., moving the truck empty is dif-
ferent from moving it loaded), different routes (either single
mode routes, as all road, or multi-modal routes, as combin-
ing trucks with barge and/or rail), and with temporal and
resource constraints (drivers have constraints on number of
continuous driving hours, for instance). Several constraints
have not been included in the previous description of the
problem, due to the difficulty of formalizing them or be-
cause they depend on information that is not available in
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the system. For example, there are soft goals related to the
places where the drivers prefer to stop or to the client’s pref-
erences about vehicles and/or containers used to transport
their goods. Also, human planners have expert knowledge
about the probabilities of new services arising in each zone.
They use that knowledge to reserve trucks or containers in
these zones or make movements that prepare all resources
for future unknown services. Given that it is impossible to
predict all potential soft goals to be taken into account when
planning, we use a mixed-initiative approach to help the user
taking into account those constraints that cannot be easily
handled by TIMIPLAN.

The planner is executed every day. A daily problem has
approximately 600 locations (summing up all pick-up and
delivery locations, as well as initial positions of trucks, con-
tainers, ships, and trains), 175,000 edges among those lo-
cations, 300 trucks, 300 containers, 300 services, 50 train
segments and 150 ship segments. The company imposes a
time limit of 2 hours for computing the daily plan.

TIMIPlan

TIMIPLAN solves logistics multi-modal problems. In a plan-
ning context, it receives the positions of the set of all avail-
able resources as input (initial state), a number of services to
be performed (goals) and has to generate a plan with actions
including: the load of goods in different places; the unload
on others; and the assignment and movement of the available
resources (trucks, containers, ships, trains, . . . ) to complete
this request. Also, it must take into account several con-
straints, such as pick-up and delivery times. The objective is
to minimize the cost of servicing all the daily requests.

TIMIPLAN is composed of a set of modules as shown in Fig-
ure 2. The input is the list of services to accomplish and the
list of available resources (initial locations of each resource,
costs, constraints, . . . ), both in XML format. The output is a
plan for each service. This plan can be graphically inspected
on a map which includes points where the actions are per-
formed and the routes followed by the vehicles. The Web
access component performs different queries to Web portals
like Google Maps, postal codes services or traffic informa-
tion. The main module fuses all the gathered data to gen-
erate the problem description and delegates the work to the
planning and monitoring modules. Once TIMIPLAN creates
the problem description, it is passed to the planner (com-
bination of OR and AI). The Monitoring component allows
TIMIPLAN to detect deviations from the original plan, or new
services to be planned for, that arise everyday and triggers
replanning when necessary.

For a full integration with the company’s information sys-
tems, TIMIPLAN has to support two modes of operation: of-
fline and online. The offline mode runs everyday to gener-
ate the next day’s planning. In the online mode, the system
monitors the position of each resource, the execution of ac-

Figure 2: TIMIPLAN architecture.

tions and the replanning when necessary. The system also
incorporates a simulator that allows the analysis of potential
plan alternatives generated by the user. The mixed initiative
module allows the human experts to interact with TIMIPLAN

in order to include extra information in the problem, plan to
consider the constraints and goals that cannot be formalized
explicitly, or solve unexpected failures.

Planning module

The first approach we followed consisted on trying to solve
the complete problem by using an automated planner. Un-
fortunately, given the size of the problem, no domain-
independent planner can go beyond the initial instantiation
phase. For instance, the load-truck action has three pa-
rameters (truck, container, location). In our problems, we
deal with around 300 trucks and containers, and around 600
locations. Thus, there are about 300 × 300 × 600 = 54

million potential instantiations of that action solely. One po-
tential way of solving the instantiation problem could be to
model all trucks in a uniform way. So, one could define
at each location the number of trucks at that location. Thus,
moving a truck from one location to another would only con-
sider the two locations, and the effect would be to add one to
the destination location and subtract one from the source lo-
cation. However, this solution requires all trucks to be equal.
In our case, each truck is different given that drivers, who
are assigned to trucks by the company (and this assignment
cannot be controlled), have different properties, mainly re-
lated to the regulations (number of continuous driving hours,
number of rest hours, and so on). Also, these regulations are
different depending on the location. In a similar way, linear
programming experiences a combinatorial explosion due to
the huge number of resources involved.

First, we compute the assignment of trucks and containers
to services taking into account the initial positions of the
trucks and containers, using a LP approach. Then, our ap-
proach sequentially solves the problem, using three different
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steps for each service. In step one, the container and truck/s
with minimum cost estimated to complete the service are
selected. In step two, a planning module is used to select
the best path from a first pick-up point to the last delivery
point over the transportation route. In this case, best means
that the path fulfills the given set of constraints, including
the sequence of the transportation modes used (where sev-
eral trains and/or ships can be used) with the minimum cost.
This two-step approach balances the total cost obtained and
the time required to compute the plan. The high level algo-
rithm has been depicted in Table 1. The network graph is the
graph defined by the locations (pick-up and delivery nodes,
positions of trucks, containers, train stations and ports) and
edges (roads, rails and ship lines). In step three, we update
the assignment of trucks and containers to services taking
into account the final position of the trucks and containers
used to complete the last planned service. In the third step,
we use the same LP approach again.

TIMIPLAN (G, F, C, R, B, S): plan

;; Inputs: the graph (G), the set of trucks (F), containers (C), trains (R), ships (B) and services (S)

plan = ∅

;; Compute the initial assignment of trucks and containers to services (A)

A = solveAssignmentProblem(G, F, C, R, B, S)

For each s ∈ S

;; Select the truck/s and container to complete the service

selectedTrucks,selectedContainer= getServiceAssigment(A, s)

;; Plan the service with the truck/s and container selected. Select the best transportation modes

plan = ∪ {solvePlanningProblem(selectedTrucks, selectedContainer, R, B, s)}

;; Updates assignment with the new cost of selectedTrucks and selectedContainer

A = updateAssignmentProblem(G, F, C, R, B, S)

Return plan

Table 1: Top level algorithm of TIMIPLAN.

There are several reasons that make the use of LP diffi-
cult to solve the second subproblem (the selection of the
best transportation modes for each transportation request),
and advocate the use of other techniques as automated plan-
ning. Multi-modal transportation problems are non-linear
in the constraints (e.g. the limits for when and how long
truck drivers may drive and rest), and in the objective func-
tion (e.g. the cost for delayed delivery depends non lin-
early on the amount of delayed time). Though there are
some works that transform non-linear problems into linear
ones using techniques involving piecewise linear approxi-
mation (Turkay and Grossmann 1996), or other transform-
ing methods (Wang, Chukova, and Lai 2005), they usu-
ally involve the inclusion of additional constraints or vari-
ables, complicating excessively the model. For a quadratic
problem with n 0-1 variables, Oral-Kettani’s method (Oral
and Kettani 1992) (considered as one of the most efficient
linearization technique published) would introduce n addi-
tional continuous variables and n auxiliary constraints, and
for a cubic problem with n 0-1 variables, Oral-Kettani’s
method would introduce 3n additional continuous variables
and 3n auxiliary constraints. Furthermore, if we decide to
use non-linear programming to solve the problem, no gen-
eral method exists for solving non-linear programming prob-

lems (NLP) in the same manner as the Simplex method
solves LP problems. Moreover, the number of resources
and temporal constraints involved preclude the use of an-
alytical (optimal) procedures, as LP, to solve these prob-
lems (Church et al. 1996). In this case, LP exceeds the
time limit of two hours to solve a daily problem. So, it is
necessary to use heuristic search methods in order to ob-
tain good quality (but sub-optimal) solutions. In addition,
planning actually starts by considering a very expressive
language which usually overcomes some of the difficulties
found when modeling a problem with linear constraints and
non-linear optimization functions.

Assignment Problem In the classical assignment prob-
lem, the goal is to find an optimal (minimum cost) as-
signment of resources to tasks taking into account the con-
straints, and ensuring that all tasks are completed. In Fig-
ure 1, a service with three pick-up points and two deliv-
ery points is shown. It is possible to use either the road or
the railway between Pick–Up

1
and Pick–Up

2
and between

Pick–Up3 andDelivery2. Also, it is possible to use the road
or a ship between Pick–Up2 and Delivery1 and only a ship
between Delivery

1
and Pick–Up

3
. If multi-modal modes

are selected to solve the service, trucks Truck2, Truck3,
Truck4 and Truck5 pick the container up from the desti-
nation port or station and continue the transportation route
until they reach the next origin port, station or the final de-
livery node. Given the size of the whole assignment prob-
lem, we decompose it into three subproblems: assignment
of containers to trucks, assignment of trucks and containers
to services, and assignment of trucks to multi-modal nodes.
In all these subproblems the objective criteria is to minimize
a function cost. There are no additional constraints to those
imposed by the assignment problem itself, i.e. each resource
cannot be assigned to more than one task and viceversa.

In the first subproblem, we solve the assignment of empty
containers to trucks. The cost of a truck-container assign-
ment is estimated taking into account the distance between
them, the time at which they will be available and the
transportation cost of each truck. In the second subprob-
lem, we solve the assignment of trucks with containers to
services, using the assignments computed in the previous
phase. These operations involve the provision of an empty
truck and container to the service. The truck and container
are used in the subsequent transportation until they arrive to
the last delivery point in the service or until they arrive to
a multi-modal node in the transportation route. To estimate
the assignment cost, we consider the position and time of
both the service and the truck with container. In multi-modal
transportation, additional trucks are needed in order to com-
plete a service. These trucks pick-up the containers from the
destination station/port and transport it to complete the ser-
vice, or until they arrive to the next multi-modal node. So
in the third assignment subproblem, the method selects the
best truck to pick-up the container from the destination sta-
tion/port and continue the transportation route. It takes into
account again the previous assignments. Like in the previous
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subproblems, we take into account the position and avail-
ability time of each truck in comparison with the estimated
time at which the container will arrive to the multi-modal
node.

The system can deal with different number of services,
trucks and containers. Indeed, the usual scenario is to have
more trucks and containers than services, and more contain-
ers than trucks. In case that there were more services than
trucks/containers, the system will assign the same truck to
several services. Since the services are sequentially solved,
each time a service is planned we update the position and
availability time of all the resources involved. Thus, in the
next step, the assignment problems will take into account the
new values when estimating assignment costs.

Planning Problem One of the inputs of the planning pro-
cess is the list of truck/s and container selected by the as-
signment process for each service. A planning problem is
built for each service and the planner must select the best
transportation modes to complete it. Moreover, the planner
must schedule each pick-up and delivery according to the
constraints. First, it selects the trains and ships that can po-
tentially be used to complete the transportation route. Then,
the planning problem is constructed taking into account the
trains, ships and the truck/s and container selected to com-
plete the transportation route. This planning task has several
features that make it very hard for current planners.

• Time management: The existing temporal restrictions
in the problem (each pick-up and delivery is scheduled
according to the time service of each location) imply that
we need an explicit management of the current time. If a
truck arrived early to a pick-up or delivery point, it must
wait, and when it arrives later, a penalty cost is applied.
In addition, a container must wait at stations and ports for
the next departure of the train or ship. We use fluents to
define and handle the temporal aspect.

• Management of functions: In this domain, we use a
large number of functions. Some examples are: cost
per kilometer when truck travels with/without a container,
time spent loading/unloading a container in a train or ship,
or time spent by a train or ship to go from a location to
another. In addition, other functions are used to limit the
driving and resting times of drivers.

• Locations: TIMIPLAN should indicate how to go from
one place to another, so information about the transporta-
tion map should be added to the problem description in-
cluding distances, and cost per edge.

Some of these features can be handled by some temporal
planners. However, there are currently only a few that can
also support functions, and metrics, as needed in this project.
In our work, instead of using a temporal planner, we use
a planner that augments the Metric-FF planner (Hoffmann
2001) with some representation features (computation of

costs that depend on non-static components of the state). We
use A∗ as the search algorithm.

Mixed Initiative

TIMIPLAN implements a fully planning process that allows
the user, once the services are complete and the available
resources are provided, to automatically obtain a complete
plan. That plan takes into account most of the constraints,
but not all because some cannot be represented and effi-
ciently handled by the system. For example, drivers prefer
services near home or prefer to work only on week days.
In addition, several failures may occur once the services are
planned, which are fixed by humans in real time through
phone calls. Finally, human experts are usually suspicious
of tools that provide solutions which cannot be changed,
regardless of how sophisticated or intelligent the tool is.
Thus, a mixed-initiative component has been implemented
to allow the human planners to modify the plans provided
by TIMIPLAN, according to their suggestions made during
the project. Currently, they can change means of transport,
such as trucks, containers or ships, and change the order
of pickup and delivery operations. These changes are per-
formed through the GUI, that also propagates the effects of
these changes: whether the plan is still valid (does not vio-
late any constraint) and what is its new cost.

Monitoring and Replanning

The monitoring component checks whether the execution of
the plan is deviating from the expected and triggers replan-
ning if needed. Given that we are dealing with a real-time
system, with a large number of resources involved, it is not
possible to replan from scratch. So, our replanning compo-
nent consists on adapting the existing plan to the new state,
aiming to perturb the original plan as little as possible (also
known as plan repair (Fox et al. 2006)). We consider three
kinds of situations that may occur during the monitoring pro-
cess: damaged trucks, new services, and traffic jams.

• Damaged trucks: In this case, only the services associ-
ated with the damaged truck are replanned (i.e. only a part
of the original plan is modified). The replanning process
is composed of two different steps: assignment of a new
truck to replace the damaged truck, and planning of the
new transportation modes to complete the service. The as-
signment process selects the truck to replace the damaged
truck following a fully greedy strategy, (select the truck
with the least estimated cost, taking into account if it is
associated with a previous service or not, its localization,
if it is engaged with a container or not). The new selected
truck drives to the damaged truck, picks the container up
and continues the transportation route. If the damaged
truck was associated with more services, a new truck is
selected to replace it in each of them. The new times and
action costs are propagated throughout the plan.
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• New services: In this case, TIMIPLAN proceeds in a sim-
ilar way as previously; first, an assignment of truck/s to
complete the service, and then planning of the best trans-
portation modes to complete it. The truck/s are selected
following a fully greedy strategy, and only these trucks are
considered for the planning problem. The actions planned
to solve the new service are added to the original plan,
with its corresponding action times and costs.

• Traffic jams: Traffic jams increase the duration of ac-
tions related to trucks movements. These situations may
occur at any moment during the monitoring process. If
a truck is delayed due to a traffic jam, TIMIPLAN moni-
tors it, propagating the delay to all the actions that depend
on that truck (in the same service or in others using that
truck), computing the new time and plan cost. If the de-
lays create a constraint violation TIMIPLAN alerts the user
and s/he decides if replanning is neccesary.

If some other unexpected situation arises during the moni-
toring process, this module delegates on the mixed-initiative
component, allowing the human experts to solve it.

Empirical Evaluation of TIMIPLAN

This section presents the evaluation of the two main com-
ponents of TIMIPLAN: the planning, and monitoring and
replanning modules. To evaluate the TIMIPLAN planning
module, we use a set of representative problems, based on
the real data gathered by the company. The problems were
generated using ship routes and pick-up and delivery points
gathered from real problems. There has been a positive qual-
itative evaluation from users. However, direct comparison
against the current solutions adopted by Acciona are not pos-
sible at this point. First, their databases are handled by hu-
mans, so even if they have many inconsistencies (bad written
addresses, same company with different names, ...), humans
are able to live with those inconsistencies, while planners
need the data to be error free. Second, our application was
developed by the central offices to address the loss of solu-
tions quality due to the decentralized planning (resources)
among the branches, as it is currently done. Thus, currently
there is no human solving a 300 services assignment (each
branch considers instead a smaller problem). There are no
plans of such size to compare against, and also coming up
with a plan for 300 services is a hard task for humans. How-
ever, they already examined the generated plans and consid-
ered them to be in the range they would generate.

Two versions of the TIMIPLAN algorithm are used to solve
problems of different sizes. Both versions differ on how they
perform the first step of the algorithm: the assignment of
truck/s and container to services. The first algorithm was
explained in Section (we will call it TIMIPLAN (LP)). In
this algorithm, LP techniques are used to solve the assign-
ment of truck/s and containers to services. In the second ver-
sion of the algorithm, a greedy approach is used to select at
each step the container and truck/s with the least estimated

cost for each service (TIMIPLAN (Greedy)). In this case,
no cost matrix is built as in the TIMIPLAN (LP) algorithm,
selecting greedily for each service the truck and container
with the least estimated cost. We define ten types of prob-
lems in ascending order of size. Each problem has a linear
increase in the number of services (between 75 and 300),
nodes (between 150 and 600), trucks (between 75 and 300),
containers (between 75 and 300), ships segments (between
60 and 150) and train segments (between 5 and 50). For each
problem size, ten different problems are solved in order to
obtain representative mean values and standard deviations.
Given that the company started mainly as a ship transporta-
tion company, all problems contain locations on islands, so
it is necessary to use ships. Figure 3 shows graphically the
comparison of mean times to solve problems of the differ-
ent types using the two different versions of the TIMIPLAN

algorithm. The experiments were conducted on a 2,4 GHz
quadcore processor with 4 GB RAM, running Linux.

Figure 3: Mean solving time and standard deviations.

The solid red line shows the mean times and standard de-
viations spent by the TIMIPLAN algorithm when using LP.
The dashed blue line shows the mean times and standard
deviations needed by the TIMIPLAN algorithm when it uses
the greedy strategy. In the case of TIMIPLAN (LP), the mean
time grows from 65 seconds (the mean time TIMIPLAN takes
to solve the simplest problem) to 6896 seconds (mean time
it takes to solve the most complex problem). Given that it
performs a more complex assignment of trucks and contain-
ers to routes, this version of the TIMIPLAN algorithm needs
more time to solve problems than the greedy approach. In
the latter, the mean time ranges from 38 seconds to 3237
seconds. In both cases, time grows exponentially, but the
curve is less steep in the case of TIMIPLAN (Greedy). Given
that the time limit for solving the real problems was set to
two hours (7200 seconds), TIMIPLAN is able to cope with
those hard problems within the allotted time limit.

In order to analyze the sensitivity of both solutions to the
costs defined by the company, we studied three different cost
configurations, ordered in decreasing order of cost (costs of
configuration 1 are higher than those of configuration 3).

71



Each cost configuration is composed of: a cost per kilometer
when trucks travel without any container or the container is
empty, a cost per kilometer when trucks travel with container
and are loaded, a cost per hour when trucks are stopped in
a location, a penalty cost per hour applied when a delivery
is delayed, and a penalty cost per hour applied when a pick-
up is delayed. Again, these cost settings are based on the
real data gathered from the company. Figure 4 shows the
comparison of quality (cost) of solutions of the same prob-
lems solved previously using the three cost configurations.
In Figure 4, the costs are expressed in millions of euros.
In this case, the solid red line labeled as TIMIPLAN (LP)
shows the mean costs and standard deviations obtained by
the TIMIPLAN algorithm when it uses LP, while the dashed
blue line shows TIMIPLAN (Greedy) behavior. In all cases,
the mean cost obtained by TIMIPLAN (LP) is less than the
cost obtained by the greedy approach.

Figure 4: Mean costs (in million euros) and standard devia-
tions for the three proposed cost configurations.

The difference in costs between the LP and Greedy ver-
sions depends on the cost configuration. So, for instance, in
cost configuration 1, the solution by TIMIPLAN (LP) for the
problem of type 10 is approximately 1.53 millions of euros
cheaper than the solution obtained by the greedy approach.
Given these results, when higher cost penalties are used, the
differences in the total cost (quality) between the LP and
Greedy plans are more significant. The LP approach always
presents a cost saving (higher quality) over the Greedy ap-
proach. Given that the main driver of the company is the re-
duction in cost, once the rest of constraints are fulfilled, the
combined approach of OR and AI techniques can be deemed
as the best current option.

In order to evaluate the TIMIPLAN monitoring and replan-
ning module, we analyzed the time required to replan a dif-
ferent number of damaged trucks and new services (Fig-
ure 5). Previous to the monitoring and replanning process, a
plan is built for attending the daily services (we are consider-
ing a daily problem composed of 68 services, 90 trucks, 100
containers, and 7 ships). This original plan is a good guide
to rebuild a new plan when new situations occur (damaged

trucks or new services that may appear during the day). Fig-
ure 5 shows in the x-axis the number of damaged trucks or
new services and in the y-axis the time spent by the replan-
ning process.

Figure 5: Mean time (in seconds) spent by the replanning
process for a different number of damaged trucks or new
services.

Replanning damaged trucks is more time demanding than
replanning new services. Replanning damaged trucks re-
quires propagating the new time and cost throughout the
plan and replacing it in all the services where it appears.
Replanning new services only requires inserting additional
actions to the plan. However, the replanning process is able
to deal successfully with the daily damaged trucks and new
services of the company. Rarely 25 trucks could be dam-
aged within a day (at least at the same time), or 25 new
services are replanned at the same time (normally, they are
received scattered throughout the day). Nevertheless, these
experiments show that the TIMIPLAN replanning algorithm
behaves successfully in these extreme situations.

Conclusions

In this paper, we have introduced TIMIPLAN that success-
fully solves big multi-modal transportation tasks. Multi-
modal transportation usually involves the combination of
a large number of resources, together with temporal con-
straints, resource consumption, cost functions, etc. Clearly
the bottleneck in this problem is the combinatorial explosion
which makes obtaining optimal solutions impossible in the
time limit established by the company using only classical
planning or only OR techniques. Given the problem’s size,
existing domain-independent planners cannot solve those in
a reasonable time. Instead, we decompose the problem into
two different subproblems. In the first one, we compute the
assignment cost of resources (trucks and containers) to tasks
(services). In the second one, we formulate each task as
a planning problem where different actions are taken (se-
lecting the best transportation modes) to achieve the goals
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(the different pick-up and delivery requests for each service)
taking into account the resources (trucks and containers) se-
lected in the previous phase. LP has shown to be effective to
optimally solve the different assignment subproblems, and
automated planning has solved successfully the selection of
the best transportation modes. This novel way of combining
linear programming and planning has allowed us to balance
the total cost (quality) obtained, the time required to com-
pute a solution and the time to model the different optimiza-
tion problems.

Another key issue in relation to solving real world problems
consists on the difficulty of modelling. In our case, we could
have opted to spend much more time on modelling the whole
problem as a LP or CSP problem, or to spend much more
time on coming up with a solution to the grounding explo-
sion problem for current planners. It might be possible that
following those alternatives would have generated a better
solution in terms of quality and/or time. We believe that
our current solution is a viable solution that has also mini-
mized the modelling time (programming effort) providing a
good solution to the task. As a side effect, we have also
separated the modelling difficulties, so that we deal with
the best solution in terms of the multiple criteria problem
of <modelling time, quality of solution, time to solve>.
Empirical evaluation shows that this combination of tech-
niques finds valid plans to complete all the daily services
of the company within the imposed time limit, and outper-
forming the quality of plans obtained by a reasonable sim-
pler approach. Besides, the replanning approach has suc-
cessfully dealt with a large number of damaged trucks and
new services. TIMIPLAN provides several improvements to
the company operations. Currently, both the assignment of
resources and the route specification are generated manually
by human experts who work in different places, each one
having a local view of the overall problem so that they can
only handle their own resources.

In order to finally deploy TIMIPLAN we have to clean the
databases (or include some kind of robust input parsing), and
setting up GPS on both trucks and containers for monitoring
and replanning. As future work, we consider combining LP
and automated planning in a different way to find better so-
lutions (lower cost) in less time.
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