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Abstract

Suboptimal search algorithms offer shorter solving times
by sacrificing guaranteed solution optimality. While opti-
mal search algorithms like A* and IDA* require admissible
heuristics, suboptimal search algorithms need not constrain
their guidance in this way. Previous work has explored us-
ing off-line training to transform admissible heuristics into
more effective inadmissible ones. In this paper we demon-
strate that this transformation can be performed on-line, dur-
ing search. In addition to not requiring training instances and
extensive pre-computation, an on-line approach allows the
learned heuristic to be tailored to a specific problem instance.
We evaluate our techniques in four different benchmark do-
mains using both greedy best-first search and bounded sub-
optimal search. We find that heuristics learned on-line result
in both faster search and better solutions while relying only
on information readily available in any best-first search.

Introduction

Heuristic search is a widespread approach to automated
planning and problem solving. If time and memory per-
mit, we can use algorithms such as A* (Hart, Nilsson,
and Raphael 1968) with an admissible (non-overestimating)
heuristic to find cost-optimal solutions. Unfortunately, there
are problems too large and deadlines too short for optimal
search. Here, suboptimal search is a practical alternative.
Such algorithms are not constrained by optimality require-
ments and may consult inadmissible heuristics for guidance.

As we later discuss in detail, several authors have pro-
posed learning informed inadmissible heuristics by record-
ing for many states the true cost-to-go, h∗, and a set of fea-
tures. They then learn a function from features to an es-

timate of the cost-to-go, ĥ. Such an approach makes the
limiting assumption that we have access to a representative
training set, or that we can generate one automatically. It
further assumes that the training instances and test instances
are similar enough to one another for the learning to transfer
effectively between instances.

In this paper, we demonstrate that learning heuristics dur-
ing search itself is a practical and effective alternative to off-
line training. We present a technique for improving heuris-
tics based on temporal difference learning (Sutton 1988)
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that avoids the limitations of previous approaches. Us-
ing temporal difference learning to improve heuristics has
been suggested (Nilsson 1998, pages 172-175), but never, to
our knowledge, actually implemented and evaluated. Fur-
ther, an on-line technique allows for instance-specific learn-
ing, which we demonstrate is beneficial. We compare
these heuristics to off-line learning in terms of accuracy and
search guidance. We find that although heuristics learned
on-line are less accurate than heuristics learned off-line, they
provide better guidance. In greedy best-first search (Doran
and Michie 1966), the learned heuristic produces better solu-
tions faster than other approaches, including greedy search
using a powerful pre-computed pattern database heuristic.
In bounded suboptimal search, our technique improves upon
the previous state of the art, optimistic search (Thayer and
Ruml 2008) and eliminates the need for parameter tuning.

Previous Work

Many techniques for automatically generating heuristics
have been proposed. This paper focuses on learning heuris-
tics for general single-agent best-first search. In particular,
we allow ourselves to consider heuristics that may occasion-
ally over-estimate the true cost-to-go from a node to the goal.
We do not directly consider techniques for enforcing admis-
sibility in this paper, although we could use learned admis-
sible heuristics as features for learning.

Samadi, Felner, and Schaeffer (2008) present a technique
for combining an arbitrary number of features into a single
cost-to-go estimate. In their implementation, these features
are pre-computed pattern databases. They train an artificial
neural network (ANN) to map these values to an estimate of
the cost-to-go using h∗ as the target value. For large prob-
lems, they substitute the optimal solution of a relaxed prob-
lem for h∗. The target values and even the features assume
that we have access to a training set. It further assumes that
all instances are similar to one another so that what we learn
on the training set will transfer to new instances. These as-
sumptions limit the applicability of the approach to domains
where instances are similar enough for learning to transfer
between instances.

An alternative approach is to interleave learning and solv-
ing rather than performing all of its learning before perform-
ing any search. Bramanti-Gregor and Davis (1993) propose
a technique that iteratively improves a heuristic used for
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solving a batch of problems. Using the current heuristic,
they attempt to solve all of the problems in a set of instances
within a given expansion bound using A∗ search. Any in-
stances that are solved are used to train a new heuristic using
linear regression against h∗. The process then repeats until
all instances are solved. If all of the remaining instances are
too difficult to solve using the current heuristic, it applies a
weight to the current heuristic. Again, we must be able to
assume that all of the instances we are trying to solve are
similar enough to one another to allow learning to transfer
across instances. Fink (2007) proposes a similar technique
that learns an ordering over the nodes rather than modeling
h∗.

Jabarri Arfaee, Zilles, and Holte (2010) show that the pro-
cess of solving a set of instances can be shortened by inter-
leaving learning with solving. Their bootstrapping method
attempts to solve all of the instances in a set within a time
bound using a base heuristic. It then uses information from
the solved instances to train a new heuristic using an ANN.
If none of the instances are solved, new easy-to-solve in-
stances are automatically generated by random walks back-
wards from the goal. The process repeats with the new
heuristic and the unsolved instances until all instances are
solved. While bootstrapping avoids the need for a set of
training instances, it still assumes that the instances are sim-
ilar enough for the learning to transfer effectively.

None of these techniques learn during search itself.
Learning is either performed offline before using the algo-
rithm to solve problems, or it is done between batches of
instances. Both require us to assume that we have a set of
similar instances to learn from and solve. Much of the work
in learning heuristics (everything we have presented with the
exception of Fink, 2007) has focused on learning heuristics
for permutation puzzles. Every instance of a given permuta-
tion puzzle shares the same state space and goal state, and so
the learned heuristics always generalize perfectly for these
domains. Compare this to domain-independent planning,
where two instances may not even discuss the same type of
problem. In such situations, single instances can differ sub-
stantially from one another and it may not be obvious how
to determine if one instance would yield information useful
for solving another.

Learning During Search

Our goal is to learn an improved cost-to-go estimate, ĥ, dur-
ing a search. First we discuss how to adapt the learning tech-
niques used by previous approaches to work during search.
Then we present a new model for improving heuristics us-
ing the error experienced during a single expansion. Finally,
we compare these techniques in terms of heuristic accuracy
and guidance when used in greedy best-first search and in
bounded suboptimal search.

Adapting Previous Techniques Although the previously-
proposed techniques do no learning during search itself, the
learning algorithms they rely on can be trained on-line. Un-
like the off-line or interleaved cases, when learning during
search we no longer have the optimal cost-to-go from a node
to use as a target value and so we must devise a way to ap-

proximate h∗ on-line. We begin by noting that the optimal
completion of a node p involves going through its best child,
bc(p). Furthermore, the optimal cost-to-go from p relates
directly to h∗(bc(p)) and the transition cost c(p, bc(p)):

h∗(p) = c(p, bc(p)) + h∗(bc(p)) (1)

Equation 1 suggests that we can approximate h∗(p) as
h(bc(p)) + c(p, bc(p)), and use this to learn an improved
heuristic on-line. This is a slight generalization of move in-
variance (Christensen and Korf 1986), which holds that the
entire node evaluation function should not vary between a
parent and its best child. In a manner similar to temporal dif-
ference learning, we approximate the true cost-to-go based
on the heuristic of the best child and then learn a function
from features of the parent to this estimate.

We use the following four features: g(n), the cost of ar-
riving at n from the root, h(n), an estimate of the cost-to-go
from n to the goal, depth(n), the number of actions between
the root and n, and d(n), an estimate of the distance-to-go
along a cost-optimal path from n to the goal, as features
for the learning algorithms. Several previous proposals have
used distance estimates for search guidance (see Thayer and
Ruml, 2009). In many domains, actions can have vary-
ing costs. Here, one can usually construct a distance-to-go
heuristic using methods very similar to those for the cost-to-
go heuristic, for example by tracking the number of actions
required rather than the cost of the actions required to solve
a problem. While h(n) estimates the cost of the cheapest
solution beneath n, d(n) estimates the length of that solu-
tion. Similarly, in these domains we can make a distinction
between the cost of arriving at a node, g(n), and the number
of actions along a path from the root to a node, depth(n).

While both LMS and ANNs should converge in the limit
of infinite training data given the right learning rate and in-
dependent examples, they will do so faster with reasonable
initializations. For LMS, we set the weight on h(n) to be 1
and all others to 0, so that our initial heuristic is equal to the
base heuristic. For the ANN, we perform the first one hun-
dred expansions as we would in a greedy search on h(n),
recording the features and target. We then batch train the
network on these examples for 1000 epochs for initializa-
tion. Convergence is only guaranteed for these techniques if
the training examples are sampled independently. When we
are getting our training examples from the nodes expanded
by a search algorithm, successive examples may be strongly
related to one another. So it is an empirical question whether
these techniques will work well in practice.

Observing Heuristic Error Rather than using the rela-
tionship between parent and child to approximate h∗, an al-
ternative approach is to instead use this relationship to mea-
sure and correct for the error in the heuristic in a single ex-
pansion. With an estimate of the error across a single step,
we can attempt to correct for this heuristic error by estimat-
ing the number of steps to go.

Since our estimator of search distance-to-go is also likely
to be inaccurate, we begin by showing how to correct d using
observed single-step error. A key feature of search distance-
to-go for a particular node p is that its best child should have
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a true distance-to-go d∗(bc(p)) of exactly one less than the
true distance to go of its parent. We can define the one-step
distance error ǫd as:

ǫdp = (1 + d(bc(p)))− d(p) (2)

We require that the best child selected for this calculation not
represent the parent state of p. Thus, states with no children
other than the inverse action back to their parent have no
associated ǫd. Using Equation 2, we derive:

Theorem 1 For any node p with a goal beneath it:

d∗(p) = d(p) +
∑

n∈p goal ǫdn (3)

where p  goal is the set of nodes along the path between
the state p and the goal, including p and excluding the goal.

Proof: The proof is by induction over the nodes in
p  goal. For our base case, we show that when bc(p) is
the goal, Equation 3 holds:

d∗(p) = d(p) +
∑

n∈p goal ǫdn
= d(p) + ǫdp because p goal = {p}
= d(p) + 1 + d(bc(p))− d(p) by Eq. 2
= d(p) + 1− d(p) because d(bc(p)) = 0
= 1

As this is true, the base case holds.
Now for an arbitrary node p, by assuming that Equation 3

holds for bc(p), we show that it holds for p as well:

d∗(p) = 1 + d∗(bc(p)) by definition of bc
= 1 + d(bc(p)) +

∑
n∈bc(p) goal ǫdn assumption

= d(p) + ǫdp +
∑

n∈bc(p) goal ǫdn by Eq. 2

= d(p) +
∑

n∈p goal ǫdn

�

We define the mean one-step error ǭd along the path from
p to the goal as:

ǭd =

∑
n∈p goal ǫdn

d∗(p)
(4)

Using Equations 3 and 4, we can define d∗(p) in terms of ǭd.

d∗(p) = d(p) + d∗(p) · ǭd (5)

Solving Equation 5 for d∗(p) yields:

d∗(p) =
d(p)

1− ǭd
(6)

Another way to think of Equation 6 is as the closed form
of the following infinite geometric series that recursively ac-
counts for error in d(p):

d∗(p) = d(p) + d(p) · ǭd + (d(p) · ǭd) · ǭd + . . . (7)

= d(p) ·
∑

∞

i=1(ǭd)
i (8)

We now turn to estimating cost-to-go. Analogously to
d(n), there is a relationship between the cost-to-go estimates
of a parent and its best child. This allows us to define the
single-step error in h as:

ǫh = (h(bc(p)) + c(p, bc(p)))− h(p) (9)

As in Equation 3, the sum of the cost-to-go heuristic and the
single-step errors from a node p to the goal equals the true
cost-to-go:

h∗(p) = h(p) +
∑

n∈p goal ǫhn (10)

We define the mean one-step error ǭh along the path from p
to the goal as:

ǭh =

∑
n∈p goal ǫhn

d∗(p)
(11)

Solving for
∑

n∈p goal ǫhn and substituting into Equa-

tion 10,

h∗(p) = h(p) + d∗(p) · ǭh (12)

Using Equation 6 we have:

h∗(p) = h(p) +
d(p)

1− ǭd
· ǭh (13)

The quantities ǭd and ǭh are the mean one-step errors along
an optimal path to the goal. During a search, these values
are unknown and must be estimated. We now discuss two
techniques for estimating ǭd and ǭh.

The Global Error Model assumes that the distribution of
one-step errors across the entire search space is uniform
and can be estimated by a global average of all observed
single step errors. To do this, we must estimate which
node is bc(p). We assume it is the node with minimum
f(n) = g(n) + h(n) among all of p’s children, breaking
ties on f(n) in favor of low d(n). The search maintains a
running average of the mean one-step errors observed so far.

We then calculate ĥ using Equation 13:

ĥglobal(n) = h(n) +
d(n)

1− ǭ
global
d

· ǭglobalh (14)

The Path Based Error Model calculates the mean one-step

error only along the current search path, ǭ
path
d and ǭ

path
h .

This model maintains a separate average for each partial so-
lution being considered by the search. This is done by pass-
ing the cumulative single-step error experienced by a parent
node down to all of its children. We can then use the depth of
the node to determine the average single-step error along this

path. ĥpath is then computed analogously to Equation 14. In
either model, if our estimate of ǭd is ever as large as one, we
assume we have infinite distance and cost-to-go.

Comparing On-line and Off-line Learning

We now evaluate these learned heuristics. First, we consider
their absolute accuracy. The different heuristics we compare
are:

Baseline: A standard admissible heuristic.
ANN Off-Line: We trained a three layer neural net-

work with three hidden nodes (the same architecture used
by Jabarri Arfaee, Zilles, and Holte (2010)) and used it to

compute ĥ. We used h∗(n) as the target value and used
g∗(n), the optimal cost of arriving at a node from the starting
position, as a feature in addition to d(n), h(n), depth(n),
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Figure 1: Absolute accuracy of learned heuristics versus the true cost-to-go

and a constant. We used a learning rate of 0.01 and at
least 500,000 feature-target pairs taken from 10 random in-
stances, with the exact number of pairs varying by domain.
We trained the network for 10,000 epochs or until it con-
verged.

ANN On-Line: We trained the same kind of neural net-
work on-line. The features were very similar, with g∗(n)
replaced by g(n). Since we didn’t have access to the true
cost-to-go, h(bc(p))+c(p, bc(p)) was used. To initialize the
network, we collected 100 training pairs and performed a
batch regression for 1000 epochs or until the network con-
verged. Doing the batched regression any shorter or longer
had a negative impact on performance. After this initial pe-
riod, we began streaming the features and target values to
the learner.

LMS Off-Line: Using the same data as we did when
training the off-line ANN, we optimally solved a least mean
squared linear regression using h∗(n) as the target value and
g∗(n), d(n), h(n), depth(n) and a constant as features.

LMS On-Line: We stream examples past an LMS learner
to estimate the true cost-to-go on-line. We used the same
features and target values as we did in the on-line neural
network. The learning rate was the same as the off-line ANN
learner. We initialized the weights of the regression so that
initially our heuristic was identical to the base heuristic.

Single-Step Global: We averaged the observed single-
step errors in h and d globally, and used these to construct
the estimated cost-to-go as in Equation 14.

Single-Step Path: We recorded an A∗ search of each
problem using the base heuristic. We then averaged the ob-
served single-step errors in h and d along the path to each
node, and used these to construct an estimated cost-to-go.

Cost Step Global: In order to assess the impact of dis-
tance estimates on heuristic performance, we altered the
single-step error model to work using only cost-to-go es-
timates, removing the need for distance-to-go estimates.
Rather than measuring the error in h(n) per-step, we mea-

sure it per-cost: ǫh = (h(bc(p))+c(p,bc(p)))−h(p)
c(p,bc(p)) . We compute

ĥ(n) as
h(n)

1−ǭcost
h

, and estimate ǭcosth using a global average.

Cost Path Adapt: We calculate the estimated cost-to-go
as in the cost step global model except that ǭcosth is estimated
using the path based model.

For the accuracy study we considered three benchmark
domains. We used relatively small instances because we
needed to find optimal cost-to-go values for all states. The
domains were:

Sliding Tiles Puzzles We examined 100 random 8-puzzle
instances.

Grid-world Navigation Following Thayer and
Ruml (2008) we tested on grid pathfinding problems
using the “life” cost function. This cost function produces
problems where actions have a large range of costs, short
solutions are more costly than longer ones, and the search
space includes several large g-value plateaus. These
properties have recently seen significant interest (Benton
et al. 2010). We examined 200 by 200 grids, allowing for
movement in each of the cardinal directions. The grids were
generated by blocking 35% of the cells at random.

Vacuum World In this domain, which follows the first
state space presented in Russell and Norvig (2003)(page 34),
a robot is charged with cleaning up a grid world. Movement
is in the cardinal directions, and when the robot is on top of
a pile of dirt, it may vacuum. Cleaning and movement have
unit cost. We used 100 instances that are 200 by 200 with 5
piles of dirt and 35% of cells blocked randomly. The robot
and dirt are placed randomly in unblocked cells.

All algorithms were implemented in Objective Caml and
compiled to native code on 64-bit Intel Linux systems with
3.16 GHz Core2 duo processors and 8 GB of RAM.

Figure 1 shows the relative accuracy of the learned heuris-
tics. The y-axis shows the error present in the heuristic,

h∗(n) − ĥ(n). Each box represents the middle 50% of the
data, with a line at the median, and whiskers extend to the
minimum and maximum values. Cost step corrections are
omitted for life cost grids because they had estimates that
were infinitely inaccurate. The estimators we learned off-
line are, as expected, more accurate in all three domains than
the on-line estimates. We see that they have lower abso-
lute error values, and the bulk of the error they experience is
close to 0. We also see that the path based corrections have
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Eight Puzzle Life Grids Vacuum

msec cost msec cost
1000 secs cost

1000
Baseline 1.07 128 47 74 8.11 1.0
Off-line ANN 2.07 32 196 71 0.72 1.1
Off-line LMS 53.06 22 26 72 0.64 1.4
On-line ANN 4.11 159 231 82 1.37 1.3
On-line LMS 0.91 47 56 73 0.56 0.8
S.S. Path 0.03 34 24 64 0.19 0.6
Cost Path 79 67
S.S. Global 3.55 43 45 69 0.26 0.8
Cost Global 116 71

Table 1: Search using off-line versus on-line learning

a wide variance, and aren’t particularly accurate. Therefore,
we would expect that the off-line techniques would domi-
nate the on-line techniques when used to guide search.

Table 1 presents the results of using these heuristics
within a greedy best-first search, showing the mean CPU
time required to find a solution and the mean cost of the so-
lution. Entries worse than the base heuristic are italicized,
and the best value in each column is bolded. It reveals
that, surprisingly, neither of our expectations is confirmed.
Both ANN heuristics occasionally perform worse than the
base heuristic despite being more accurate. The single-step
heuristics tend to produce better quality solutions than other
approaches, and the path based heuristic is always faster.
The path based corrections, which end up producing the best
results when used in search, can only be performed on-line
as they depend on the path from the root to a node which is
determined by search order. For the eight puzzle, where it
produces a worse solution than off-line LMS, we note that it
is nearly two thousand times faster. For permutation puzzles
like the 8-puzzle, the state space for all problems is identical
and a heuristic learned on one instance of the problem trans-
fers perfectly to new instances of that problem. Here, the
off-line techniques benefit by knowing the correct answer
at the beginning of search while the on-line technique must
learn the improved heuristic on the fly. When we compare
the cost-based and single-step models we observe that using
distance estimates is beneficial.

These results are especially surprising considering how
well these learning techniques have performed in previous
work on learning in heuristic search. Our explanation is
that previous work has mostly focused on learning heuris-
tics for iterative deepening A∗. The role, and therefore the
desired properties, of the heuristic in IDA∗ and greedy best-
first search differ substantially. IDA∗ uses heuristics primar-
ily for pruning, and in many implementations only pruning,
while greedy best-first search uses the heuristic solely for
guidance. IDA∗ works by expanding all nodes within a cost
boundary, and iteratively increasing this cost boundary until
a solution is contained within it. In all but the final iteration,
the relative ordering of nodes is of no consequence and many
implementations ignore child ordering as a result. 1 Accu-
rate cost estimates allow IDA∗ to prune unpromising nodes

1The current state-of-the-art is to run IDA∗ with multiple action
orderings in parallel (Valenzano et al. 2010),which takes advantage

early, dramatically reducing the size of the search tree.

Performance On Larger Problems

We have presented a new technique for learning inadmis-
sible cost-to-go estimates during a search and compared it
to the learning techniques used in previous work, both off-
line and on-line. We saw that the off-line techniques did not
provide guide the search as effectively as the on-line tech-
niques when used in greedy best-first search. We now focus
on the relative performance of the on-line heuristics only.
This allows us to examine much larger problems in which
optimal search is infeasible, problems where we would con-
sider using suboptimal search in practice. We begin by look-
ing at the learned heuristics’ performance in greedy best-first
search algorithms that provide no guarantees on the quality
of solution. We then examine bounded suboptimal search
algorithms which guarantee returned solutions are within a
user-specified factor of optimal. The instances for this study
are larger than those in the accuracy study:

Sliding Tiles Puzzles We used the 100 instances of the
15-puzzle presented by Korf (1985).

Grid-world Navigation We show results over 20 in-
stances of 2000 by 1200 grids.

Vacuum World We used 100 instances that are 500 cells
tall by 500 cells wide with twenty piles of dirt.

Dynamic Robot Navigation This domains follows that
used by Likhachev, Gordon, and Thrun (2003). The goal is
to find the fastest path from the starting location of the robot
to some goal location and heading, taking momentum into
account. We perform this search in worlds that are 500 by
500 cells in size. We scatter 75 lines, up to 70 cells in length,
with random orientations across the domain and present re-
sults averaged over 100 instance. (This domain was absent
from the study of heuristic accuracy because enumerating
h∗ for all states is difficult even for grids of modest size.)

Greedy Best-First Search

In our study of greedy best-first search, we include an ad-
ditional technique. While we can use multiple heuristics as
features for a machine learning algorithm in greedy best-first
search, Röger and Helmert (2010) showed that very good
performance can be attained by alternating through a set of
heuristics. Alternation maintains several copies of the open
list, each sorted on a different heuristic, and selects nodes
from each in turn. We alternate between the cost-to-go esti-
mate h(n) and the distance-to-go estimate d(n) for domains
where these differ.

Table 2 shows the performance of these heuristics in
greedy best-first search. For domains with unit cost actions,
the single-step and cost-based models are identical because
h(n) = d(n) and c(p, bc(p)) = 1, and therefore the re-
sults are omitted from the table. Similarly, alternating is
omitted for unit cost domains. We see that path based cor-
rections produce better solutions than all other techniques
across all four search domains. They are the fastest tech-
nique in 3 domains. The next best technique, on-line LMS
regression, is the fastest algorithm for the 15 puzzle, but is

of child ordering, but doesn’t use the heuristic to order the children.
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15 Puzzle Life Grids Vacuum World Dynamic Robots

msecs cost msecs cost
1e6 secs cost

1000 msecs cost

Baseline 30 395 170 3.0 22.9 12.6 65 537
Alternating 114 3.0 110 643
On-line ANN 69 300 571 5.1 34.1 17.7 7921 6829
On-line LMS 15 174 219 2.9 20.5 6.1 22 63
Single-Step Path 16 107 70 2.8 6.4 3.4 11 48
Cost Path Adapt 2573 3.2 12 47
Single-Step Global 36 159 745 3.0 10.4 4.5 2563 871
Cost Global Adapt 5487 9.8 unknown unknown

Table 2: Greedy search in life, sliding tiles, dynamic robot navigation, and vacuum world

several times slower than the path based corrections for all
other domains we examined. The cost-based global correc-
tion failed to solve all instances within a five minute cutoff in
the dynamic robot domain. For the LMS heuristic and global
single-step models, the weights and errors differed substan-
tially between instances, sometimes by orders of magnitude
on all domains save the 15-puzzle, where the numbers were,
as one would expect, quite similar across instances.

One might wonder if the accuracy of the base heuris-
tic had any influence on the performance of the single-step
model. In Table 3 we compare our best learning method
with a modern pattern database for the 15-puzzle, the 7-8
PDB (Korf and Felner 2002). We see that using the pattern
database heuristic substantially improves the performance
of greedy search when compared to the Manhattan distance
heuristic that we used as a baseline. However, our path
based heuristic finds solutions faster than the PDB heuristic
and those solutions are not much worse on average, and on
some instances our heuristic can find better solutions. This
is accomplished without the benefit of the pre-computation
needed to construct the pattern databases. If we add our path
based correction to the PDB heuristic, it further improves
performance, finding better solutions faster than ether the
PDB alone or path based corrections on top of Manhattan
distance. From this we conclude that single-step correction
can improve the performance of even strong heuristics.

We have not yet demonstrated that the single-step model
learns anything instance-specific. Table 4 shows the perfor-
mance of our global single-step model when learned on-line
and when using a previously learned model with learning
turned off, either from the same instance or a random in-
stance. We use the global model because it is clear how
to transfer the information learned from one instance to an-
other. In this table, we present results in terms of nodes
generated in order to focus on search guidance and ignore
the overhead of learning. As we saw before, we see that
the heuristic corrected on-line produces better results than
the base heuristic without learning. Additionally, both static
off-line models are better than the on-line correction. This
shows us that the improved performance is not due to some
fortuitous synergy of the learning process with search. If
it were, the on-line model would out-perform both static
models. We’re actually learning something meaningful. Fi-
nally, the heuristic learned from the same instance performs
better than one from a random instance. This indicates

that the technique is learning, on-line, an instance-specific
model and that instance specific information is beneficial.
Although Table 4 only reports results in vacuum world, sim-
ilar results were obtained for all domains except for the 15-
puzzle, where all instances share the same search space.

Bounded Suboptimal Search

Occasionally we need guarantees on the quality of a solution
returned by a search. In this setting we use a bounded sub-
optimal search. These algorithms are guaranteed to return
a solution within a fixed factor of optimal. We refer to this
bound as w in homage to weighted A∗ (Pohl 1973).

Algorithms like weighted A∗ rely on the admissibility
of their base heuristic to obtain their suboptimality bound.
However, there are algorithms that can use arbitrary heuris-
tics for at least a portion of their search. Optimistic
search (Thayer and Ruml 2008), the current state of the art
in bounded suboptimal search, is one such algorithm. As
proposed, optimistic search works by running weighted A∗

with a weight higher than the desired suboptimality bound,
and then after that search finds a goal, some additional nodes
are expanded using an admissible heuristic to prove the so-
lution found was within the desired suboptimality bound.

However, the first phase of optimistic search can use
any inadmissible heuristic and still retain its guarantees of
bounded suboptimality as long as an admissible heuristic is
available for the second phase. We can replace the weighted
admissible heuristic from the first phase of optimistic search

with f̂(n) = g(n)+w · ĥ(n) where ĥ is any learned heuris-
tic. We call this modification of optimistic search skeptical
search. It is skeptical in that it does not place absolute trust
in the base heuristic.

Figure 2 compares weighted A∗, several parameter set-
tings for the original optimistic search and skeptical search.
The x-axis of the plot is the suboptimality bound, the de-
sired guarantee on solution quality. The y-axis represents
the amount of time needed to solve problems for the given
bound. We show only the results for skeptical with path-
based correction, the solid line in all four plots, as this
learned heuristic performed best.

Although many of the algorithms are often difficult to dis-
tinguish in detail, what is clear is that skeptical search is al-
ways at least competitive with the current state-of-the-art,
optimistic search, for any of the optimism settings exam-
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Figure 2: Skeptical search versus various parameter settings for optimistic search

ined. We can’t tell the difference between the two algo-
rithms for the fifteen puzzle or for dynamic robot naviga-
tion because the confidence intervals on the time required
overlap. For life cost grids, skeptical search is up to thir-
teen times faster than optimistic search, and up to 20 times
faster in vacuum world. Overall, skeptical search provides
state-of-the-art performance for bounded suboptimal heuris-
tic search.

In addition to out-performing optimistic search, skeptical
search removes the need for parameter tuning. Optimistic
search requires an ad hoc parameter, an optimism factor, in
addition to the desired suboptimality bound. The optimism
factor tells optimistic search how aggressive it should be in
pursuing the initial solution. If it is set too high, the incum-
bent solution will be outside of the desired bound, and the
performance of the algorithm will suffer. If it is set too low,
finding the initial solution will take too long, pulling down
overall algorithm performance. Skeptical search has only
the desired suboptimality bound as a parameter. Rather than
requiring an explicit optimism factor, skeptical search con-

structs ĥ using its experience during problem solving.

Discussion

Our evaluation revealed that the heuristics learned on-
line result in finding better solutions faster than heuris-
tics learned off-line, and is faster than the base heuristics
as well. Additionally, an on-line approach allows us to
learn instance-specific heuristic corrections, something that
is not practical with previous approaches. We can now ef-
fectively use learned heuristics for a larger range of prob-
lems than was previously possible because we don’t have to
worry about poor generalization or constructing representa-
tive training sets. The best feature of this learning technique

is that it only relies on information that any best-first search
already has available. The single-step corrections we pre-
sented appear to be quite general, working with poorly in-
formed heuristics and well informed heuristics, as we saw
in the sliding tile puzzle (Table 3). It also works in domains
with inconsistent base heuristics, such as vacuum worlds.
Admissibility of the underlying heuristic is not a require-
ment. The new learning technique resulted in state-of-the-
art performance for both greedy and bounded suboptimal
search.

The technique does have limitations. Figure 3 shows a
problem where single-step corrections perform poorly. The
start state is marked with ‘s’, and the goal is marked with a
‘g’. The grid is 4-connected. The numbers in the cells show
the value of d(n), the distance-to-go estimate. Each move
that could take us out of the beginning section into the half
of the grid with the goal is a move that will increase the es-
timated distance-to-go. For any search to escape the begin-
ning of the problem, it must experience a single-step error of
2 repeatedly. When we reach the state with a distance-to-go
of 11, the estimated single-step error will be 2 for both the
global and path-based methods. Until the estimate is low-
ered below one by expanding many additional nodes with

no single-step error, ĥ(n) = d̂(n) = ∞. In our implementa-
tion of the search algorithms presented here, we break ties in
favor of low g(n). Thus, if the cost-to-go estimates become
infinitely large, we will perform a uniform cost search due
to tie-breaking. If we had just been doing a greedy search
on the base heuristic in this example, we would go straight
to the goal from the state marked 11 rather than laboriously
performing uniform-cost-search.

For the single-step corrections we present to work well,
they require that the estimates of ǭd to be reasonable. If
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this estimate ever gets too large, we will estimate that the
distance-to-go and cost-to-go are both infinite. Single-step
corrections can fail if d(bc(p)) ≥ d(p), especially if this
happens early, when our estimates of the average error can
be easily influenced. In domains with either large heuristic
plateaus in the estimated distance-to-go or in domains where
the search must frequently go in the ‘wrong’ direction as
defined by the heuristic, we will over-estimate the value of
ǭd, resulting in poor performance. This does not appear to
be a characteristic of any of the benchmark domains we have
examined.

For the heuristic corrections that we learn on-line, with
the exception of path-based heuristic correction, the cost-
to-go estimate for all nodes changes with every expansion.
This means that the order of nodes being considered by the
search could change with every expansion. We found that
it is better to ignore this problem than to update cost-to-go
estimates and re-sort the open list.

An additional limitation of the approach is that, unlike
alternating search or regression-based approaches, it cannot
currently make use of multiple cost-to-go estimates. They
would need to be combined into a single heuristic before
being used in our new model. Similarly, although we find an
improved estimate of the number of search steps-to-go, we
never directly use it to determine search order. We suspect
both are likely beneficial.

While many previously-proposed search algorithms can
use inadmissible heuristics for guidance, few of them have
actually been used that way in the literature. Typically a
weighted admissible heuristic is used instead. A weighted
admissible heuristic will often be inadmissible, however it
isn’t any more informed than the base heuristic because it
doesn’t have any new information. A greedy search on
the weighted heuristic would be no different than a greedy
search on the base heuristic. Our work has shown that by us-
ing inadmissible heuristics that rely on additional sources of
information such as distance-to-go estimates and measure-
ments of heuristic error, we can improve the performance of
suboptimal heuristic search.

Conclusion
We presented and evaluated a new technique for learning
inadmissible heuristics on-line during a search. Our correc-
tion works by observing the error in the cost-to-go heuris-
tic in a single transition between a parent node and its best
child. We can use this observed error along with an esti-
mate of the remaining number of search steps to construct
an improved heuristic on-line. This on-line learning obvi-
ates the need for a training set or pre-computation and al-
lows us to learn instance-specific heuristics. We showed
that our improved heuristic works well in both greedy best-
first search and bounded suboptimal search across a variety
of domains. In greedy best-first search, it leads to solving
problems faster and to finding higher quality solutions. In
bounded suboptimal search, it provided state of the art per-
formance while allowing us to remove a parameter present
in optimistic search, safeguarding us against poor parame-
ter selection. The simplicity of the learning technique com-
bined with the wide availability of the features it uses sug-

gest that single-step heuristic error correction can be applied
in a wide variety of application domains as an easy way to
boost the performance of a variety of suboptimal search al-
gorithms.
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