
Generalised Domain Model Acquisition from Action Traces

Stephen Cresswell
The Stationery Office

St. Crispins, Duke Street,
Norwich, NR3 1PD, UK

stephen.cresswell@tso.co.uk

Peter Gregory
Computer and Information Sciences

University of Strathclyde
Glasgow, UK

pg@cis.strath.ac.uk

Abstract

One approach to the problem of formulating domain models
for planning is to learn the models from example action se-
quences. The LOCM system demonstrated the feasibility of
learning domain models from example action sequences only,
with no observation of states before, during or after the plans.
LOCM uses an object-centred representation, in which each
object is represented by a single parameterised state machine.
This makes it powerful for learning domains which fit within
that representation, but there are some well-known domains
which do not.
This paper introduces LOCM2, a novel algorithm in which
the domain representation of LOCM is generalised to allow
multiple parameterised state machines to represent a single
object. This extends the coverage of domains for which an
adequate domain model can be learned. The LOCM2 algo-
rithm is described and evaluated by testing domain learning
from example plans from published results of past Interna-
tional Planning Competitions.

Introduction
Many activities can be represented as deterministic state-
transition systems. For example, games, business processes
and other human activities. Once modelled in an appropri-
ate representation language, it is possible to reason about
these systems, for example in plan generation. A formal
model of an activity can be created by hand by an expert
in both modelling state-transition systems and the target do-
main. However, it is possible to automatically infer the un-
derlying transition system from sample action sequences of
the domain. Using such an approach removes the necessity
for the domain expert to also be an expert at modelling tran-
sition systems.

The LOCM system (Cresswell, McCluskey, and West
2009) learns planning domain models from sets of example
plans. Its distinguishing feature is that the domain models
are learned without any observation of the states in the plan
or of predicates used to describe them. This works because
of some restrictive assumptions about the form of the model
describing the domain. In particular, the objects are grouped
into sorts, and the behaviour available to objects of any given
sort is described by a single parameterised state machine.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

LOCM is very powerful at finding a model that fits within
this representation. However, in many examples, there is no
model within this representation which sufficiently captures
the semantics of the domain. The expressiveness of the rep-
resentation used by LOCM is more restrictive than STRIPS.
The consequence being that there are domains which can be
modelled in STRIPS which cannot be represented by the for-
malism of LOCM. If the domain cannot be expressed within
the representation used by LOCM, this will result in an over-
simplified model which is too permissive. A common fea-
ture of planning domains which cause this problem is where
objects have separate aspects of their behaviour.

In the present paper, we weaken the assumptions of
LOCM to allow a more expressive representation, thereby
enabling a wider range of domain models to be satisfac-
torily learned. Specifically, we allow the separate aspects
of an object’s behaviour to be represented by separate state
machines. This necessitates that we also develop new tech-
niques for analysis of example plans and synthesis of state
machines. In the rest of the paper, we introduce some differ-
ent visualisations of training data, we study examples where
LOCM cannot represent the underlying domain model. We
then discuss the limitations of LOCM, propose a generalised
model to overcome these limitations, propose an algorithm
(that we call LOCM2) capable of deriving instances of the
generalised model, and evaluate the new algorithm on a col-
lection of benchmark problems.

Background
The LOCM system of (Cresswell, McCluskey, and West
2009) forms a specification of a planning domain in the form
of planning operators in the STRIPS sublanguage of PDDL.
The planning domain is formed by analysis of sequences
of example plans, where each action appears as an action
name and arguments in the form of a vector of object names.
From this, the system synthesises a representation of state by
grouping objects into sorts, forming a state machine for each
object sort, and then enhancing states with parameters which
record associations between objects.

In the following, we use the term transition to charac-
terise the state change made by an object when it appears
at a particular argument position of a particular action - e.g.
board truck.1 labels the state transition made by an object
appearing in the first parameter of the board truck action.

42

Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling



passenger

wai t ing
[floor]

in-elevator
[]board .2

depa r t . 2

floor

e levator
[]

board .1
depa r t . 1

no_elevator
[]

down .1

up .1

down .2

up .2

Figure 1: The FSMs produced by LOCM that describe the
Miconic domain.

Throughout the paper, we consider states of single ob-
jects. Objects states are atomic in our representation. The
object state is not a collection of statements about the ob-
ject, but is instead used to form a single statement about the
object.
The assumptions of LOCM are:

1. We consider that each invocation of a planning operator
causes a specific state change in each of the objects given
as arguments.

2. The behaviour of each object is described by a single
FSM.

3. Objects are grouped into sorts, and objects of the same
sort are described by identical state machines.

4. Each argument position of each action always takes ob-
jects of the same sort.

5. Each transition appears only once in the FSM.

As we shall see, these assumptions can result in the de-
rived models being oversimplified.

Example: Miconic Domain The Miconic domain models
the use a single elevator in a building. There are four ac-
tions available: board, depart, up and down. Figure 1 shows
the output that LOCM produces in this domain. Two state
machines are sufficient to represent this domain. The first
represents the behaviour of passengers, who can transition
between being in and out of the elevator. The other repre-
sents the state of individual floors in the building: if the el-
evator is at the current floor, then passengers can board and
depart.

One aspect of the LOCM system critical to this work is
the unification of candidate states due to the example plans.
We will now demonstrate how state unification produces the
‘passenger’ FSM from Figure 1. Suppose the only example
plan available to LOCM is the following:

1: (board floor1 passenger1)

2: (up floor1 floor2)

3: (depart floor2 passenger1)

4: (board floor2 passenger1)

Consider the object passenger1: passenger1 is a parame-
ter of actions 1, 3 and 4 in positions board.2, depart.2 and
board.2. Figure 2a) shows our initial knowledge of the be-
haviour of passenger1: board and depart both change the

board.2

depart.2

board.2 depart.2

board.2

depart.2

a)

b)

c)

A

A

A

B

B

B

C D

D

Figure 2: State unification in LOCM

state of passenger1 in some way. Now, considering actions
1 and 3, we have evidence that the the end state of board.2
is the start state of depart.2. This means we can unify state
B and C, this produces the FSM in Figure 2b) where B and
C are collapsed into one state. Finally, when we consider
actions 3 and 4, we discover that the end state of depart.2
is the start state of board.2, and states A and D are unified.
Thus, LOCM discovers the passenger FSM in Figure 1.

A later stage of LOCM analyses the associations between
objects, and this results in state machines which are param-
eterised - i.e. a state may contain a variable which records a
dynamic association to another object. An example can be
seen in Figure 1: the passenger sort is related to a floor when
in the waiting state. This part of the analysis in LOCM2
is equivalent to that in LOCM, and is not described in this
paper. For details, see (Cresswell, McCluskey, and West
2010).

Similarly, LOCM2 performs the same zero-analysis as
LOCM. Zero-analysis deals with “background” state which
is not associated with a named object (e.g. an implicit
“hand” object that picks and places cards in freecell). If
each action is treated as though it has a single “background”
object as its 0th argument, such background state can be re-
vealed.

Representing Sorts
We now provide a short discussion of two different ways
of representing the dynamic behaviour of a sort using state-
machines. Throughout the paper we will use the driverlog
domain as an example domain. The driverlog domain is a
transportation domain with sorts driver, truck, package and
location. Packages need to be transported in trucks, which
require drivers in order to drive. Drivers can walk between
locations, while trucks can drive between them.

State-Centred Representation

In the first representation, used by LOCM, the states in the
state-machine represent the individual states of the sort, con-
nected by the actions that enable transitions between two
states of the underlying sort. An example is given below, for
the sort driver from the driverlog domain. The sort has two
states: depending on whether or not the driver is in a truck.

43



out_of_truck

walk.1

in_truckboard_truck.1
disembark_truck.1

drive_truck.4

LOCM forms a state machine for each sort by analysing
the sequence of transitions made by each individual object.
The state machines are constrained to have the property that
a transition may not label more than one edge. Under this
restriction, the STRIPS representation of an operator can be
composed from state transitions brought about on each of
its arguments. If any transition labels were allowed to oc-
cur on more than one edge, then a direct construction of the
operator would require the use of conditional effects.

Transition-Centred Representation
The transition-centred representation is, again, a state ma-
chine representation. However, here the states in the FSM
represent the transitions that can affect the state of objects
of a certain sort. An edge exists between two transitions, a
and b, if the transitions represented by a and b can be consec-
utive for some object in an action sequence. This is a more
expressive representation than the state-centred representa-
tion, in that not every transition-centred graph has a directly
equivalent state-centred graph.

The state machine shown below represents the driver sort
discussed previously.

board_truck.1

walk.1

disembark_truck.1

drive_truck.4

It is convenient for part of our analysis to also consider
the matrix representation of the transition graph. The matrix
for our example is given below.

1. 2. 3. 4.
1. board truck.1 x x
2. disembark truck.1 x x
3. walk.1 x x
4. drive truck.4 x x

We can extract the transition-centred representation di-
rectly from the observed action sequences. This is done by
considering all transitions which affect a given object, and
then for each pair of transitions, 〈a, a′〉, consecutive for the
object, mark the cell a, a′ in the matrix. However, unlike
the state-centred representation, the transition-centred repre-
sentation cannot be used directly for building STRIPS-like
operators.

Equivalence of Representations
Note that the transition matrix representation (and equiv-
alent transition-centred graph representation) are more ex-
pressive than the simple state machine representation.
Hence, in order to represent transition-centred model in
STRIPS, we need to consider the circumstances under which
a conversion from the transition matrix to an exactly equiv-
alent state machine can be made.

a)

b)

c)

r c

c'r'

r
c

c'

r

r'

c

c'

r'

Figure 3: Over-generalising behaviour of LOCM

Equivalence Conditions A row in the transition connec-
tion matrix describes, for a given transition, which transi-
tions may follow. Hence any two transitions which end in
the same state will have the same pattern in the row. Under
the assumption that each transition may only appear once in
the state-based representation, we can say that any two row
patterns must either be identical or non-overlapping.

Overlapping but non-identical patterns can be detected by
looking for the following fingerprint (for any r, r′, c, c′):

. . . c . . . c′ . . .
...

...
...

r . . . x . . . x
...

...
...

r′ . . . x . . . o
...

If this fingerprint is not present, we say that the matrix is
well-formed.

Definition 1 (Well-formed transition connection matrix)
A matrix is well-formed if, for any two rows, r and r′, and
any two columns c and c′, such that the transition pairs
〈r, c〉, 〈r, c′〉 and 〈r′, c〉 are included, the transition pair
〈r′, c′〉 is also included.

The well-formedness property is effectively enforced by
LOCM, even if this results in a model permitting transition
pairs which are not observed in the example sequences. Fig-
ure 3 shows how LOCM would unify the states observed in
the badly-formed matrix in Definition 1, and why this leads
to over-generalisation. In Figure 3a), the four actions r, r′,
c and c′ are listed. In Figure 3b) we see the state after we
have considered row r: c and c′ have both been observed
following r, therefore the start states of c and c′ must be the
end state of r. Now, consider adding r′ to the FSM: since
c has been observed following r′ the end state of r′ is uni-
fied with the start state of c. This is shown in Figure 3c)
and demonstrates the unfortunate result of allowing the un-
observed sequence r′, c′. The unification of states used in
the LOCM algorithm is equivalent to making any two over-
lapping rows (or columns) into the union of both. In the rest

44



of the paper, we refer to a transition pair not observed in the
example sequence, but filled in by generalisation, as a hole.

Example: Driverlog
For the sort truck in driverlog, the LOCM analysis produces
only a single state. This is an incorrect interpretation of
the domain, as it is not possible to perform two consecutive
board truck actions on the same truck, for example. An ad-
equate model should at least have states with/without driver
– the truck should only drive when it has a driver. However
the pairs of consecutive transitions possible are defined by
the following transition matrix, which is not well-formed:

1. 2. 3. 4. 5.
1. drive truck.1 x x x x
2. board truck.2 x x x x
3. disembark truck.2 x x x
4. load truck.2 x x x x x
5. unload truck.2 x x x x x

The hole at transition pair 〈3, 3〉 is correct because it is
not possible for a driver to disembark from a truck twice
consecutively. However, LOCM over-generalises and fills
the hole. If the load truck and unload truck actions were
not included, and only the drive truck.1, board truck.2 and
disembark truck.2 were considered, we would obtain a well-
formed matrix, which can be converted to the following state
machine. This correctly models the behaviour of the truck
sort:

without_driver with_driver
board_truck.2

disembark_truck.2

drive.1

Suppose we modify the driverlog domain so that the
capacity of the truck allows only a single package to be
loaded (e.g. a container truck). In this case the matrix is
different because it is not possible to have two consecutive
load truck.2 or two consecutive unload truck.2 transitions.

1. 2. 3. 4. 5.
1. drive truck.1 x x x x
2. board truck.2 x x x x
3. disembark truck.2 x x x
4. load truck.2 x x x x
5. unload truck.2 x x x x

In this case, it can be seen that the load truck.2 and un-
load truck2 transitions form a separate machine with two
states.

An Example: Blocksworld
blocksworld (with gripper) has four operators. Despite be-
ing able to correctly infer some blocksworld encodings (Mc-
Cluskey et al. 2009), LOCM cannot correctly infer the do-
main in the case of the four operator domain. The output
from training LOCM on a four operator blocksworld action
trace is as follows:

block1
[gripper]

block0
[]

put_on_block.1

put_on_table.1
grip_from_block.1

grip_from_table.1

block2
[block]

put_on_block.3

grip_from_block.3

We can recognise the states as: (block1=gripped,
block0=clear, block2=covered). Note that the result-
ing state machine essentially describes only the top
of the block. Any information about whether the
block is standing on another block or on the table
has been obscured. To understand how this occurs,
it is helpful to look at the transition connection matrix:

1. 2. 3. 4. 5. 6.
1. grip from block.1 x x }

gripped2. grip from table.1 x x
3. put on block.1 x o x }

clear4. put on table.1 o x x
5. grip from block.3 x x x
6. put on block.3 x } covered

In the matrix above, holes are shown with the symbol
o. The LOCM analysis fills the holes, and the consequence
is that it permits incorrect transition pairs (such as 〈3, 2〉,
meaning that a block may be put down on a block, and then
picked from the table). It is in this way that we mean that
the state machine only captures the behaviour of the top
of a block. However, if we consider the matrix formed by
the subset of transitions numbered {1, 2, 3, 4}, this matrix
is well-formed and can be expressed exactly as a state ma-
chine.

1. 2. 3. 4.
1. grip from block.1 x x

}
gripped2. grip from table.1 x x

3. put on block.1 x } on block
4. put on table.1 x } on table

The state machine formed from this matrix captures the
states of the bottom of a block. Hence we can represent the
behaviour of the block with two state machines, representing
the top and the bottom of the block:

gripped

on_block
put_on_block.1

on_table

put_on_table.1

grip_from_block.1

grip_from_table.1

gripped clear

put_on_block.1

put_on_table.1
grip_from_block.1

grip_from_table.1

covered
put_on_block.3

grip_from_block.3

Any given block occupies one state in each state machine.
In summary, the above examples illustrate situations

where the assumption of LOCM (that each sort can be repre-
sented by a single state machine) are inadequate. This arises
when the behaviour of an object has separate aspects. We
now show how we can overcome this problem by using mul-
tiple state machines per sort.

The LOCM2 Algorithm
The key idea of LOCM2 is that the behaviour of a sort is
represented by multiple finite state machines, with each ma-
chine characterised by a set of transitions. The set of state

45



machines is formulated to capture the set of observed transi-
tion pairs.

Firstly, the criterion introduced in Definition 1 allows us
to check the state machine formed from all transitions for the
sort, and determine whether it is well-formed. If it is well-
formed, then a single state-machine suffices, and the LOCM
analysis is adequate.

If the state machine is not well-formed, then it contains
one or more holes. The reader will recall that these are tran-
sition pairs not observed in the data, that would be permitted
if approximated by a single state machine. In this situation,
the LOCM2 algorithm searches to discover a set of valid
state machines that correctly model the holes, such as the
machines shown for the driverlog and blocksworld domains
in the previous section.

Definition 2 (Valid transition subset) If E is a set of ex-
ample sequences, Srt is a sort, Tall is the set of all transi-
tions observed in E for Srt, P is the set of transition pairs
observed in E for Srt, and s is a subset of Tall. A transi-
tion connection matrix M is formed from s using all pairs
〈t1, t2〉 ∈ P such that {t1, t2} ⊆ s. s is deemed to be valid
iff:

• M is well-formed by Definition 1, and
• M can be validated against the example sequences E.

Even if the matrix of a transition set is well-formed, it
may still be inconsistent with the example sequences, e.g. it
may contain inappropriate dead-ends.

Unlike LOCM, the LOCM2 algorithm is heuristic in na-
ture. This is because we are faced with a combinatorial
problem which contains many possible solutions. In gen-
eral, we can consider that the set of valid transition subsets
for a given sort form a lattice. Figure 4 shows a lattice for
the block sort from the blocksworld domain, in which there 6
transitions. Each node in this lattice represents a set of tran-
sitions which defines a state machine. The task is to select
a set of state machines such that the behaviour of the sort is
adequately described.

{}

{1, 3}

{2, 4}

{5, 6}

{1, 2, 3, 4}

{1, 2, 3, 4, 5, 6}

Figure 4: A lattice generated from the blocksworld do-
main. The rectangular nodes represent transition sets which
are both well-formed and tested against example sequences.
The elliptical node represents the set of all transitions, which
in this case is not well-formed.

The strategy is to include a state machine with all of the
transitions for the sort (as in LOCM), but to additionally
check for holes. Given that the holes indicate behaviour
missed in the LOCM analysis, further analysis is performed
with the aim of selecting valid subsets, such that the each

transition pair forming a hole1 occur together in some sub-
set.

It is possible for a matrix to contain holes which cannot
be described by any FSM formed from a subset of its tran-
sitions. In this case, search fails and the single FSM is used
(as in LOCM).

Procedure select transition sets
Input:

Tall – set of observed transitions for sort
H – set of holes - each hole is a set of

one or two transitions.
P – set of pairs 〈t1, t2〉, meaning t1 and t2

occur as consecutive transitions.
E – set of example sequences of actions

Output:
S – set of transition sets.

begin
1. S ← ∅

/* Ensure each hole is included */
2. for each h ∈ H
3. If there is no set s′ ∈ S such that h ⊆ s′

then
4. By breadth-first search, form s, the smallest set

such that
h ⊆ s ⊂ Tall

and
5. s is valid with respect to P , E by Definition 2
6. S ← S ∪ {s}

end If
end for

/* Remove redundant sets */
7. If, for any two sets s1 and s2 in S

s1 ⊂ s2
then S ← S \ {s1}
end If

/* Include all-transitions machine,
even though it might not be well-formed */

8. S ← S ∪ {Tall}
return S

end

To illustrate the algorithm, we will now step through it
with the example of the blocks sort from the blocksworld
domain. The arguments are:

Tall = {1, 2, 3, 4, 5, 6}
H = {{1, 4}, {2, 3}}
P = {〈1, 3〉, 〈1, 4〉, . . .}

At step 1, we initialise the solution set S to an empty set.
At step 2, we begin the loop through the set of holes H ,
selecting the first hole h = {1, 4}. Step 3 checks that h is
not already solved by existing transition set in S, but as S is
empty at this point, we do need to search for a solution.

In the search (step 4), we attempt to discover a set which
includes h, and is well-formed and valid against the test
data. This is done by performing breadth first search through

1A hole is detected as an ordered pair 〈t1, t2〉, but the ordering
is not relevant in the body of the algorithm, so we treat each hole
as set {t1, t2}.

46



sets of increasing size, starting with s = {1, 4}, then form-
ing and testing candidates sets in the sequence {1, 2, 4},
{1, 3, 4}, {1, 4, 5}, {1, 4, 6}, {1, 2, 3, 4}, etc. Each candi-
date is tested first for well-formedness, which is a simple
test on the matrix formed from the transition set. If this test
succeeds, an additional test is performed against the exam-
ple data. For this example, all transition sets which pass
both tests are shown in Figure 4. The solution found by the
search procedure is s = {1, 2, 3, 4}. We can now add this to
the solution set S, so S = {{1, 2, 3, 4}}.

Returning to step 2 for the the next iteration, we consider
the next hole from H , and so we have h = {2, 3}. At step 3,
we find that there is already a set in S which includes h, so
there is no need for further search.

Step 7, is to tidy up redundancy in the solution set, but
this not needed in this case. Step 8, extends S to include the
all-transitions set Tall. So the solution set returned by the
algorithm is S = {{1, 2, 3, 4}, {1, 2, 3, 4, 5, 6}}. These two
transition sets are the transition sets that formed the two state
machines in the blockworld example in the previous section.

Algorithm Properties
Algorithmic Complexity
LOCM2 is a practical algorithm with typical runtimes of less
than five seconds. The sensitivity of the runtime is to the
number of transitions in a sort. A search for a subset from N
transitions could explore all 2N candidate transition subsets.
However, N is small in all domains we have encountered.
The highest (N = 14) was in the rovers domain, and this
completed in less than one minute.

Heuristic Learning
Recall the Miconic elevator example from Figure 1. The
FSMs resulting from executing LOCM2 on the example
plans from the IPC2 competition are show in Figure 5. The
FSM learned for the passenger sort differs from the one
shown previously. This is due to the fact that no sequences
were observed in which passengers depart the elevator and
then board it again. Doing so would always lead to sub-
optimal plans in the domain, as the elevator is of fixed ca-
pacity. This is a form of heuristic learning: the model does
not learn valid transitions that the planners do not use in the
learning data.

Static Information
The current LOCM2 system infers the dynamic properties of
a planning domain. In reality, planning domains also rely on
static information, such as connectedness of a road network.
In order to illustrate this, we present the results from the Peg
Solitaire domain. In this domain, there are three actions:
new-move, continue-move and end-move. Both the new-
move and continue-move actions perform a jump of a peg.
The dynamics of the domain are captured in Figure 7, where
it can also be seen that zero-analysis discovers some of the
necessary dynamics of the domain.

The state machine at the bottom of Figure 7 shows the dy-
namics of the position sort. The state occupied1 is the state

passenger

wai t ing
[]

in-elevator
[]

board .2 arrived
[]

depa r t . 2

floor

e levator
[]

board .1
depa r t . 1

no-e levator
[]down .1

up .2

Figure 5: Heuristic learning in the Miconic domain.

in which a position is occupied by a peg, and there is no cur-
rent move to continue. From this state, either the peg at the
position is removed by starting a new move, or by another
peg jumping over it. Both of these cases leave the position
in the state empty. To become occupied again, a peg can be
moved from elsewhere into the position. The PDDL gener-
ated by LOCM2 is equivalent to the original PDDL, except
that the static information is not present (the important static
information is that the three locations in the parameters of
the jump actions are in a line). Cresswell, McCluskey, and
West discuss an approach to extracting static information in
LOCM. but this relies on manually providing a hint.

Overfitting
Overfitting occurs in LOCM and LOCM2 when the training
data is not extensive enough. Heuristic learning may be a
desirable form of overfitting. Overfitting will typically lead
to overly-specific state machines, in which the correct state
unifications have not been performed. In general it is an
undesirable property.

Evaluation of LOCM2
In order to provide an empirical evaluation of LOCM2 we
have used several standard planning benchmarks as test-
cases. This is useful for several reasons: they are already fa-
miliar to the planning community, the fact that the domains
are already defined makes validation of LOCM2 easier and
there are already relatively large collections of plans avail-
able. These plan libraries are the collections of plans that
were produced in the various planning competitions.

Domains
We now present the outcome of running the LOCM2 algo-
rithm on several benchmark domains. We first present do-
mains which required LOCM2 analysis, and could not be
represented by the LOCM representation. We then discuss
domains which can be represented by both representations.

LOCM2 Required

Driverlog As previously described, the Driverlog domain
requires the new features in LOCM2 as the truck sort
has independent behaviours (to transport both drivers and
packages).

47



card-3

card-3-1
[freecell]

card-3-2
[]

pickup_from_freecell.1

put_in_freecell.1

card-3-3
[]

card-3-4
[]

put_in_empty_homecell.1

Figure 6: One of the state machines for sort card in the AoP-
freecell domain, demonstrating a learned refinement of the
sort.

Four Operator Blocksworld Again, as previously dis-
cussed in detail, in order to correctly model each block,
separate state machines are required.

AoP Freecell There are some interesting aspects to the
AoP-freecell example. This is the version where test data
was generated from humans playing the game.
Whereas the output from LOCM is strong enough to
model the domain (Cresswell, McCluskey, and West
2010), the LOCM2 analysis refines this further. As there
are stacks of cards in the domain, there is effectively an
embedded instance of the blocks world, albeit one with
named table positions, for which the previous LOCM
analysis is adequate. The LOCM2 model contains two
additional state machines for card. The first additional
machine introduces distinct states for the cards according
to what they are placed on - this is analogous to the state
machine for the bottom of a block in blocks world, which
is not strictly required in this case.
The final state machine for card has the interesting feature
that it contains two subgraphs which are not connected
(Figure 6). This distinguishes cards which can be placed
in an empty homecell (i.e. aces) from cards which can
be moved to and from freecells. Whereas it is technically
possible for aces to be moved to and from freecells, this
is never useful in the game, and consequently does not
occur anywhere in the training data. Hence, the analysis
has effectively revealed a hierarchical refinement of the
sort card.

Storage The Storage domain models a warehouse in which
crates must be transported by a hoist. Storage has a
complex type-hierarchy for its location types. There are
three important location types: store-area, transit-area and
place. LOCM2 correctly identifies this subtyping relation-
ship.

LOCM Required There are many domains which only
contain sorts with individual behaviours, in which the origi-
nal state machines which would have been produced by the
previous approach are still produced using LOCM2 analysis.

Logistics This domain is correctly learned and LOCM2
learns heuristic information. This information regards
how the packages are transported. After a package is
unloaded from a truck, the only action available to it is
being loaded into an aircraft (also vice versa). This is be-
cause there are no situations in the example plans in which
packages are transferred from truck-to-truck. This type of

occupied1
[]

empty
[]

jump_new_move.1

jump_new_move.2

jump_continue_move.2
occupied2

[]

jump_new_move.3

jump_continue_move.3

end_move.1

jump_continue_move.1

ready
[]

blocked
[]

jump_new_move.0

end_move.0

jump_continue_move.0

Figure 7: The derived state machines for the Peg Solitaire
domain. This is an example where zero-analysis is required
in order to correctly model the domain.

heuristic learning could potentially be useful. If not, then
models could be learned from random-walks instead of
goal-directed plans.

Grid The model learned for the Grid domain is accurate.
The location sort has three states: locked, unlocked-
occupied and unlocked-unoccupied. Overfitting to the
data again provides heuristic learning in the following
way. In Grid, there are two ways to put a key down, put-
down and pickup-and-lose (the first drops the current key,
the second exchanges it with another key). If the path to
the goal location of the key currently held is blocked, then
it is always better (in terms of minimising plan steps) to
exchange the currently held key for the required key than
to perform the atomic actions. As all of the example plans
exploited this rule, the learned model does not allow keys
to be picked up once they are dropped with no exchange.

Miconic The Miconic example is shown in Figure 5, and
was previously discussed in length.

Peg Solitaire The dynamic elements of the Peg Solitaire
domain are learned correctly, as previously discussed.

Sokoban The dynamic aspects are modelled well, however,
much of the interesting structure is static. For instance,
the connections in the grid define where the crates can be
pushed to.

Depots Depots has an embedded blocksworld-like aspect
to it, where crates can be stacked on top of each other.
As such, it seems that it should require multiple state
machines to represent the towers, in the same way as
blocksworld. The crucial aspect of depots that means
that it can be represented using only a single state ma-
chine per sort is that there are explicitly named bottoms
to each stack (named pallets in the domain) which cannot
be lifted. As such, a crate will never be the bottom item
in a stack, and the second state machine that was required
in blocksworld is not required in depots.

Discussion
The LOCM2 approach is different in character from LOCM,
in that domain models constructed by LOCM are tightly con-
strained by the choice a simple representation for the domain
which leads to single solution, whereas the more general do-
main representation of LOCM2 allows many possible solu-
tions to the same problem, and it is necessary to apply some
heuristic criteria to select a single solution.

48



The LOCM2 algorithm provides good coverage of dy-
namic aspects of benchmark problems. There remain a num-
ber of situations which cause problems, preventing full cov-
erage of STRIPS domains:

• Domains which include dynamic many-many relation-
ships. In LOCM2 (as in LOCM), dynamic associations
between objects are represented by parameters attached
to FSM states. In the case of a dynamic many-many re-
lationship (e.g., adding or removing roads between pairs
of locations), this would require a variable number of pa-
rameters, and the systems cannot learn or represent this
case. The case is rare in benchmark domains.

• Domains in which the same object may appear more than
once in the arguments of actions (e.g. Rovers, in which
the waypoints often occur more than once in the parame-
ters of an action). This provides a difficulty for our anal-
ysis. However, we do not believe that this is a theoretical
limitation, but only a limitation in our implementation.

• Domains in which an operator deletes a condition which
is not a precondition (e.g. satellite). Effectively, this is a
conditional effect, and is not truly in the STRIPS fragment
of PDDL.

• Domains in which an operator includes the same condi-
tion in both the add and the delete effects (e.g. rovers).
This obscure PDDL encoding can be used to suppress
concurrent usage of some resource. LOCM models this
as a precondition only.

Related Work
Systems which learn models from action traces vary in the
amount of the additional information required, the observ-
ability of the intermediate states, and in the expressiveness
of the formalism in which plan operators are formed.

In all cases, the building blocks of the state representation
are given as input - e.g. a set of predicates. LOCM is unique
in not needing to observe any states, and synthesising the
state representation. This is only possible by assuming that
plan operators are formed in a restricted language. LOCM2
improves on this.

ARMS (Wu, Yang, and Jiang 2007), can learn STRIPS
domain models with partial or no observation of intermedi-
ate states in the plans, but does at least require predicates to
be declared. The LAMP system (Zhuo et al. 2010) extends
the expressiveness of the action representations to include
PDDL representations with quantifiers and logical implica-
tions.

The Opmaker2 system (McCluskey et al. 2009; Richard-
son 2008) is based around the object-centred representation
of OCL. This assumes that a small number of plans are hand-
crafted as part of the the process of defining a planning do-
main, typically including initial and goal states, but not in-
termediate states. A partial domain model given as input in-
cludes a specification of objects in each sort, states available
in each sort and state invariants.

The system described in (Shahaf and Amir 2006) learns
plan operators using a richer representation of action. How-
ever, it does require partial observations of state.

More generally, the TIM system (Fox and Long 1998)
constructs state-machines similar to the ones contained in
this work, except with the full knowledge of the domain and
problem. This analysis is designed to reveal implicit type
information and state invariants.

Conclusion
We have presented a new technique for automatically ac-
quiring domain models from example action sequences with
no additional information. We have identified that the rep-
resentation of the previous state-of-the-art algorithm limits
the domains it can learn to those where no sort has inde-
pendent behaviours. There are several standard benchmark
domains which, therefore, are not correctly identified by this
algorithm.

We have shown that, by using a new representation where
each object is represented by multiple state-machines, these
benchmark domains can be represented. The main con-
tribution of this work is to show how these multiple state
machines can be generated using only example action se-
quences.

References
Cresswell, S.; McCluskey, T. L.; and West, M. M. 2009.
Acquisition of object-centred domain models from planning
examples. In Gerevini, A.; Howe, A. E.; Cesta, A.; and
Refanidis, I., eds., ICAPS. AAAI.
Cresswell, S.; McCluskey, T. L.; and West, M. M. 2010.
Acquiring planning domain models using LOCM. Accepted
for publication in Knowledge Engineering Review. Avail-
able from http://eprints.hud.ac.uk/9052.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. J. Artif. Intell. Res. (JAIR) 9:367–
421.
McCluskey, T. L.; Cresswell, S. N.; Richardson, N. E.; and
West, M. M. 2009. Automated acquisition of action knowl-
edge. In International Conference on Agents and Artificial
Intelligence (ICAART), 93–100.
Richardson, N. E. 2008. An Operator Induction Tool Sup-
porting Knowledge Engineering in Planning. Ph.D. Disser-
tation, School of Computing and Engineering, University of
Huddersfield, UK.
Shahaf, D., and Amir, E. 2006. Learning partially observ-
able action schemas. In AAAI. AAAI Press.
Wu, K.; Yang, Q.; and Jiang, Y. 2007. ARMS: An automatic
knowledge engineering tool for learning action models for
AI planning. Knowl. Eng. Rev. 22(2):135–152.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artif. Intell. 174:1540–1569.

49




