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Abstract

We present the first effective SAT heuristics for planning with
expressive planning languages such as ADL. Recently, SAT
heuristics for STRIPS planning have been introduced. In this
work we show that the basic ideas in the heuristic can be gen-
eralized to actions with conditional effects but without dis-
junction, and that disjunction requires a more fundamental
analysis of the STRIPS heuristic, which, despite complica-
tions, will still lead to a natural heuristic which can be imple-
mented efficiently. The experimental analysis shows substan-
tial and systematic improvements over the state of the art in
planning with SAT with ADL.

Introduction
Conditional effects and disjunctivity (alternatives) in pre-
conditions are an important feature of expressive language
for planning. They naturally arise as a way of compactly en-
coding action sets, and are also unavoidable in planning with
observational incompleteness where restriction to uncondi-
tional actions makes it impossible to express a problem.

Many implementations of classical planning limit to
STRIPS, and most of those that venture beyond, reduce all
actions to either STRIPS or to actions without disjunction.
Although a feasible strategy for many of the standard bench-
marks, the lack of full support for disjunctivity and condi-
tional effects is still problematic. This has been the case es-
pecially when translating other complex combinatorial prob-
lems into planning, where the reductive approach often leads
to impractically large planning problems, making planners
which do not natively support full PDDL/ADL unusable.

For (forward) state-space search, however, implementing
the general form of actions is trivial: computing the succes-
sor state of a given state with respect to a given action, which
may contain disjunctive (pre)conditions and conditional ef-
fects, can be done in linear time by a very simple and ef-
ficient algorithm. Complications arise not from the search
method itself, but from other components of planner, for ex-
ample the implementation of heuristics. Most of the research
papers on heuristics published in the recent years restrict to
STRIPS only (for an exception see (Rintanen 2006)), and
this has consequently meant that many planning algorithm
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implementations similarly bypass the conceptual difficulties
of handling more expressive planning languages.

For SAT-based planning, as far as general-purpose SAT
solvers are used, general ADL actions do not pose any diffi-
culty: disjunctivity and conditionality can be represented as
arbitrary propositional formulas, which can be easily and ef-
ficiently translated into CNF: the Tseitin transformation and
its enhancements (Tseitin 1962; Jackson and Sheridan 2005;
Manolios and Vroon 2007) avoid the worst-case exponential
size increase inherent in naive CNF translations.

This paper addresses the problem of defining planning-
specific SAT search heuristics in the context of expres-
sive languages such as PDDL, in which problems with
disjunctivity and conditionality do arise. Simple heuris-
tics have recently been demonstrated to lead to an impres-
sive performance for planning with SAT (Rintanen a2010;
b2010). The simplicity of the heuristics is at least partly
due to the restriction to STRIPS actions only. In this work
we show that the simplicity and elegance generalize to con-
ditional effects without disjunction, and further extensions
allow covering general actions with arbitrary forms of dis-
junction. The main technical challenges are posed by dis-
junction: backward-chaining with disjunctive preconditions
is more complex than with conjunctive preconditions. We
propose effective solutions to problems arising in this set-
ting. Our experimental analysis shows that the generaliza-
tion leads to an equally impressive speedup as in the STRIPS
case, and the resulting planner outperforms earlier ones with
the ADL problems from the planning competitions.

The structure of the paper is as follows. In the next sec-
tion we describe the background of the work in planning.
Then we show how actions without disjunction but with con-
ditional effects can be handled by heuristics similar to the
STRIPS case. The core results of the paper address the dis-
junctivity in goals, conditions and preconditions by defin-
ing heuristics for the most general form of actions. This is
followed by an evaluation of the proposed techniques with
standard benchmark problems, and a discussion of the re-
lated and future work.

Background
We use a propositional logic with some finite setA of atomic
propositions, the constants true > and false ⊥, and formu-
las that are constructed from A, > and ⊥ with ¬, ∨ and
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∧. We assume all formulas to be in Negation Normal Form.
This means that ¬ only occurs in front of atomic formulas.
Hence all formulas are formed from positive or negative lit-
erals with ∧ and ∨. Literals are atomic propositions a ∈ A
or their negations ¬a. The complement l of a literal l is de-
fined by a = ¬a and ¬a = a.

Formalization of Planning
We use the propositional logic to formalize a general plan-
ning language with disjunctive preconditions and condi-
tional effects. We use a finite set of propositional variables
A (which is often related to the state variables of a planning
problem). A valuation v : A→ {0, 1} is a function (a subset
of the Cartesian product A×{0, 1}) that maps propositional
variables to truth-values 0 or 1. A valuation may be partial,
meaning that v(a) may not be defined for some a ∈ A (i.e.,
neither (a, 0) ∈ v nor (a, 1) ∈ v), and otherwise the val-
uation is complete. We sometimes write v(l) for negative
literals l = ¬a, which means 1− v(a).

A state is a valuation of a set A of state variables. An ac-
tion is a pair 〈p, c〉 where p is a propositional formula over
A and c is a set {φ1 B l1, φ2 B l2, . . . , φn B ln} of con-
ditional effects where the φi are formulas and li are literals,
and for any l there is at most φ B l with l on the right hand
side. An action can be taken in a state s if s |= p. The action
has the effect l if there is φ B l ∈ c and s |= φ. An effect
l is unconditional if φ = > for all φ B l ∈ c. An action
is a STRIPS action if the precondition is a conjunction of
(positive) literals and all effects are unconditional.

Reduction to STRIPS
Many of the implemented planning systems avoid the prob-
lems stemming from disjunctivity and conditional effects by
reducing everything to STRIPS actions. This is a feasible
strategy when the number of conditional effects in each ac-
tion is very small and when the disjunctions are close to
being in the Disjunctive Normal Form (DNF). When these
properties, however, are not satisfied, there may be an im-
practically big increase in the size of the action set. Disjunc-
tivity from the actions can be easily removed by the follow-
ing sequence of transformations.

1. Every formula is translated into DNF.

2. Conditional effects (φ1 ∨ · · · ∨φn) B l are split to n con-
ditional effects φ1 B l, . . ., φn B l without disjunction.
Similarly, actions 〈p1 ∨ · · · ∨ pn, c〉 are split to n actions
〈p1, c〉, . . . , 〈pn, c〉 without disjunction.

3. Non-STRIPS actions 〈p, {φ1 B l1, . . . , φn B ln}〉 are
reduced to STRIPS actions.
Generate every subset {(φ′1, l′1), . . . , (φ′n′ , l′n′)}
of {(φ1, l1), . . . , (φn, ln)}. Each subset repre-
sents one possible way the action could be exe-
cuted. We create an action without conditional
effects for each such subset. The action is simply
〈p ∧ φ′1 ∧ · · · ∧ φ′n′ , {> B l′1, . . . ,> B l′n′}〉.

Steps 1 and 3 can both increase the size of the action descrip-
tion by an exponential. This exponential increase, which

does indeed occur with practical planning problems, some-
times turns an easily solvable problem instance to an unsolv-
able one, often simply because the resulting action set is far
too large to fit in the main memory.

Some planners perform the first two steps to eliminate dis-
junction, but not the third step and do handle non-disjunctive
conditional effects inside the planning algorithm.

Translation into SAT
The early translations of planning into SAT restricted to
STRIPS (Kautz and Selman 1996). Even some recent works
on planning with SAT make the same restrictions because
they are based on planning graphs (Blum and Furst 1997)
which do not have a natural generalization to disjunctive
and conditional actions. How actions with disjunctions and
conditional effects are efficiently translated into SAT is well
known (Rintanen, Heljanko, and Niemelä 2006). We outline
the translation for completeness.

A problem instance is determined by a set A of state vari-
ables, a set O of actions, an initial state I , and a goal G (a
propositional formula). The translation is parameterized by
a horizon length T ≥ 0. The propositional variables that are
needed are time-tagged variables a@t for every state vari-
able a ∈ A and o@t for every action o ∈ O (we use the
action description itself as its “name”). When we have a for-
mula φ with variables without time-tags, we can construct
the formula φ@t by tagging all variables with @t.

The translation of actions into SAT is as follows. For ev-
ery action o = 〈p, c〉 we have the following formulas for
t ∈ {0, . . . , T − 1}. For the precondition p we have

o@t→ p@t

for expressing the precondition, and for all φ B l ∈ c
(o@t ∧ φ@t)→ l@(t+ 1)

for the effects. For unconditional effects this simplifies to
o@t→ l@(t+ 1).

For expressing the conditions under which a state variable
a ∈ A does not change its value we have frame axioms

(a@t ∧ ¬a@(t+ 1))→ ((o1 ∧ φ1) ∨ · · · ∨ (on ∧ φn))
for all t ∈ {0, . . . , T − 1}, where o1, . . . , on are all the ac-
tions that can make a false, and φ1, . . . , φn are the respective
antecedents of conditional effects, that is, oi = 〈pi, ci〉 and
φi B ¬a ∈ ci for all i ∈ {1, . . . , n}. There is an analogous
frame axiom for the change from false to true.

Under different definitions of (parallel or sequential)
plans, different combinations of simultaneous actions are
permitted. Whenever the above formulas don’t preclude
an unallowed combination, additional formulas are required
to encode the constraints. For all main notions of plans
there are linear-size encodings of these constraints (Rinta-
nen, Heljanko, and Niemelä 2006).

Finally, we have a@0 for every a ∈ A such that I(a) = 1
and ¬a@0 for every a ∈ A such that I(a) = 0, and G@T .

The translation is linear in the product of T with the sum
of sizes of A, O and G, and it can be easily translated
into CNF by efficient linear-time (and consequently linear-
size) translations (Tseitin 1962; Jackson and Sheridan 2005;
Manolios and Vroon 2007).
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1: PROCEDURE support(G,O, T, v)
2: empty the stack;
3: push all l ∈ G into the stack;
4: C := ∅;
5: WHILE the stack is non-empty DO
6: pop l@t from the stack;
7: t′ := t− 1;
8: found := 0;
9: REPEAT

10: IF v(o@t′) = 1 FOR SOME o ∈ O with l ∈ eff(o)
11: THEN
12: FOR ALL l′ ∈ prec(o) DO push l′@t′ into the stack;
13: found := 1;
14: ELSE IF v(l@t′) = 0 THEN
15: o := any o ∈ O such that l ∈ eff(o) and v(o@t′) 6= 0;
16: C := C ∪ {o@t′};
17: FOR ALL l′ ∈ prec(o) DO push l′@t′ into the stack;
18: found := 1;
19: t′ := t′ − 1;
20: UNTIL found = 1 OR t′ < 0;
21: END WHILE
22: RETURN C;

Figure 1: Computation of the heuristic for STRIPS

The Heuristic for STRIPS
Rintanen presented a heuristic for SAT algorithms that limits
to STRIPS (Rintanen a2010). In STRIPS all top-level goals
and action preconditions are (conjunctions of) literals, and
the backward chaining part of the heuristic can be done one
literal at the time. The algorithm for computing the heuristic
is given in Figure 1.

The algorithm starts from a top-level goal literal, and goes
backward step by step until it finds a time point in which
either an action makes the literal true, or the literal is false.
In the first case the algorithm pushes the preconditions of
the action in the stack and proceeds with these literals as
the new goals. In the second case there are one or more
actions that can turn the literal from false to true. One of
these actions is chosen (e.g. the first one) and included in the
set C of candidate decision variables. This computation is
repeated until the stack is empty or a termination condition
is reached, e.g. the cardinality of C reaches a predefined
bound, which could be 1 or more. Additional heuristics can
be incorporated in the basic algorithm (Rintanen b2010). We
ignore them here as they are orthogonal to the issues with
disjunctive and conditional actions.

Conjunctive Conditional Effects
A formula is conjunctive if it is a conjunction of one or more
literals and constants> or⊥. An action (p, e) is conjunctive,
if p is conjunctive and for every φ B l the condition φ is
conjunctive.

The definition of heuristics for STRIPS by Rintanen
(a2010) extends to conjunctive actions more easily than
to arbitrary actions. Instead of considering literals to be
achieved by actions, we consider them to be achieved by

specific conditional effects φ B l of actions. When trans-
lating a planning problem into a propositional formula, we
introduce a propositional variable for every conditional ef-
fect (effects φ B l1 and φ B l2 of one action may use the
same propositional variable, because these conditional ef-
fects must always take place together.)

For example, the action 〈φ, {a B b, d B e}〉 is translated
into a formula with the two auxiliary variables x1 and x2 for
the two conditional effects as follows.

o@t→ φ@t
o@t ∧ a@t→ x1@t
x1@t→ b@(t+ 1)
x1@t→ a@t
x1@t→ o@t

o@t ∧ d@t→ x2@t
x2@t→ e@(t+ 1)
x2@t→ d@t
x2@t→ o@t

With the xi variables the frame axioms

(b@t ∧ ¬b@(t+ 1))→ x1@t ∨ · · ·
can be trivially turned to clauses.

The framework of Rintanen (a2010) can be used for con-
junctive actions by replacing the use of action variables by
the auxiliary variables xi: instead of finding an action that
supports a subgoal, we find a (conditional) effect that sup-
ports the subgoal. In the procedure in Figure 1 the role
of the preconditions as new subgoals is taken by formulas
prec(x) = p ∧ φ, where p is the precondition of the ac-
tion and φ is the antecedent of the conditional effect which
supports a literal l which is the effect of the conditional ef-
fect corresponding to the variable x. We similarly define
eff(x) = {l}.

The general (disjunctive) heuristic in the next section di-
rectly builds on the construction in this section. Later we
denote the set of all x variables by X .

Heuristics for Disjunctive Problems
The main problem to solve when extending the heuristic to
disjunctive problems is the determination of which new sub-
goals to satisfy to make a disjunctive (sub)goal true. Sim-
ilarly to the conjunctive case (with single literals as sub-
goals), we have to determine the earliest time points in
which parts of a disjunctive goal can become true, and then
identify one or more actions that can achieve this.

The first idea, which does not work, is to identify the ear-
liest time point at which the whole formula could be true.
However, it is possible that not all literals in the formula can
be made true at that time point: some of them may have to
be made true earlier. Hence we will be following a different
approach.
1. Determine which literals cannot be made true (this is the

literals that are false at the time when the formula should
be true.)

2. Determine which literals in the formula are made true by
actions already in the partial plan, possibly at a much ear-
lier time point.
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1: PROCEDURE value(l, t, v);
2: IF v(l@t) = 0 THEN RETURN (false, ∅);
3: WHILE t > 0 DO
4: t := t− 1;
5: IF v(x@t) = 1 for some x with effect l
6: THEN RETURN (true, {x@t});
7: IF v(l@t) = 0 THEN
8: x := any effect variable with effect l such that v(x@t) 6= 0;
9: RETURN (unknown, {x@t});

10: END DO
11: RETURN true;

Figure 2: Procedure for determining the value of a literal

3. Determine which additional literals should be made true
to satisfy the formula. Because of the disjunctivity, there
may be several alternative sets of literals for achieving
this.

4. Find one action for each of the additional literals, and
add it to the set of candidate decision variables. As in
the STRIPS case, there may be several actions to choose
from.

5. Use preconditions of the existing and candidate actions as
new subgoals.

Checking whether the formula is already true and which
additional literals are needed to make it true contains the NP-
hard satisfiability problem, which would in the worst case,
for arbitrarily large formulas, require exponential time. For
this reason we perform this check incompletely. However,
the incompleteness will not compromise the correctness of
the overall planning algorithm. As in the STRIPS case (Rin-
tanen a2010), the correctness of the conflict-directed clause
learning (CDCL) algorithm (Moskewicz et al. 2001), and
therefore of planning, is not affected by the way decision
variables are chosen: any “wrong” decisions will be de-
tected by CDCL and will lead to “right” decisions through
the learning of clauses that prevent making the wrong deci-
sions again.

Of the above 5 steps, for a given l@t and the current
valuation v, the first two are handled by the procedure
value(l, t, v) we will be describing next. Steps 3 to 4 are
taken care of by the procedure select(φ, t, v) for a goal for-
mula φ at time t. And the last step 5 is by the procedure in
Figure 4 which replaces the STRIPS heuristic in Figure 1.

Determining Tentative Values of Literals
In Figure 2 we give an algorithm for determining the tenta-
tive truth-value of a literal for a (sub)goal formula that must
be true at time t. The literal is definitely false if it is false
at t. Otherwise it is possible to make it true. The procedure
goes backward one step at a time. If it finds an effect x that
makes l true, then l is considered to be true because it has
support in the current partial plan. If l is false at t without
support at t, then its truth-value is considered to be undeter-
mined. Since l is not false at t + 1, this suggests choosing
a support for it at t. If this literal is chosen as a candidate

1: PROCEDURE select(φ, t, v)
2: CASE φ OF
3: φ1 ∧ φ2:
4: (b1, S1, P1) := select(φ1, t, v);
5: (b2, S2, P2) := select(φ2, t, v);
6: RETURN (b1 and b2, S1 ∪ S2, P1 ∪ P2);
7: φ1 ∨ φ2:
8: (b1, S1, P1) := select(φ1, t, v);
9: (b2, S2, P2) := select(φ2, t, v);

10: IF b1 = false THEN RETURN (b2, S2, P2);
11: RETURN (b1, S1, P1);
12: ¬a:
13: a:
14: CASE value(l, t, v) OF
15: (true, S): RETURN (true, ∅, S);
16: (false, ∅): RETURN (false, ∅, ∅);
17: (unknown, S): RETURN (true, S, ∅);
18: ⊥: RETURN (false, ∅, ∅);
19: >: RETURN (true, ∅, ∅);

Figure 3: Procedure for identifying needed literals

∨ U T F
U U T U
T T T T
F U T F

∧ U T F
U U U F
T U T F
F F F F

¬
U U
T F
F T

Table 1: 3-valued Kleene truth-tables

to be made true, an effect for it is returned as the second
component of the returned value.

Proposition 1 If value(l, t, v) returns (true, {x@t}), then
v(x@t) = 1 and l ∈ eff(x).

value(l, t, v) returns (false, ∅) if and only if v(l@t) = 0.
If value(l, t, v) returns (unknown, {x@t}), then v(x@t) is

undefined and l ∈ eff(x).

For a given effect x, the associated precondition is de-
noted by prec(x). As discussed earlier in connection with
non-disjunctive actions, for unconditional effects in an ac-
tion 〈p, e〉 simply prec(x) = p, and for conditional effects
φ B l in e prec(x) = p ∧ φ.

Determining New Subgoals
In Figure 3 we give a procedure select(φ, t, v) which com-
putes (b, S, P ), where

• b ∈ {true, false, unknown} is the truth-value of φ at t,

• S is a set of literals such that making them true would be
sufficient to guarantee the truth of φ at time t, when the
current partial valuation is v, and

• P are the effects that are already in the plan and support
φ, but which may have unsupported preconditions.

Essentially, one of the 3-valued semantics for proposi-
tional logic, expressed as truth-tables in Table 1, determine
the truth-value of the formula. If it is true, nothing needs to
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be done. If it is unknown, a set of literals that are (seemingly)
sufficient to turn it from unknown to true is found.

Proposition 2 If select(φ, t, v) returns (false, S, P ) for
some S and P , then v |= ¬φ@t.

If v |= ¬φ@t and the valuation v is complete for propo-
sitional variables for time t, then select(φ, t, v) returns
(false, S, P ) for some S and P .

The base case of the procedure on lines 14-17 uses
value(l, t, v) to determine a truth-value true, false or un-
known for the literal in question. If the literal is true, then the
truth-value together with the two sets, the empty set for the
required effects and a singleton set with one already support-
ing effect, is returned. If the literal is false, then two empty
sets are returned. If the literal is unknown, then a single-
ton set of one required effect and the empty set for already
supporting actions is returned.

The inductive case for the conjunction on line 3 returns
the truth-value of the conjunction of the two conjuncts and
the union of the corresponding sets of effects, which all have
to be true to satisfy the formula. Here the value unknown
does not show up any more, as in the base case only the
distinction between false and non-false values is made.

The inductive case for the disjunction on line 7 returns the
truth-value of the disjunction and the actions/effects for one
of the non-false disjuncts. An implementation of the pro-
cedure could use additional heuristics, for example to mini-
mize the number of additional effects that need to be taken
to fulfill the disjunctive subgoal. We could also prefer a true
disjunct over an unknown one, to minimize the number of
new effects introduced in the plan.

Notice that a literal l and its complement l may both oc-
cur in a disjunctive formula, and according to the procedure,
they may both have the value unknown, or one may be un-
known and the other true. The procedure in Figure 3 to find
actions or effects to satisfy a (sub)goal may choose to satisfy
both l and l. However, at most one of them can be chosen
as the next decision literal. Later, the choice of the comple-
ment of the decision literal leads either to a conflict in the
CDCL algorithm, or to the use of some unrelated literal to
satisfy the subgoal. Essentially, we relegate the NP-hard part
of subgoal satisfaction to the CDCL algorithm.

For select(φ, t, v) = (true, {x1@t1, . . . , xn@tn}, P ), we
can use any member of {x1@t1, . . . , xn@tn} as a decision
variable, or proceed to compute {l@t|l ∈ prec(x)|x@t ∈ S}
and further literals (Rintanen b2010).

Figure 4 is an adaptation of the STRIPS version from Fig-
ure 1. The changes are the calls to select(G,T, v) to identify
the literals supporting the goal formula G. As the procedure
may be called when the CDCL algorithm does not yet know
that the subgoal G is impossible to satisfy – a difference to
the STRIPS case – there is a test on line 4 for this.

One of the variables returned by support(G,O, T, v) is
used as the next decision variable in the CDCL algorithm
(Rintanen b2010). The implementation described by Rin-
tanen (b2010) has heuristics for ordering the generation of
the actions/effects (replacing the stack with a priority queue)

1: PROCEDURE support(G,O, T, v)
2: empty the stack;
3: (b, L, P ) := select(G,T, v);
4: IF b = false OR T = 0 THEN RETURN ∅;
5: C := L;
6: push all l@t ∈ L ∪ P into the stack;
7: WHILE the stack is non-empty DO
8: pop x@t from the stack;
9: (b, L, P ) := select(prec(x), t, v);

10: C := C ∪ L;
11: push all x@t ∈ L ∪ P into the stack;
12: END WHILE
13: RETURN C;

Figure 4: Computation of the heuristic for ADL

and for limiting the computation to actions/effects that sup-
port one top-level goal at a time. These modifications are
orthogonal to the computation of the decision variables by
support(G,O, T, v), and therefore fully compatible with the
generalized heuristic.

Evaluation
We have implemented the new heuristic and compared it to
the VSIDS heuristic (Moskewicz et al. 2001) as well as plan-
ners that don’t use SAT as their search method. The compar-
ison is with the non-optimizing classical planning problem,
in which no guarantees of the quality of the plans in terms
of number of actions or costs are required.

Following Rintanen (a2010), the planner Madagascar
with the VSIDS heuristic is called M and with the planning
heuristic extended to cover full ADL is called Mp. The Mp
planner (Rintanen b2010) is used as is except for the mod-
ified encoding and the heuristic extended to support ADL.
The VSIDS version of the planner, M, is unchanged, as it
handled the full language already. The SAT solver of the
planner has been demonstrated to outperform best existing
general-purpose SAT solvers (Rintanen a2010). These plan-
ners do not optimize the parallel plan length, as some SAT-
based planners earlier did, and interleave the solution of SAT
problems for several horizon lengths, giving more time to
shorter horizon lengths according to a geometric series, thus
avoiding the unnecessary proofs of parallel optimality (Rin-
tanen a2010; Rintanen, Heljanko, and Niemelä 2006).

We compiled the planners with GCC 4.4.5 and ran them
in a high performance 2.0 GHz Xeon E5405 cluster under
Linux, with 4 GB of memory for each planner run.

We test the planners with IPC benchmarks which con-
tain conditional effects or disjunctive preconditions (ADL).
Practically all of the instances have a plan, and the consid-
ered planners are cannot effectively show that an instance
has no solution plans.

To calibrate the results with the state of the art, we also
tried some other planners. The YAHSP planner of Vidal,
which performs best of all the non-SAT planners with the
STRIPS problems from the planning competitions, does not
currently support conditional effects and disjunctivity, so we
could not compare to it. Of the other well-known planners
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Mp M LAMA FF
1998-ASSEMBLY-ADL 24 23 18 24 24
2000-ELEVATOR-FULL 143 138 139 135 132
2000-ELEVATOR-SIMPLE 150 150 150 150 150
2000-SCHEDULE-ADL 150 149 144 150 150
2002-SATELLITE-ADL 20 20 20 20 20
2004-AIRPORT-ADL 50 26 21 33 21
2004-OPTICAL-TELEG-ADL 48 22 17 2 11
2004-PHILOSOPHERS-ADL 48 48 48 12 12
2006-PATHWAYS-ADL 30 30 30 29 16
2006-TRUCKS-ADL 29 15 14 14 11
2008-OPENSTACKS-ADL 30 15 14 30 30
total 722 636 615 599 577
weighted score 11 8.91 8.41 8.35 7.73

Table 2: Number of instances solved in 300 seconds
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Figure 5: Number of instances solved in a given time

only LAMA and FF fully support the extended language.
Of these two, LAMA1 performs better on our problem set,
as shown in Table 2. FF runs out of memory with half of the
instances of Airport and Optical before starting the search.
In the table we also give a “score” for each planner, based
on the proportion of instances in each domain they solve.

A comparison of the number of problems solved is given
in Figure 5. Figure 6 plots, on a logarithmic scale, the run-
time of each instance as a dot so that the X-coordinate is for
the new heuristic and the Y-coordinate for VSIDS. Figure 7
plots the respective plan sizes. Mp is usually faster, some-
times by two orders of magnitude. Plan sizes often slightly
suffer, but all instances where there is a substantial differ-
ence, it is M that has produced a substantially longer plan.

As shown in Figure 8, the new heuristic substantially out-
performs VSIDS with Assembly, Openstacks, Pathways and
Schedule. On the other domains, the improvements are less
consistent, and with Elevator-Full its performance is worse
than that of VSIDS, and with Airport the runtimes are often
higher although more instances are solved in 300 seconds.2

1We used the newest version of LAMA from March 1, 2011.
2Some of the 150 Elevator-Full instances have no solutions.
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Figure 8: Comparison of runtimes for each domain
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We guess that the decreased efficiency for some of the in-
stances is because of the very complex disjunctive formulas
in this domain combined with a naive implementation of the
heuristic for disjunctive formulas.

Related Work
Although no planning-specific heuristics for SAT have been
presented earlier, some SAT solvers have been tailored to
planning. Giunchiglia et al. (1998) limit the Davis-Putnam
procedure to branch with action variables only, obtaining a
performance improvement. No similar improvements have
been demonstrated with modern CDCL solvers.

Application specific heuristics have rarely been shown to
outperform general SAT heuristics such as VSIDS. Beame et
al. (2004) give a heuristic that is very effective on a narrow
class of SAT problems called pebbling formulas.

Conclusions
We have presented the first SAT-based planning heuristic
for ADL problems with conditional effects and disjunctive
preconditions. The work extends the earlier STRIPS-based
heuristic (Rintanen a2010). For conjunctive problems the
extension is straightforward, but for disjunctive problems
there are conceptual and theoretical difficulties, which for
example require the use of approximate solutions to prob-
lems for which exact solutions are NP-hard.

Our experimental evaluation shows that the improvements
demonstrated for the STRIPS heuristic carry over to the
more general case, on average substantially improving run-
times in comparison to generic SAT heuristics, sometimes
by 2 orders of magnitude or more. The results in this re-
spects may not be surprising, but they more convincingly
demonstrate that the impressive performance improvement
with the STRIPS benchmarks is not specific to the simple
structure of the actions in those benchmarks. A practical
outcome of this work is the substantial strengthening of the
ability to solve planning problems in languages more gen-
eral than STRIPS.

Important topics for future research include making the
search more flexible by reintroducing VSIDS style literal
weighting to the heuristic, as well as preprocessing tech-
niques that take into account the specific properties of SAT
instances that represent planning.
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