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Abstract

As robots enter environments that they share with people,
human-aware planning and interaction become key tasks to
be addressed. For doing so, robots need to reason about
the places and times when and where humans are engaged
into which activity and plan their actions accordingly. In
this paper, we first address this issue by learning a nonho-
mogenous spatial Poisson process whose rate function en-
codes the occurrence probability of human activities in space
and time. We then present two planning problems for hu-
man robot interaction in social environments. The first one is
the maximum encounter probability planning problem, where
a robot aims to find the path along which the probability of
encountering a person is maximized. We are interested in
two versions of this problem, with deadlines or with a cer-
tainty quota. The second one is the minimum interference
coverage problem, where a robot performs a coverage task in
a socially compatible way by reducing the hindrance or an-
noyance caused to people. An example is a noisy vacuum
robot that has to cover the whole apartment having learned
that at lunch time the kitchen is a bad place to clean. For-
mally, the problems are time dependent variants of known
planning problems: MDPs and price collecting TSP for the
first problem and the asymmetric TSP for the second. The
challenge is that the cost functions of the arcs and nodes vary
with time, and that execution time is more important that opti-
mality, given the real-time constraints in robotic systems. We
present experimental results using variants of known planners
and formulate the problems as benchmarks to the community.

Introduction

Robots that operate in human environments require the abil-
ity to sense people and recognize their activities. But be-
yond that, they also need the ability to model and reason
about human activities, preferences and conventions. This
knowledge is fundamental for robots to smoothly blend their
motions, tasks and schedules into the workflows and daily
routines of people. We believe that this ability is key in the
attempt to build socially acceptable robots for many domes-
tic and service applications.

In this paper we take the approach of a spatial Pois-
son process to learn and represent human activity patterns
through a space-time rate function (Ihler and Smyth 2007;
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Figure 1: Example office scenario. The picture shows an ex-
ample path computed by the delivery robot in the simulated
office environment.

Tipaldi and Arras 2011). The function is then used to infer
the occurrence probability of the number of activity events
in a certain region and during a certain time interval. The
Poisson process can describe any type of human activity.
However, without loss of generality, we only consider the
activity of a person being in a certain position at a certain
time. The model then allows to infer the encounter proba-
bility of humans.

In this paper, we show that the space-time information
on people in an environment leads to two interesting and
currently under-explored planning problems in robotics.

First, the model can be used to plan paths along which
the probability of encountering a person is maximized. This
problem is relevant in a number of applications: a health care
robot that needs to find a nurse fast, a surveillance robot that
must quickly find a patrolling human colleague, a reception-
ist robot that knows the location of a particular person at a
given time, or a delivery robot that brings urgent goods to
people such as hot coffees getting cold.

Second, the model may be used to smartly avoid people
by paths that minimize the interference with humans while
performing a given task. In this problem, the encounter
probability is to be minimized. The Poisson rate function
then acts as a cost function of the planning task. Typical
applications include a vacuum cleaner that covers an apart-
ment in a way to avoid times and places where it would an-
noy people or a mail delivery robot that optimally plans its
course through a busy office building.



One challenge in these planning problems is the proper
spatio-temporal cost function to describe the time-dependent
aspect. A further challenge is that under this time-dependent
cost function a coverage problem must be solved, where the
robot has to visit a particular number of places and must
select the order in which they are visited.

The paper is structured as follows. The next section de-
scribes the application domain and the simulator that has
been built for testing it. It also contains the theory on the
spatial Poisson process. We then formally introduce and de-
scribe the two problems and present their challenges. We
finally conclude the paper in the last section.

Background
Domain Description

For the purpose of evaluating the model and testing the plan-
ning algorithms, we developed a people activity simulator
for indoor environments. Simulation in this case is needed
as with real humans, experiments cannot be reproduced.

The engine follows the three-layered agent architecture
from (Bonasso et al. 1995) that in our case consists in the
layers activity scheduler, activity executor and action execu-
tor. At the beginning of the day, the activity scheduler ran-
domly generates a fixed schedule for each agent, based on
how these activities are distributed during the day. When
an activity is scheduled, it is passed to the activity execu-
tor. Every activity is composed of a set of actions such as
enter, move, stay or leave, which in turn are activated and
deactivated by the activity executor. Once an action is ac-
tivated, the action executor takes care of its progress and
signals back when it reached its final state. Each time an
agent is engaged into an activity, its type and place form an
activity observation k;. These observations are used to learn
the Poisson process. In a second phase, they are used to test
the performance of the paths generated by the planners.

The simulator then models a generic workday in which
a number of simulated human agents perform activities that
are typical in the respective context. Three different sce-
narios have been designed: home, office, and warehouse.
The first scenario models an office environment. To learn
realistic activity patterns, an anonymous questionnaire had
been handed out to 27 colleagues. The subjects filled in
their daily work activities over a two week period (arriving
to work, working, eating, smoking, drinking coffee, going
to the restroom, etc.) including time and duration of each
activity. From this information we learned statistical distri-
butions from which we sample to generate the actual activi-
ties of the simulated agents. For this scenario we imagine a
delivery robot that brings urgent goods to people whereever
they currently stay in the environment.

As a second scenario, we model a warehouse environ-
ment. This is a mixed office-factory environment and shares
some of the characteristics of the first scenario. The agent
activities are partly derived from the data of the question-
naire and typical work shift patterns of warehouse employ-
ees. We assume to have two kinds of robots, a delivery robot
like the one in the previous scenario and an inspection robot
that has to cover the environment during the day.
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Finally, we model a home environment as the third sce-
nario. The activities are designed to reflect typical routines
of a family with two kids. With this environment we aim at
an autonomous vacuum cleaner equipped with a minimum
interference planner to minimizes annoyance to the mem-
bers of the household.

The simulated environments are shown in Fig. 2.

Spatial Poisson Process

Under the assumption that events in time occur indepen-
dently, a Poisson process can deal with distributions of time
intervals between events. Concretely, let N (¢) be a discrete
random variable to represent the number of events occurring
up to time ¢ with rate A. Then we have that N (¢) follows a
Poisson distribution with parameter A\t
e~ At ( )\t) k
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In general, the rate parameter may change over time. In this
case, the generalized rate function is given as A(t) and the
expected number of events between time a and b is

b
Aap = / A(u) du.

A homogeneous Poisson process is a special case of a non-
homogeneous process with constant rate A(t) = A.

The spatial Poisson process introduces a spatial depen-
dency on the rate function given as A(Z,t) with ¥ € X
where X is a vector space such as R? or R3. For any subset
S C X of finite extent (e.g. an area in space), the num-
ber of events occurring inside this area can be modeled as a
Poisson process with associated rate function Ag(t)

As(t) = /S N 1) da.

Learning the spatio-temporal distribution of events in an en-
vironment is equivalent to learning the generalized rate func-
tion A\(Z,t). A first approach is to perform maximum like-
lihood estimation. This approach however has the problem
that there is no information about cells that have not been ob-
served yet. Rarely used places in an environment cannot be
properly initialized. We therefore take a Bayesian inference
approach that can provide information on such cells through
priors. We model the parameter \ using a Gamma distribu-
tion, as it is the conjugate prior of the Poisson distribution.
Learning the rate parameter A then becomes a parameter es-
timation problem of a Gamma distribution parametrized by
« and . The posterior mean of X in a single cell is finally
obtained as the expected value of the Gamma,

P(N(t) = k) = k=0,1,...
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Obtaining the encounter probability along a path is done
as following. Since a path is a mapping from time to space,
P :t — &, we have that the number of people encountered
in a certain path follows a non-homogeneous Poisson pro-
cess whose rate function depends on the path itself

AP (t) = A(P(t),1). (5)



Figure 2: The three simulated environments: a) office, b) warehouse and c) apartment.

The probability of encountering at least one person along
a path is obtained by considering the probability of not en-
countering anyone and using the law of total probability

p(NP(tmam) >0) = 1-p(N(tmaz) =0)

_ [tmazx /\P(u)du
= 1l—¢e Jt ,

(6)

This probability, furthermore, is also the probability of dis-
turbing a person, showing the duality of the problems that
will be presented in the following section.

The Problems

In this section, we will pose the problems in terms of state
space and possible actions, so that it can be addressed in a
computationally efficient way. First, we note that obtaining
a solution to these path planning problems in the continuous
space is infeasible as it would mean to search on the mani-
fold of all possible continuous curves in a three dimensional
space. For this reason, we overlay a regular metric grid onto
the environment in space and time. Considering the grid
approximation and assuming the robot moves at constant
speed, a path is represented by the sequence of grid cells the
robot traverses. Integrals are then proportional to the sum of
the Poisson rate over those cells.

Formally, both problems can be formulated as follows.
Our state space is represented by the cells that are within the
free space of the environment and the day time interval the
robot is in, s = {i,j,7}. In each cell, a set of (maximum)
nine actions are defined. They account for movements in
the 8-neighborhood and waiting in the current cell. The ac-
tions are not deterministic and their outcome — the so called
state transition distribution — may be derived from the robot
odometry subject to uncertainty reflecting the accuracy of
the odometric system. Whenever the robot reaches a cell in
the world, it collects a reward (respectively a penalty) that
concurs to increase the encountering probability of the cur-
rent path. Since the probability is proportional to the Pois-
son rate, the reward (penalty) is given by R(s") = A/ (7).
In the following we refer to this setup to describe the two
problems.

Maximum Encounter Probability Planning

A robot that needs to find a person under time constraints
requires a path along which the probability to encounter a
person is maximized.

Given the problem setup and an initial state sg, we
are interested in finding a sequence of states S =
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{50, 81,---,8n}, such that they form the best path to find
a person given either a time or a probability constraint. In
case of the time constraint, the robot is given a deadline,
resulting in limiting the length of the sequence. In case of
a probability constraint, the robot has to plan a path with
a given confidence value (or above) that has the minimum
length. Although the two problems look similar, they dif-
fer in the underlying mathematical structure. The first prob-
lem can be addressed with a modification of a finite horizon
MDP, where the horizon is reduced at every step. The opti-
mal solution can be found using dynamic programming with
a slight modification of the Bellmann algorithm. The second
problem is much more complex and it can be reduced to a
price collecting traveling salesman problems (Balas 1989)
with time-dependent rewards.

We have compared a finite horizon MDP planner with
several informed (using the map) and uninformed (not us-
ing the map) heuristic planners in the office environment.
These preliminary experiments confirm the optimality of the
MDP solution but also that a greedy heuristic planner can
give good results. The poorest two strategies to find people
in this setting turned out to be random walk and waiting on
the spot. Details can be found in (Tipaldi and Arras 2011).

Minimum Interference Coverage

Coverage is a well-known robotics planning problem where
arobot needs to sweep over a particular area subject to min-
imum time, path length or number of turns. Typical appli-
cations include floor care or demining. Human-aware cov-
erage is, to our knowledge, a novel problem relevant in all
coverage applications in which the operation of the robot
causes a disturbance or potential thread to people. Thus, a
socially aware robot minimizes the interference with people
in the environment during task execution.

Formally, the problem shares the same cell representation
than the previous one with the exception that the reward is
now a cost function and needs to be minimized. The solution
is a sequence of states such that all states are visited at least
once while minimizing the encounter probability. The or-
der of the states is important since both the movement costs
and the interference probability strongly depend on when a
state is visited. The problem can be reduced to an asymmet-
ric traveling salesman problem with time-dependent costs
(ATDTSP). The asymmetry arises from the time-dependent
structure of the costs. In fact, going from node a to node b
is different than the opposite since the nodes are visited at
different times and thus have different costs.



o

Figure 3: The room graph of the apartment domain as used
for the human-aware coverage problem.

We have conducted comparisons in the home environ-
ment in which we evaluated a dynamic program for the AT-
DTSP with two informed TSP heuristics (nearest neighbor
and greedy) and an uninformed TSP planner. Over a series
of runs with varying cleaning times per room and start times,
the ATDTSP planner clearly outperforms all other strategies
in terms of number of disturbed persons and total interfer-
ence time with the human agents.

Challenges and Discussion

The above problems introduce several planning challenges
mainly because of the very limited computational resources
on board of real robots that prevent them to run the opti-
mal solutions in all but very small domains. Since robot
actions are uncertain and environments change over time,
plans need also to be available in quasi real-time. Time-
dependent costs, moreover, add another level of difficulty
that requires standard algorithms to be modified accordingly.

The complexity of the dynamic program for the maxi-
mum encounter probability with deadlines is O(h3) in both
space and time, where h denotes the deadline. Although
this is polynomial, the runtime of the Bellmann algorithm is
very slow for large environments in practical applications.
Therein, average grid cell sizes are typically in the range of
10 to 20 cm, meaning that we face problems in the order
of millions of cells. Only tailored heuristics can solve such
problems at the expense of optimality. The situation is even
more problematic for the problem statement with probabil-
ity constraints. The underlying TSP problem is known to be
NP-complete and the time-dependent costs make 2-Opt and
3-Opt heuristics more computationally involved.

The same situation arises for the minimum interference
coverage problem. Here, however, a simplification can be
made in terms of state space. One option (taken in our ex-
periments) is to increase the cell size to the level of entire
rooms and solve the reduced problem (see Fig. 3). A special-
ized geometric coverage algorithm can then be used to cover
the area of each room. However, coverage tasks in large
environments with many rooms quickly become intractable
again. The real challenge resides in the asymmetry of the
problem itself, since the heuristics for the asymmetric TSP
are not as good as the heuristics for the symmetric version.

Another aspect to account for is the transformation of
the task into a TSP. The original graph is very sparse since
the robot can only move through neighboring cells. To re-
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duce the problem to a TSP of whichever form, the graph
must first be completed using either the Johnson or the
Floyd-Warshall algorithm whose complexity is minimum
O(V?1og(V)+VE), where V is the number of nodes (cells)
and £ the number of edges. Considering the time variabil-
ity of the costs, the algorithms need to be repeated once for
each possible time step, multiplying another V' term.

In the light of this discussion, the transformation of the
problems into their TSP equivalents is likely not the right
way to pursue, although they can theoretically provide an
optimal solution. We argue that specific heuristics or algo-
rithms that exploit the sparse nature of the problem should be
developed. We thus see the contribution of this paper also in
the introduction of two new planning benchmarks for prob-
abilistic time-varying domains as they arise in human-aware
planning and hope that progress in the near future will pro-
duce efficient heuristics for the two presented problems. To
this end, the simulation environment is made publicly avail-
able on the webpage of the authors.

Conclusion

We have introduced two novel human-aware planning prob-
lems for social robots that arise when robots fulfill a number
of tasks in a space shared with people. We presented a sim-
ulation engine for such environments, three realistic scenar-
ios, and proposed a spatial Poisson process model to learn
and reason about spatio-temporal human activity events.

The challenges posed in this paper have several real-world
applications ranging from health care robots that need to find
anurse as fast as possible, over delivery robots that bring ur-
gent goods to people, to vacuum robots that learn which are
the right times and places to clean an apartment to minimize
annoyance to people.

We believe that these problems are attractive for the plan-
ning community. They are intrinsically combinatorial opti-
mization problems with cost/reward functions that vary over
time. We presented how they can be solved optimally with
particular instances of MDP and TSP problems and gave
preliminary results of their performance. However, the op-
timal solutions scale poorly with environment size which
makes them intractable for many real-world problems given
the limited embedded computational power of robots. More
research is needed to find efficient near-optimal heuristics.
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