
Sample-Based Planning for Continuous Action
Markov Decision Processes

Chris Mansley and Ari Weinstein and Michael L. Littman
Rutgers University

110 Frelinghuysen Road
Piscataway, NJ 08854 USA ∗

Abstract

In this paper, we present a new algorithm that integrates re-
cent advances in solving continuous bandit problems with
sample-based rollout methods for planning in Markov De-
cision Processes (MDPs). Our algorithm, Hierarchical Opti-
mistic Optimization applied to Trees (HOOT) addresses plan-
ning in continuous-action MDPs. Empirical results are given
that show that the performance of our algorithm meets or ex-
ceeds that of a similar discrete action planner by eliminating
the problem of manual discretization of the action space.

Introduction

At present, most MDP planning algorithms are restricted
to settings where the action space is finite. This limitation
is driven by two issues: representing the continuous value
function over the action space and performing the maximiza-
tion over this function. A natural approach is to coarsely dis-
cretize the space and then plan in that modified space. The
risk of this approach is that the chosen action discretization
may not be appropriate for the domain and therefore impact
the quality of the solution found. In this paper, we propose a
planning algorithm that uses existing results from the bandit
literature to perform a stochastic optimization over the ac-
tion space via sampling combined with sample-based plan-
ning ideas. The resulting algorithm adaptively partitions the
action space thus enabling it to avoid the pitfalls encountered
in algorithms that use a fixed action discretization. The al-
gorithm focuses quickly on regions of the action space with
high value, while identifying regions of the action space that
can be safety ignored.

Background

We describe some of the formal background on which our
algorithm depends.

Markov Decision Processes

An MDP M is described by a five-tuple 〈S,A, T,R, γ〉,
where S ⊆ R

N is the N -dimensional state space, A ⊆ R
D

is the D-dimensional action space, T is the transition func-
tion, with T (s, a, s′) denoting the probability of reaching s′

∗The authors thank Ali Nouri for his fundamental insight into
the relationship between HOO and UCT. This research was sup-
ported in part by National Science Foundation DGE-0549115.

from s by taking action a, R is the reward function with
R(s, a) denoting the expected reward from taking action a
in state s and γ ∈ [0, 1) is the discount factor. A determinis-
tic policy π is a mapping π : S → A from states to actions.
The value of a policy, V π(s), is defined as the expected sum
of discounted rewards starting at state s and following pol-
icy π. The discounted return from time t = 0 to t = T for a

horizon T is
∑T

t=0 γ
trt, where rt is the reward obtained at

step t. The optimal policy, π∗, is the policy that maximizes
V π(s), ∀s ∈ S.

Sample-Based Planners

Traditional methods for planning in a given MDP scale poly-
nomially in the number of states and actions, which can be
impractical in large or infinite state spaces. Sparse sam-
pling (Kearns, Mansour, and Ng 1999) is a sample-based
planner that produces provably near-optimal policies inde-
pendent of the size of the state space but has costs exponen-
tial in the planning depth. In practice, the cost of building
the full planning tree limits the depth to which Sparse Sam-
pling can plan.

Rollout planners, another class of sample-based planner,
do not suffer from computational costs as a function of the
planning depth as acutely as sparse sampling. This property
is important when planning must be carried out to a greater
planning depth with restricted computational resources. In
these methods, planning is done by conducting an entire roll-
out from the query state with length equal to the planning
depth. The information gained from this trajectory can be
used to refine the policy and then the process is repeated.

UCT

The Upper Confidence Bounds applied to Trees (UCT)
algorithm was proposed as an instance of these rollout
planners, also called Monte-Carlo planning (Kocsis and
Szepesvári 2006). UCT uses a modified version of the
UCB1 (Auer, Fischer, and Cesa-Bianchi 2002) bandit algo-
rithm for action-selection in the search tree. The policy for
the bandit component in UCT is defined as taking the action

argmax
a∈A

R̂(a) + 2Cp

√
ln(n)/na,

where R̂(a) is the sample mean of the reward observed from
taking a, Cp is some constant greater than 0, and na is the

335

Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling

number of times a has been taken.
One of these bandit agents is placed at each state and

depth of the rollout. When a trajectory encounters a particu-
lar state and depth, each action is treated as a bandit arm, and
the discounted return resulting from that action is treated as
the reward by the bandit algorithm. Since the bandit com-
ponent computes the mean discounted return and number of
tries for each action, UCT is restricted to the discrete action
setting.

Planning with Continuous Actions

Building on UCT, which takes actions during rollouts ac-
cording to a discrete action bandit algorithm, a natural ex-
tension to this approach is the application of a continuous
action bandit algorithm to rollout planning. We discuss an
existing bandit algorithm and present our approach to inte-
grating it into a rollout planner.

HOO

The Hierarchical Optimistic Optimization (Bubeck et al.
2009) or HOO strategy is a bandit algorithm that exploits
a set of actions that forms a general topological space. This
assumption allows HOO to be applied directly to many do-
mains that traditional bandit algorithms such as UCB cannot,
including those with a continuum of actions.

HOO operates by developing a piecewise decomposition
of the action space, which is represented as a tree. When
queried for an action to take, the algorithm starts at the root
and continues to the leaves by taking a path according to the
maximal score between the two children, called theB-value.
At a leaf node, an action is sampled from any part of the
range that the node represents. The node is then subdivided
by adding two children. The process is repeated each time
HOO is queried for an action selection.

The values computed for each node are a count, reward
estimation, and reward bias, which are all combined to form
the B-value. Let the pair (h, i) refer to the ith node at depth
h, C(h, i) be the set consisting of the node and its subtree,
and let

Nh,i(n) =
n∑

t=1

I{(Ht,It)∈C(h,i)}

be the number of times node (h, i) has been visited up to
time t, where (Ht, It) is the node which was split at t.

Let R̂h,i(n) be the reward estimate of node (h, i) defined
as

R̂h,i(n) =
1

Nh,i(n)

n∑
t=1

I{(Ht,It)∈C(h,i)}rt.

The upper bound on the estimate of the reward is

Uh,i(n) = R̂h,i(n) +

√
2 lnn

Nh,i(n)
+ v1ρ

h

for v1 > 0 and 0 < ρ < 1. For nodes that have not yet been

sampled, R̂h,i(n) = Uh,i(n) = ∞.
The B-value of a node is defined as

Bh,i(n) =

min {Uh,i(n),max {Bh+1,2i−1(n), Bh+1,2i(n)}}

where for node (h, i), nodes (h+ 1, 2i− 1) and (h+ 1, 2i)
are its children.

HOOT

We introduce Hierarchical Optimistic Optimization applied
to Trees (HOOT), which integrates the HOO algorithm into
the rollout planning structure. The use of HOO for action se-
lection allows the algorithm to overcome the discrete action
limitation of UCT.

Our algorithm can be described in relation to UCT as fol-
lows. The action selection mechanism of UCT operates by
placing a UCB agent at each state and depth encountered
during the rollout process. Instead of a discrete action ban-
dit algorithm, HOOT places a continuous action bandit algo-
rithm, HOO, at each state and depth in the rollout tree. Aside
from this modification, all other aspects of the algorithm are
the same.

The computation cost of HOO is greater than UCB, which
is reflected in the running times of HOOT and UCT. Given
the n samples at each node in the MCTS tree, UCB requires
linear time to find the maximum, while HOOT must rebuild
the HOO tree each time a sample is added to the tree, re-
sulting in a quadratic complexity with respect to the number
of samples. There exists a variant of HOO that makes the
update O(n lg n) (Bubeck et al. 2010).

Experiments
We compared UCT with discretized actions to HOOT in a
few continuous action MDPs. Since both HOOT and UCT
require discrete states, all domains have 20 divisions per
state dimension. The planner makes a decision based on the
queries generated on that planning step only. Algorithms la-
beled UCT N, where N is 5, 11, 15, 20, represent the number
of discretizations per action dimension used in UCT. After
planning, the action taken by UCT was that with the high-
est mean return at the root. In HOOT, the action was taken
by greedily following branches according to mean reward as
opposed to B-value.

Double Integrator

The double integrator (Santamarı́a, Sutton, and Ram 1998)
domain models the motion of an object along a surface. The
dynamics of the system can be represented as a discrete time
linear system with quadratic rewards. This system can be
generalized to D dimensional systems to create D position
dimensions and D velocity dimensions. We call this exten-
sion to the domain the D-double integrator.

In Figure 1(a), the performance of HOOT and UCT is
compared using different numbers of queries to the gener-
ative model during the planning step. Given enough sam-
ples, our algorithm performs better than simple discrete ac-
tions. This domain penalizes high magnitude actions, which
forces HOOT to select lower magnitude actions. The curve
also demonstrates our investment of samples in discovering
the right discretization. At 256 samples, HOOT does poorly,
similar to UCT11 or UCT15, while UCT5 does much better.
By 2048 samples, HOOT can now begin to refine its esti-
mate of the best actions to take, outperforming all discrete
UCT.

336

 40

 60

 80

 100

 120

 140

 160

 180

 200

 100 1000 10000

T
ot

al
 R

ew
ar

d

Samples per Planning Step (logscale)

Double Integrator - 1D

UCT 5A
UCT 11A
UCT 15A

HOOT

(a) Variable number of samples per plan-
ning step.

 165

 170

 175

 180

 185

 190

 195

 0 10 20 30 40 50

T
ot

al
 R

ew
ar

d

Number of Discrete Actions

D-Double Integrator - 1D

HOOT
UCT

(b) Variable number of discrete actions.
Number of samples fixed to 2048.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4

T
ot

al
 R

ew
ar

d

Number of Action Dimensions

D-Double Integrator

HOOT
UCT 5

UCT 10
UCT 20

(c) Increasing number of action dimen-
sions. Number of samples fixed to 2048.

Figure 1: Performance of HOOT and UCT in the double integrator domain.

In Figure 1(b), the performance of HOOT and UCT is
plotted for D = 1 as the number of discretized actions used
by UCT varies. Since HOOT does not require actions to be
discretized in advance, its performance is constant with re-
spect to this variable. All uniform action discretizations used
by UCT resulted in performance worse than HOOT. Note the
characteristic “inverted-U” shape as the number of actions
varies. The peak represents a location showing the trade-
off between fine enough action discretization to perform the
task and requiring increasingly more exploration due to the
increase in the number of actions.

Figure 1(c) shows the performance of HOOT and UCT
5, 10 and 20 in the D-double integrator. As D increased,
the performance of UCT degraded more rapidly than that
of HOOT. This outcome can be attributed to the fact that
the size of the discretized action set increases exponentially
with D. For example, in 4-Double Integrator, UCT 20 must
search over a space of 160000 discrete actions each step,
which is greater than the number of samples allowed from
the generative model. Since the HOO component prunes
regions of the tree that appear to yield poor returns, HOOT
can quickly focus exploration in regions of the action space
where the optimal action is likely to lie and suffers less from
the expansion of the dimension of the action space.

Inverted Pendulum

The inverted pendulum domain models the physics of a pen-
dulum balancing on a pivot. The dynamics and reward func-
tion are defined by Pazis and Lagoudakis (2009). Noise in
the actions in form of ±20 Newtons uniformly distributed
introduces stochasticity. The reward function penalizes poli-
cies that allow the pendulum to deviate from vertical, obtain
high angular velocity and use large actions (large forces).

Figure 2(a) shows the performance of HOOT as com-
pared to UCT as the number of discretized actions used by
UCT varies. In this example, the performance of UCT is
significantly worse than HOOT for all discretization levels,
demonstrating the benefit of a variable resolution discretiza-
tion scheme. Both algorithms are capable of preventing the
pendulum from falling, but HOOT maintains more precise
control using finer grained actions. The difference in value
between a policy that barely keeps the pole balanced using

large actions and a policy that keeps the pole perfectly bal-
ance with small, precise actions will be very small due to the
rescaling of the original reward function.

Bicycle

The bicycle domain is a popular domain for testing higher
dimensional states spaces and simulates the task of balanc-
ing a bicycle (Randløv and Alstrøm 1998; Li, Littman, and
Mansley 2009). In this paper, we used a simplified version
of the original domain that only focuses on the task of bal-
ancing the bicycle without steering toward a goal. There are
five continuous state variables and two continuous action di-
mensions. The reward function provides a +1 each step for
each step of balancing and the episode terminates if the bi-
cycle falls. The run is limited to 2000 steps. The domain has
noise along one of the action dimensions.

Figure 2(b) shows the performance of the bicycle domain
as the number of actions varies. If too fine an action dis-
cretization is chosen, UCT has a difficult time performing
the task. In the original paper, the number of actions was
chosen to be 5, so these results are indicative of the small
number of actions necessary to perform well in this domain.

Future Work

It is possible to construct a version of HOO for use in the
associative bandit setting (Kaelbling 1994), where the input
(state) space is continuous. Since HOO utilizes only mean
and count values, Weighted Hierarchical Optimistic Opti-
mization (WHOO) introduces sample weights that allow for
weighted means and counts. In addition to values recorded
by HOO, the extension requires samples to record the state
value st, on which a distance metric K(s1, s2), s1s2 ∈ S
operates. This gives a similarity between different bandits
that are close in input space.

Using this distance metric, we can define equations for

N, R̂, U , and B for the associative bandit setting. Let

Nh,i(n, s) =

n∑
t=1

I{(Ht,It)∈C(h,i)}K(s, st)

R̂h,i(n, s) =
1

Nh,i(n, s)

n∑
t=1

I{(Ht,It)∈C(h,i)}rtK(s, st)

337

 999.4

 999.45

 999.5

 999.55

 999.6

 999.65

 999.7

 3 5 7 9 11 13 15

T
ot

al
 R

ew
ar

d

Number of Discrete Actions

Inverted Pendulum - 20N

HOOT
UCT

(a) Inverted Pendulum

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

 3 5 7 9 11 13 15

T
ot

al
 R

ew
ar

d

Number of Discretizations per Action Dimension

Bicycle - 0.02cm

HOOT
UCT

(b) Bicycle

Figure 2: Performance of HOOT and UCT in two domains
as the number of actions varies. The number of queries was
fixed at 2048.

Uh,i(n, s) = R̂h,i(n, s) +

√
2 lnN0,1(n, s)

Nh,i(n, s)
+ v1ρ

h

with Bh,i(n, s) being defined similar to HOO.
This associative bandit algorithm can be integrated into a

sample-based planning structure that creates a planner that
functions in both continuous action and state spaces, which
results in the Weighted Hierarchical Optimistic Optimiza-
tion applied to Trees (WHOOT) algorithm. It is constructed
by placing one WHOO algorithm at each depth. This is one
possible method for extending the methods presented in this
paper into continuous state spaces.

The utilization of the HOO algorithm as a stochastic opti-
mization algorithm is not limited to the sample-based plan-
ning framework outlined in this paper. This work should be
extended into traditional temporal-differencing (TD) meth-
ods as a mechanism for computing the maximum over the
value function. This algorithm could be worked into the
Dyna framework.

Conclusion
This paper introduces HOOT, an algorithm for planning in
continuous-action MDPs. The main benefit of using the pro-
posed algorithm is its ability to adaptively partition the ac-
tion space and focus exploration on regions in the action

space where the highest returns are likely to lie. This re-
moves one parameter (the discretization of the action space)
that must be tuned in planning algorithms that assume a dis-
crete state space. In comparison, the choice of action dis-
cretization used by UCT must balance the number of actions
used. In many domains, too few actions makes a good pol-
icy inexpressible, while too many actions makes the space
too large to search effectively, especially because there is
no generalization over actions in UCT. HOOT, on the other
hand, does generalize over actions.

Finally, it seems the greatest benefits of using HOOT in-
stead of an approach that requires discretization stems from
its behavior in high dimensional action spaces. Although
the regret of UCB is O(log t), the cost is also linear in the
number of discrete actions k. This cost is generally not con-
sidered significant because it is assumed t is much greater
than k. Since UCT builds on UCB, this issue arises in the
planning setting as well. In domains with high-dimensional
action spaces, this dependency on the exponentially grow-
ing number of actions becomes a significant factor. HOO,
on the other hand, does not discretize actions and so has
no k. It also has regret independent of the number of ac-
tion dimensions D under certain assumptions (Bubeck et al.
2009). This property mitigates the combinatorial explosion
that arises in planning in domains with high dimensional ac-
tion spaces.

References
Auer, P.; Fischer, P.; and Cesa-Bianchi, N. 2002. Finite-time anal-
ysis of the multi-armed bandit problem. Machine Learning 47.

Bubeck, S.; Munos, R.; Stoltz, G.; and Szepesvári, C. 2009. Online
optimization in X-armed bandits. In Advances in Neural Informa-
tion Processing Systems 23.

Bubeck, S.; Munos, R.; Stoltz, G.; and Szepesvári, C. 2010. X-
armed bandits. CoRR abs/1001.4475.

Kaelbling, L. 1994. Associative reinforcement learning: Functions
in k-dnf. Machine Learning 15(3).

Kearns, M.; Mansour, S.; and Ng, A. 1999. A sparse sampling
algorithm for near-optimal planning in large Markov decision pro-
cesses. In IJCAI.

Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-Carlo
planning. In Machine Learning: ECML 2006.

Li, L.; Littman, M. L.; and Mansley, C. R. 2009. Online explo-
ration in least-squares policy iteration. In International Conference
on Autonomous Agents and Multiagent Systems.

Pazis, J., and Lagoudakis, M. 2009. Binary action search for learn-
ing continuous-action control policies. In International Conference
on Machine Learning.

Randløv, J., and Alstrøm, P. 1998. Learning to drive a bicycle using
reinforcement learning and shaping. In International Conference
on Machine Learning.

Santamarı́a, J. C.; Sutton, R.; and Ram, A. 1998. Experiments
with reinforcement learning in problems with continuous state and
action spaces. In Adaptive Behavior 6.

338

