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Abstract

This paper defines and studies a new, interesting, and chal-
lenging benchmark problem that originates in systems biol-
ogy. The minimal seed-set problem is defined as follows:
given a description of the metabolic reactions of an organ-
ism, characterize the minimal set of nutrients with which it
could synthesize all nutrients it is capable of synthesizing.
Current methods used in systems biology yield only approxi-
mate solutions. And although it is natural to cast it as a plan-
ning problem, current optimal planners are unable to solve it,
while non-optimal planners return plans that are very far from
optimal. As a planning problem, it is inherently delete-free,
has many zero-cost actions, all propositions are landmarks,
and many legal permutations of the plan exist. We show how
a simple uninformed search algorithm that exploits inherent
independence between sub-goals can solve it optimally by re-
ducing the branching factor drastically.

Introduction

Organism depend on their environment for the supply of
certain nutrients, while they can synthesize others on their
own. Researchers in the life sciences have long been study-
ing these metabolic processes, and have accumulated a lot of
data on this topic. Large databases describing the metabolic
reactions characteristic to different organisms exist, and this
information is used to study issues such as the evolution of
species and their environments, the effect of environmen-
tal changes, etc. Researchers in systems biology have orga-
nized these metabolic reactions in a graphical structure (es-
sentially a hyper-graph) called a metabolic network whose
nodes correspond to nutrients and whose edges correspond
to reactions – typically, but not necessarily, of a single organ-
ism – and have used this as a tool in the study of biological
systems. A seed-set of such a network is a set of nutrients
from which one can produce the entire set of nutrients in
this network via reactions. In particular, systems biologists
have thought to characterize minimal seed-sets for organ-
isms, using which they can study questions such as: What is
the effective biochemical environment of a specific species?
How the structure of the organism biochemical network cor-
respond to its life-style? And how biochemical networks of
organisms evolve?
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The goal of this paper is to suggest and study the problem
of computing minimal seed-sets as a novel, interesting and
challenging planning benchmark problem that is motivated
by a real-world application. This problem has interesting
special structure that seems to prevent existing optimal plan-
ners from solving: it is delete-free, has many zero-cost ac-
tions, every proposition is a landmark, and every legal plan
for it has many legal permutations. Yet, this structure also al-
lows for serious pruning that considerably reduces its effec-
tive branching factor and allows us to solve all instances of
this problem in the KEGG database (Kanehisa et al. 2006).

The seed set problem
The study of minimal seed-sets and their applications in

systems biology was initiated by Borenstein et. al. (2008)
who defined the problem as follows: Let C be the set
of nutrients associated with a specific organism. A bio-
chemical (or metabolic) reaction is an ordered pair of sets
r = (X,Y ). X ⊆ C will be called the substrate set of nu-
trients and Y ⊆ C the product set. This relationship is often
written in the following way: x1+· · ·+xn → y1+· · ·+ym.
Many reactions are bi-directional, in this case we will rep-
resent the reaction as both (X,Y ) and (Y,X). Note that re-
actions in this model do not remove the substrate nutrients,
but only adds the product nutrients. The metabolic network
of a given organism, R, can now be defined as the set of
metabolic reactions associated with that organism. We use
C to denote the nutrients that appear in the metabolic net-
work R, that is all the nutrients that are either part of the
substrate or product of a reaction in R.

A set of nutrients is reachable from a subset of nutrients
if there exist a finite sequence of reactions, such that after
applying this sequence, all nutrients are present. The seed
set of a metabolic network is subset of nutrients from which
C is reachable, meaning that any nutrient in C is either part
of the seed set, or can be synthesized via some sequence of
reactions from this seed set. A minimal seed set represents a
minimal set of nutrients that the environment must provide
the organism in order to exercise its full potential. In most
real metabolic networks there are many minimal seed sets.

Seed Set Generation: Existing method
Finding a minimal seed set is NP-hard (e.g., by reduction
from the set-cover problem), and it seems natural to cast it
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Figure 1: (A) graph representation G, for: r1 : a + b → c + d and r2 : c → b + d (B) Gscc of G

as a mixed-integer programming problem. Borenstein et. al.
(2008) tried this approach, and they report that it does not
scale up.1 Consequently, they resorted to an approximation
algorithm.

Their solution method first “flattens” the original hyper-
graph representing the metabolic network into a (regular) di-
rected graph, known as a directed substrate graph (Klamt,
Haus, and Theis 2009), which is commonly used in zing
metabolic networks. The directed substrate graph is a di-
graph G = (V,E), where V is the set of nutrients (C) and a
directed arc a = (x, y) ∈ E exists if and only if there is a
reaction r = (X,Y ) where x ∈ X and y ∈ Y . Naturally,
this transformation already leads to some loss of information
because the interaction between the different input nutrients
is ignored. An example of a directed substrate graph built
out of two reactions, is illustrated in Fig.1.A.

Next, we identify the strongly connected components
(SCC) of G. The SCC’s of G form a directed acyclic graph
(DAG) the Gscc, as in Fig.1.B. A node in the Gscc is a SCC
of G, for example, the node “b, c” in Fig.1.B is a SCC of G
from Fig.1.A composed of nodes b and c. There is an edge
from node n to n′ if there is an edge from some node in the
SCC represented by n to some node in the SCC represented
by n′. Each node in the Gscc which has no incoming edges
and at least one outgoing edge will be called a source com-
ponent node, and it will represent a special type of SCC of
G which we will call a source component set. In Fig.1.B the
only source component node is a.

Since a source component node (of Gscc) has no incom-
ing edges, none of the nutrients outside this component set
(SCC in G) can be a precursor for any nutrient in this source
component. Hence, at least one element of this source com-
ponent must be part of any seed set. In Borenstein et. al.
(2008) a representative element of this source component is
selected randomly. This method does not find an accurate
solution to the seed-set problem. For example, in Fig.1 the
only source component has one node a, which by itself can
not produce all nutrients (or even one other nutrient).

Seed Set Generation as Planning
When we ignore the quantitative aspects of chemical reac-
tions – which is what researchers investigating the structure
and topology of metabolic networks often do – it is not dif-
ficult to see that they are very much like planning operators,

1Another classic technique – reduction to SAT – failed to return
a solution on all but the smallest problem instance.

with domain variables describing the (in)existence of nutri-
ents. They have input, or preconditions to their application,
and they have output, or new effects.

Indeed, viewing organisms as dynamic systems, and re-
actions as operators that change the state of this system, the
use of planning techniques in this context seems well moti-
vated. In planning terms, a minimal seed-set is a minimal
(w.r.t. true propositions) initial state from which the goal
state of having all nutrients, is reachable via the available
set of reactions. Although not a planning problem, in the
classical sense, it can easily be cast as one, as we show next.

We model the minimal seed-set problem as a planning
problem as follows: The set of facts corresponds to the set
of nutrients, C. We have one proposition for each nutri-
ent, which is true when this nutrient is present, and false
otherwise. One zero-cost planning operator or is associ-
ated with each reaction r = (X,Y ) ∈ R. pre(or) = X ,
add(or) = Y . Applying an operator o in state s, written
s[o], results in state s ∪ add(o), assuming o is applicable in
s, i.e., pre(o) ⊆ s. Next, we introduce one new “insert”
operator for every nutrient with a fixed, positive cost, e.g.,
one. The insert(c) operator has no precondition and a single
add effect, c. Finally, we define the initial state as the state
in which all propositions are false (i.e., no nutrient is avail-
able), and the goal state is the one in which all propositions
are true. The set of nutrients inserted via an insert action
corresponds to a seed-set, and a minimal-cost plan will be
a plan that minimize insert actions, and consequently is a
minimal seed-set of minimal cardinality, as well.

As an example, consider the metabolic network in Fig.1:
(i) The propositions are the set of nutrients C = {a, b, c, d}.
(ii) There are two reaction operators: r1 with pre(r1) =
{a, b} and r2 with pre(r2) = {c}, while their add effects
are add(r1) = {c, d} and add(r2) = {b, d}. Both operators
have zero cost. (iii) Four insert operators will be constructed,
one for each of the nutrients a, b, c, d. Their precondition is
empty, and their add effect is a single nutrient. These opera-
tors will have cost higher than zero. (iv) All propositions are
false in the initial state and true in the goal state.

Notice that this planning problem is not a typical one:
many operators have zero cost; non-zero cost operators have
no preconditions; there are no conditional effects; actions
are delete-free, and all propositions must be achieved, and
hence they are trivially landmarks. Furthermore, because in
real-metabolic networks most reactions do not interact with
each other, i.e., they influence different nutrients, most plans
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have many legal permutations.
We extracted metabolic reactions information from the

KEGG database (http://www.genome.jp/kegg/) for many
different organisms which are considered to be well charac-
terized.2 The metabolic network was transformed to PDDL
using the reduction described above and they are available
at http://www.cs.bgu.ac.il/∼avitang/files/Kegg.zip. We ap-
plied the FD planner (Helmert 2006) with two different
types of heuristics: the landmarks-based LM-Cut heuris-
tic (Helmert and Domshlak 2009), and the newest variant of
the abstraction based Merge-and-Shrink heuristic (Helmert,
Haslum, and Hoffmann 2007). Unfortunately, neither plan-
ners was able to solve even the smallest instance, which has
305 nutrients and 298 reactions, particularly, Merge-and-
Shrink exhausted its memory after a few minutes.

We believe the failure of these two heuristics is due to
the special nature of this domain: extremely circular and
wide (high outdegree in the metabolic network) with a large
branching factor. Moreover, the fact that the goal state is the
entire set of nutrients, i.e., all propositions are landmarks,
leaves little hope for landmark-based heuristics. Indeed,
we observe that the non-optimal LAMA planner (Richter,
Helmert, and Westphal 2008) returned uninformative solu-
tions, consisting of insert actions only. Finally, for a plan-
ning task the order of the actions matters, requiring the A*
algorithm to review all legal permutations of temporarily
minimal plans, many of which have identical outcomes.

New method

To overcome the above problems, we devised a variant of the
A* algorithm that exploits two special properties of this do-
main. Our first observation is that the presence of many zero
cost actions (i.e., the reactions) adds much to the complexity
of the problem, and this complexity can be avoided by sim-
ply applying all of relevant actions once a new nutrient is
inserted. We accomplish this by tweaking the A* algorithm
as follows: Define scope(s) to be the state derived from s
by repeatedly applying all possible zero cost actions until no
new proposition can be added. Alter A* so that the children
of a state s will be all states of the form scope(s[o]) (rather
than s[o]), where o is an insertion action (i.e., non-zero cost
action) applicable in s. Unfortunately, this algorithm failed
to find an optimal plan in a reasonable time.

Next, we, attempted to deal with the issue of action order-
ing. First, let us recall that in a planning problem with no
delete effects, every action should be applied at most once,
and that there could be many legitimate permutations of a
specific plan. Second, with no delete effects, and provided
the level of interaction between propositions is not high, one
may consider only a subset of all applicable actions at each
state, without loosing optimality. To accomplish this we will
define G(s) (graph G for state s) to be the graph obtained
from the original substrate graph by removing all nutrients
that were achieved (i.e., are true facts in the state s) and all
edges they participate in. The Gscc(s) is defined as before
for G(s). For each state after applying all zero cost actions
possible, we can consider only insert actions that produce

2Organisms with draft genomes or EST contigs were excluded.

nutrients that reside in one source component of the current
state substrate graph G(s). The reason for this becomes intu-
itive when looking at the Gscc(s). Since a source component
has no incoming edges, there is no precursor that can reach it
other than the nutrients in the source component itself. Thus,
at least one of these actions must be in the plan. That is, the
action in a source component constitute a disjunctive land-
mark. Moreover, we can consider only the insert actions of
a specific source component each time, as their order does
not matter – none supplies a precondition for the other, and
there are no conditional effects.

These observations, combined, lead to a variant of the A*
algorithm in which not all applicable insert operators are ap-
plied in each state, while all applicable reactions are applied
after each insert, and using the blind heuristics. For the rea-
sons discussed above, this algorithm does not compromise
the optimality of the problem, and it is able to solve the seed-
set problem for all organisms in the KEGG database.

Specifically, our algorithm ExpandState(s) (Algorithm 1)
chooses the minimal source component (in number of nu-
trients) and ignores insert actions for nutrients outside this
component. Thus, our A* variant ignores most insert opera-
tors at each step and ”attacks” different parts of the problem
one at a time. The changes to A* are all concentrated in the
ExpandState(s) (Algorithm 1). The resulting planner suc-
cessfully finds optimal plans for even the largest metabolic
networks, such as the network for humans, in just a few min-
utes. The optimality of our algorithm is guaranteed by the
fact that at least one of the alternative actions examined at
each point in time must be part of an optimal plan, and that
the order by which we introduce elements of different source
components does not matter because they do not interact.

Algorithm 1 Expand State

1: ExpandState(s)
2: E ← ∅ {initialize expanded states set}
3: G(s) ← discard all true facts from original graph
4: Gscc(s) ← build from G(s)
5: Msc(s) ← find in Gscc(s) a source component which is

minimal in size
6: for all nutrient ∈ Msc(s) do
7: o ← insert operator of nutrient
8: newState ← scope(s[o])
9: E ← E

⋃ {newState}
10: end for
11: return E

Empirical results

We chose 22 organisms from different taxonomy categories,
from small bacteria to mammals. Many of these organisms
are well known, well studied, model-type organisms.

LM-Cut and Merge and Shrink were both unsuccessful in
solving the problem in reasonable time. In order to see if
we could find a derivative of the problem these planners can
handle, we took the following steps: (i) When examining
the metabolic networks we noticed that they contain many
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(around 40 - 50%) nutrients that are never produced, mean-
ing they are not an effect of any reaction and therefore must
be part of the seed-set. We used a preprocess step to create a
derivative of the problem where all these nutrients are in the
initial state and there are no insert actions for them. (ii) In
case the cost scheme is not suited for the planners we also
used 3 different cost schemes: (1) cost of reactions = 1, cost
of insert = 10 (2) cost of reactions = 0, cost of insert = 10 (3)
cost of reactions = 1, cost of insert = # of reactions.

The steps mentioned did not help any one of the planners
to solve the smallest instance of the problem, but LM-Cut
managed to run 30 minutes without exhausting its memory.

Organism # of # of LM Merge GSCC
nutrients reactions -Cut & Shrink (h=0)

aae 2576 1699 - - 86.84
avn 305 298 - - 1.92
ayw 1733 400 - - 26.18
bmu 3042 2942 - - 150.84
bra 3139 3556 - - 174.88
bxe 3106 3722 - - 177.36
ecc 2901 3137 - - 145.86
eco 2992 3237 - - 154.67
ecp 2918 3166 - - 145.99
ecv 2890 3161 - - 144.13
ecx 2956 3197 - - 152.71
hsa 3006 4010 - - 176.59
mmu 3004 3959 - - 174.35
rha 3219 3679 - - 187.69
gga 2986 3514 - - 158.60
xla 2956 2971 - - 143.72
dre 2977 3734 - - 165.49
dme 2973 3099 - - 151.77
ath 3322 3290 - - 184.67
cre 2958 563 - - 104.72
cme 2940 2371 - - 129.51
sce 2622 2635 - - 110.59

Table 1: Methods are measured by runtime in seconds.
Names of organisms are KEGG shortcuts, for example: hsa
is Homo sapiens (human). For a full table of names see
http://www.genome.jp/kegg/catalog/org list.html

Conclusion

We described a new challenge domain for optimal planning
motivated by a real-world problem of interest to system bi-
ologists. Existing optimal planners are unable to solve this
problem, although a specialized search algorithm we de-
signed can solve all existing instances of this problem.

An interesting question for future work is how existing
planners might be altered to solve this domain. Our algo-
rithm can be viewed as generating a disjunctive landmark,
all of whose actions are currently applicable, and branch-
ing on the different elements, and then applying all pos-
sible zero-cost actions. The idea of ”applying all zero-
cost actions” is somewhat reminiscent of the use of ax-
ioms (Thiébaux, Hoffmann, and Nebel 2003), that is, we
could view reactions as axioms. However, axioms are used
to generate derived predicates, whereas in our domain there
is no natural notion of derived predicates – those nutrients
that can be derived by reactions can also be obtained as the
effect of insert actions. While the description could be al-
tered to fit the requirements of axioms, the lack of support
for axioms by existing optimal planners make the utility of
this questionable. We believe that a more promising direc-
tion is to simply integrate both ideas (prune by branching on
landmarks and apply all ”useful” zero-cost actions) into an

existing planner, and we hope to pursue it. In particular, it
will be interesting to see if it is possible to find disjunctive
action landmarks of the form used here more generally.

Because biology deals with complex dynamical systems,
we believe it is worth exploring the possibility of additional
planning problems of interest to biologists. In particular,
we are presently trying to solve a more complex problem of
generating a seed-set that is not only minimal in terms of the
number of nutrients, but also in terms of the cost (e.g., en-
ergy, number of reactions) of generating the entire set of nu-
trients. Extension that take into account nutrient concentra-
tion could pose an interesting challenge for metric-planning.
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