
Route Planning for Bicycles — Exact Constrained
Shortest Paths Made Practical Via Contraction Hierarchy

Sabine Storandt
Institut für formale Methoden der Informatik

Universität Stuttgart
70569 Stuttgart, Germany

sabine.storandt@fmi.uni-stuttgart.de

Abstract
We consider the problem of computing shortest paths subject
to an additional resource constraint such as a hard limit on the
(positive) height difference of the path. This is typically of in-
terest in the context of bicycle route planning, or when energy
consumption is to be limited. So far, the exact computation of
such constrained shortest paths was not feasible on large net-
works; we show that state-of-the-art speed-up techniques for
the shortest path problem, like contraction hierarchies, can
be instrumented to solve this problem efficiently in practice
despite the NP-hardness in general.

Introduction
Large detours are not desired when planning a trip from A
to B by bicycle. On the other hand, one is certainly willing
to ride a few extra kilometers if this saves a hard climb (see
Figure 1 for a small example). Similarly, a vehicle/robot
might save some energy if a path avoiding steep climbs is
chosen instead of the shortest path. This gives rise to two
natural optimization problems:

1. Find the route from A to B with the least (positive) height
difference (summed over all segments) which has length
at most D.

2. Find the route from A to B which is shortest among all
paths which have height difference of at most H .
In practice one might choose the distance limit D for

example as 1.2 times the shortest path distance, or the height
difference limit H as 1.5 times the path of minimal height
difference (both of which can be easily computed using
standard shortest path algorithms). Unfortunately, these
optimization problems are incarnations of the constrained
shortest path problem (CSP) which is NP-hard in general.
In this paper we will show that state-of-the-art speed-up
techniques for the shortest-path problem like contraction
hierarchies (CH) (Geisberger et al. 2008) can be instru-
mented to solve such problems very efficiently in practice.

In recent years several speed-up techniques, developed
originally for the one-to-one shortest path problem, found
their way into more sophisticated applications. For exam-
ple, it was shown that SHARC (Bauer and Delling 2009) is

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(7,0)

(7,6)

(4,0)

(2,1)

(3,3)

(3,0)
(2,2)

s

t

(25,6)

(6,0)

Figure 1: Example of a CSP-instance. Tuples contain the
length and the positive height difference of an edge. While
the upper path (black) from s to t is shorter, the lower path
(gray) bears less climbs. Hence it depends on the choice of
the resource bound, which of them is declared optimal.

also very useful to identify pareto paths (Delling and Wagner
2009), contraction hierarchy can be used for route planning
scenarios with flexible objective functions (Geisberger, Ko-
bitzsch, and Sanders 2010) and both can be applied to net-
works with time-dependent edge costs (Delling 2008), (Batz
et al. 2009). All these papers, except (Delling and Wagner
2009), are concerned with routing problems, which can be
solved efficiently in polynomial time, and query answering
is always based on Dijkstra’s algorithm (or a modification
thereof).
One method to solve CSP exactly – the label setting algo-
rithm – is based on the same concept as Dijkstra’s algorithm.
Like in Dijkstra’s algorithm, labels get stored in a priority
queue and every time we extract the label with minimal key
value, we go through the list of outgoing edges of the respec-
tive node and update their target node labels if an improve-
ment is possible. In addition, both algorithms allow for stor-
ing predecessors along with the labels and hence the optimal
path can be found efficiently by backtracking. Moreover,
like Dijkstra’s algorithm, the label setting can be performed
in a bidirectional manner. Due to these similarities, Dijkstra-
based speed-up techniques like CH and arc-flags seem to be
applicable to the label setting algorithm.
As these preprocessing methods extract a sparse subgraph
for query answering without compromising optimality, they
promise significantly decreased run time as well as space
consumption during a label setting computation.

234

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling

Related Work
Due to its relevance for real-world applications, various ap-
proaches have been developed to solve the CSP problem ex-
actly or with an approximation guarantee. Common meth-
ods are label setting and label correcting algorithms, as well
as dynamic programming. CSP can also be formulated as
an ILP, giving rise to relaxations combined with gap closing
algorithms. Moreover, path ranking and enumeration algo-
rithms have been applied. We refer to (Muhandiramge and
Boland 2009) and (Mehlhorn and Ziegelmann 2000) for a
more detailed overview.
In (Muhandiramge and Boland 2009) the authors introduce
the Aggressive Edge Elimination(AEE) procedure, which is
based on Lagrangian relaxation techniques. With the help
of AAE they could solve instances previously known as in-
tractable, and tackle rather large networks (up to about 2.2
million nodes and 6.7 million edges). In contrast to our sce-
nario, they do not focus on street networks, but on grid-like
graphs in their experimental evaluation. Here simple prun-
ing strategies were proven to be very effective, allowing to
reduce the number of edges to only a few thousand. We
will show, that simple pruning has a significantly lower im-
pact on our inputs. Moreover contraction hierarchy takes
advantage of the (hierarchical) structure of street networks,
therefore a comparison of the two approaches on the same
set of inputs seems difficult. The paper of (Köhler, Möhring,
and Schilling 2005) also explores the idea of adapting speed-
up techniques for conventional shortest path computations
to the CSP scenario. The authors show, that goal-directed
search leads to a significant speed-up in street networks. Un-
fortunately they restrict their evaluations to a comparatively
small graph (Berlin, about 12000 nodes). It is not clear
whether the speed-up translates to large networks. As our
approach extracts a sparse subgraph for query answering, it
can be seen as a basis for applying several other speed-up
techniques – including goal-directed search – on top.
In (Geisberger, Kobitzsch, and Sanders 2010) the authors
also consider two edge metrics. Here the goal is to find the
optimal path wrt to a linear combination of the two edge
metrics (with the linear combination being revealed at query
time only). The authors show how CH can be adapted for
this scenario to achieve very fast query answering. Note that
this is a subproblem of CSP, which can be solved in polyno-
mial time. On the other hand, finding all pareto-paths in a
network, as described in (Delling and Wagner 2009), is also
NP-hard. In this context, several metrics are considered, and
a path is declared pareto-optimal if it is superior to all other
possible paths with respect to at least one of the metrics.
The authors use a modified version of SHARC to speed-up
such queries, but have to restrict themselves to a subset of
all solutions in order to cope with space consumption.

Contribution
In this paper we show that Dijkstra-based speed-up tech-
niques can also be used to reduce the query time and space
consumption for instances of CSP. We describe in detail how
CH can be modified to maintain all pareto-optimal solutions
in a given street network. We propose several approaches to

decide whether a shortcut is necessary, allowing to trade re-
duced preprocessing time for graph sparseness. Apart from
answering queries in the CH-graph with the label setting al-
gorithm, we also outline how the dynamic programming ap-
proach can take advantage of CH. Additionally, we intro-
duce a modified version of arc-flags that allows to speed-
ing up CSP queries on its own or in combination with CH.
Experimental evaluations show that our methods can solve
bicycle route planning problems exactly in networks with
millions of nodes and edges.

Preliminaries
We are given a digraph G(V,E), a cost function c : E →
R+

0 and a resource consumption r : E → R+
0 on the edges.

In a query we are given the source and destination node, s
and t, as well as the budget or resource boundR. We want to
determine the minimal cost path from s to t, whose resource
consumption does not exceed R. With c(p) =

∑
e∈p c(e)

and r(p) =
∑
e∈p r(e) we refer to the cost and resource

consumption of a path p. We say, that a v-w-path p domi-
nates another v-w-path p′ if c(p) ≤ c(p′) and r(p) ≤ r(p′).
We call a v-w-path p pareto-optimal, if there exists no dom-
inating path for p. Moreover, we can represent each tuple
(c(p), r(p)) as line segment λc(p)+(1−λ)r(p), λ ∈ [0, 1].
A v-w-path p lies on the lower convex hull (LCH) of (v, w),
if there exists a λ ∈ [0, 1] for which λc(p) + (1− λ)r(p) is
minimal among all v-w-paths.
In this paper we will focus on the problem of finding a short-
est or most energy-efficient path, while restricting the total
sum of climbs. To that end we are also given an elevation
function h : V → Z. Based on that the resource con-
sumption of an edge e = (v, w) can be defined as follows:
r(e) = max(h(w)− h(v), 0).

Dynamic Programming
As proposed in (Joksch 1966), we can solve the CSP prob-
lem using a dynamic programming (DP) approach: Let ci,w
denote the minimal costs for an s − w-path with a resource
consumption smaller or equal to i. It can be computed re-
cursivly using

ci,w = min{ci−1,w, min
e=(v,w)∈E

{ci−r(e),v + c(e)}}

and initial values c0,s = 0, c0,w = ∞ if w 6= s and
ci,w = ∞ if i < 0. As we are interested in cR,t, we have
to store all ci,w, i = 0, · · · , R, w = 1, · · · , n in the dy-
namic programming table, leading to a space consumption
of O(nR) and a runtime of O(mR). Observe that this ap-
proach can only be applied if the resource consumption for
all edges is really greater than zero. As this is not the case
in our application, we have to use an alternative dynamic
programming formulation: Let ri,w be the minimal resource
consumption of an s−w-path with costs equal to i. We can
compute ri,w as follows:

ri,w = min
e=(v,w)∈E

{ri−c(e),v + r(e)}

The optimal solution then equals ri,t ≤ R with i being min-
imal. Therefore the computation stops at i = LOPT , lead-
ing to a to pseudopolynomial runtime of O(mLOPT). This

235

formulation can be extended to a PTAS using scaling and
rounding of the edge costs, see (Hassin 1992).

Labeling
The label setting (LS) method, introduced by (Aggarwal,
Aneja, and Nair 1982) in the context of minimum spanning
trees with constraints, can be viewed as a variant of the DP
approach, but has the advantage of not expanding dominated
paths. LS assigns to each node v the list of all pareto-optimal
tuples (c(p), r(p)) for an s-v-path p. This can be achieved
by using an approach that adopts the idea of Dijkstra’s algo-
rithm for computing shortest paths. Here, we store labels in
a priority queue (PQ). A label can be seen as triple consist-
ing of a node ID, cost and resource consumption. The PQ
sorts the labels in the increasing order of costs. We start with
the PQ containing only the label (s, 0, 0). In every round we
extract the label with minimal cost and check for the respec-
tive node v if any of its outgoing edges e = (v, w) leads to a
new pareto-optimal solution (c, r) for w. If this is the case,
we push (w, c, r) into the PQ. If (c, r) dominates any solu-
tion that was already assigned to w the dominated solution
gets pruned.
Knowing all pareto-optimal solutions assigned to t after ter-
mination, we can easily extract the cheapest one that does
not exceed the maximal allowed resource consumption R.
Of course if we do not push any labels into the PQ whose
resource value exceed R, we can stop when t is popped out
of the PQ for the first time.
In the bidirectional version of the label setting computation
(LSC) we also run a backwards search from t simultane-
ously. Whenever the two search networks meet or a new la-
bel is assigned to a meeting node we select the best possible
combination of an upward and a downward label, i.e. the
one with minimal summed costs, that is not dominated by
any other combination and the summed resource consump-
tion does not exceed R. If the cost of the selected combi-
nation is lower than the previous cost bound C, we found
a new upper bound on cost of our optimal path, which can
be used to prune the remaining search space even more. As
soon as both PQs become empty, the optimal path has been
found, namely the one that is responsible for the minimal C.
While LS often outperforms DP in practice, the theoretical
runtime and space consumption are the same.

Simple Pruning
The first attempt to reduce the graph size without compro-
mising correctness was based on resource labels (Aneja, Ag-
garwal, and Nair 1983). Here the resource label rmin of a
node v is the minimal resource consumption of an s-t-path,
that visits v. Obviously, all nodes with rmin(v) > R can
never be on a feasible path, and hence these nodes as well
as their adjacent edges can be excluded a priori. Checking
this condition for all nodes in G can be done very efficiently
by running two conventional Dijkstra computations on the
resource consumption starting in s, and t (on the reversed
graph). Aftwerwards we sum the two resulting labels rs(v)
and rt(v) for each node to receive rmin(v). Nodes with a
single label already exceeding R do not need to be pushed
into the respective priority queue.

If we keep the labels rs and rt for all feasible nodes, we can
extend this pruning method to minimize the number of polls
(extract min operations of the priority queue) during the la-
bel setting. Namely, we only push a label (w, c, r) into the
PQ during the forward phase if r+ rt(w) ≤ R (analogously
r + rs(w) ≤ R in the backward run).
Note that if the allowed resource bound R is rather large
or – as in our case – there exist many edges with a re-
source consumption of zero, simple pruning might not elimi-
nate enough nodes and edges to obtain a subgraph on which
queries can be answered efficiently in practice. Hence in
the following we will introduce further pruning techniques
based on the idea of contraction hierarchy and arc-flags.

Advanced Pruning with Contraction
Hierarchy

To reduce the runtime, we want to exclude as many nodes
and edges as possible a priori and hence thin out the search
space for the labeling algorithm. Conventional shortest path
computations methods like contraction hierarchy or arc-
flags achieve exactly this. Therefore, we will show in the
following how these techniques can be adapted to our sce-
nario with resource constraints.

Conventional CH
The contraction hierarchy (CH) technique was introduced in
(Geisberger et al. 2008) and leads to a remarkable speed-up
for Dijkstra computations.
In a preprocessing phase an importance value is assigned
to each node, and then the nodes are sorted in the increas-
ing order of importance. Afterwards the nodes get re-
moved/contracted one by one in that order, while preserv-
ing all shortest path distances among the remaining nodes
by inserting additional edges (so called shortcuts). More
precisely, an edge e = (u,w) is added, when contracting
a node v, if u and w are adjacent to v, and the shortest path
from u to w is uvw. The costs of e result from the chained
costs of the edges (u, v) and (v, w). If the shortest path does
not equal uvw, then we found a witness path testifying that
the shortcut can be omitted. After all nodes have been re-
moved, we build a new graph G′ consisting of all nodes and
edges of the original graph and all shortcuts. We call an edge
e = (v, w) (original or shortcut) upwards if the importance
of v is smaller than that of w and downwards otherwise. In
G′ s-t-queries can be answered by a bidirectional Dijkstra
computation, with the forward run (starting at s) consider-
ing only upward edges and the backward run (starting at t)
considering exclusively downward edges. We call the re-
spective sets of edges the upward/downward graph induced
by s / t. This strategy prunes the respective search spaces
dramatically and leads to a speed-up of more than two or-
ders of magnitude for query answering.

Node Ordering
To decide in which order the nodes get contracted several
heuristics have been developed, evaluating the importance of
a node. As one goal is to keep the resulting graph as sparse
as possible, the edge-difference (Geisberger et al. 2008)

236

seems promising. The edge-difference of a node v is the
actual number of shortcuts we have to add minus the num-
ber of edges that can be removed when contracting v. Also,
weighted versions of edge-difference have been evaluated,
penalizing addition of shortcuts even more, see (Geisberger,
Kobitzsch, and Sanders 2010).
In our case nodes seem more important if they belong to
cost-optimal paths with low total resource consumption.
Therefore we also use a weighted edge-difference, but break
ties by first contracting nodes whose incoming edges have a
high resource consumption.

Witness Search for Constrained Shortest Paths
Like every subpath of a shortest path has to be a shortest
path itself, every subpath of a pareto-optimal path has to
be pareto-optimal. Hence we have to maintain all pareto-
optimal paths on a local level to guarentee correct query
answering in the CH-graph. Therefore, while contracting a
node v, we can avoid adding a shortcut between two of its
neighbors u and w only if we find an alternative path from
u to w which dominates the reference path p = uvw.

A straightforward way to find such a dominating witness
is starting a LSC in u with a resource bound R = r(p). As
soon as w pops out of the PQ the first time, we stop the LSC
and check if the label’s cost exceeds c(p). If this is the case,
p is pareto-optimal and hence the shortcut sc = (u,w) with
c(sc) = c(u, v) + c(v, w) and r(sc) = r(u, v) + r(v, w)
is needed for sure. Otherwise we found a dominating path
and therefore the shortcut can be omitted. Of course, we can
already abort the LSC if w is assigned a label that dominates
the label of the reference path. Note that for conventional
shortest paths there can be at most one shortcut (v, w) for
any pair of nodes v, w ∈ V in G′. On the other hand, in
our scenario there might be as many shortcuts as there are
pareto-optimal paths in G between v and w.
Unfortunately LSC might be too time-consuming to apply to
every pair of neighboring nodes in every contraction, even
if we apply simple pruning first. Because of that, we now
propose a procedure which can help to avoid some of these
computations:

The basic idea is to first restrict ourselves to paths on
the lower convex hull (LCH) of all paths. If p is a part of
the LCH, there can exist no dominating path and so we
have to insert sc = (u,w). On the other hand if there
is a dominating path p′, it is likely (not required!), that
p′ ∈ LCH . To get the candidate paths on the LCH we
introduce the parameter λ ∈ [0, 1]. With Gλ we refer to
the graph, that consists of the same vertices and edges as
the original one, but has only one weight assigned to each
edge, namely λc(e) + (1 − λ)r(e). In Gλ we can identify
an optimal path between two nodes using plain Dijkstras
algorithm. If we extract this path and evaluate it in G we
can easily check if this path dominates p or is equal to p.
Otherwise we can retry using another value of λ.
In practice we want to restrict ourselves to a small set of
support points λ1, · · · , λt. Of course, we could choose
these values randomly or sample the interval [0, 1] uni-
formly, but in both cases many λi might lead to the same

(4,1)

(3,2)
(2,1)

r c

r c

r c

(3,3)

(3,2)
(2,0)

(3,2)
(2,0)

(5,0)

(2,2)

(1,1)

A

B

C

(4,1)

(3,3)

(5,0)

(2,2)

(1,1)

(5,2)

(5,2)

r c

(2.3,1.5)

D

(5,0.5)

(3,3)
(2,1)

(2,1)

(1,1)

(3,3)
(2,1)

(2,1)

(3.3,2.5)

(6,1.5)

λ

λ

λ

λ0 1

0 1

0 1

0 1

Figure 2: Examples for contracting a node (large red mark).
The resulting graph is given on the right. In (A) the refer-
ence path (black) is dominated by the green path. The latter
describes the complete LCH, therefore a single Dijkstra run
in Gλ with λ = 0 or λ = 1 is sufficient to make sure that
the respective shortcut for the black path can be omitted. In
(B) the green path does not dominate the black one. Instead,
the reference path is a part of the LCH, as a Dijkstra run with
λ = 0 will reveal. Hence the shortcut must be inserted (indi-
cated by the blue edge on the right side). In (C) the shortcut
is needed as well, but the exploration of the LCH will be in-
conclusive, as the reference path is neither a part of the LCH
nor dominated by the ones that are. In (D) the black path is
again a part of the LCH. Using λ1 = 0 and λ2 = 1 we will
discover the orange and the brown path respectively. The λ-
value of their intersection point will lead us then to the green
path as indicated by the dotted gray line. Hence our checker
needs more than three support points for a conclusive result.

237

resulting path. We can do better if we search for the support
points systematically. To that end we start with λ1 = 0
and λ2 = 1, i.e. we compute the resource-minimal path
p1 and the cost-minimal path p2. If we are not done yet,
we set λ3 to the λ-value of the intersection point of g(p1)
and g(p2) with g(pi) = (c(pi) − r(pi))λ + r(pi), namely
λ3 = r(p2)−r(p1)

c(p1)−c(p2)+r(p2)−r(p1) . The new path p3 – which
is optimal for λ3 – will either be the same as p1 or p2 or
will have an intersection point with both g(p1) and g(p2).
If the former is the case, we have explored the complete
LCH. Otherwise the two intersection points are candidates
for further support points, therefore we push them onto a
stack Q. For every further λi extracted from Q we proceed
similarly. As soon as Q becomes empty, we have explored
the complete LCH and are done. Moreover, we can fix
a maximal value for t, restricting the number of possible
Dijkstra computations a priori. Figure 2 shows some
examples that illustrate the connection between the witness
search and the check procedure.
Of course, the Dijkstra computations in Gλ can also be sped
up by simple pruning. To that end we just have to store
and update the cost and resource consumption for a node
simultaneously with the transformed cost label. Observe,
that the simple pruning is independent of the choice of
λ and hence has only to be done once for every pair of nodes.

If the checker does not provide a conclusive result,
we can either start the LSC on top, or add the shortcut
sc(u,w) without further investigations in order to reduce
the preprocessing time. Of course, without the LSC we
might add some superfluous shortcuts. Note that this does
not compromise correctness, but can lead to worse query
times and increased space consumption.

Observe that in the resulting CH-graph G′ – consisting of
all original nodes and edges as well as all shortcuts – we can
now answer both kinds of queries mentioned in the introduc-
tion more efficiently, i.e., we can either restrict the distance
and ask for the path with the minimal positive height dif-
ference or we could also restrict the latter and compute the
shortest path fulfilling the height constraint. Note, that this
is a direct consequence of omitting shortcuts only if a dom-
inating path can be found.

Answering queries
To answer an s-t-query in the constructed CH-graph, we
only have to consider edges that lie in the upward graph
G↑ induced by s or in the downward graph G↓ induced
by t and are adjacent to a feasible node according to the
simple pruning with resource labels. Therefore we can also
speed up the required Dijkstra computations for the simple
pruning by considering only edges in Gl = G↑ ∪ G↓. If t
does not receive a feasible resource label in this step, there
exists no path from s to t fulfilling the resource constraint
and we are done. Note that, as a nice side effect of simple
pruning in Gl, all nodes that do not lie on any path from
s to t receive a resource label of ∞ automatically. Hence
they will not be considered anymore, pruning the search

space additionally. Also we run a (bidirectional) Dijkstra
computation in Gl from s to t, now considering the edge
costs. If the resulting path is feasible wrt to its resource
consumption, we found the optimal solution straight away.
Otherwise futher computations are required:
The bidirectional version of the LS can be easily modified
to take advantage of CH. The only difference is that the
forward run from s considers only upward edges, while the
backward run from t considers only downward edges. Of
course we do not push any nodes into the PQ, that were
declared infeasible in the simple pruning step.

For combination with other speed-up techniques it might
be desirable to answer queries in a unidirectional manner.
For that purpose we start a breadth-first search (BFS) at t to
mark all downward inedges recursively, omitting edges that
are adjacent to infeasible nodes. Afterwards we can start
a conventional LSC at s that runs on upward and marked
edges. The first time t is popped out of the PQ, the optimal
label is found.

Up to now we only outlined how CH can be useful to an-
swer queries with LS more efficiently. But we can also use
this preprocessing to reduce space consumption and runtime
for the dynamic programming approach. To that end we per-
form a BFS not only from t on downward edges, but also
from s to mark all possible upward edges. Afterwards we
extract the subgraph by keeping only marked edges and their
adjacent nodes (if they are feasible).

Extension: Pruning wth Arc-Flags
Arc-flags (Lauther 1997) are based on the observation that
the set of all shortest paths from one region to another (far
away) region contains only a very few edges. This is derived
from the fact that long drives in a certain direction require
almost always the usage of a specific highway or autobahn.
Therefore the idea behind arc-flags is to identify this set of
useful edges a priori and explore only these during query
answering.
To assign arc-flags, the nodes are first partitioned V = P1]
P2] · · ·] Pl. Then a list of boolean flags is assigned to
each edge, one flag for every partition Pi. This flag will
be set true if the edge lies on a shortest path π(v, t) with
v ∈ V and t ∈ Pi. While answering a query, we only have
to consider edges marked true for the partition in which the
target lies. Naively, we would have to compute the shortest
path between any pair of nodes to determine all arc-flags.
But even for small graphs this is too time-consuming to be
pratical. Using the observation that any path between two
nodes v, w with v ∈ Pi, w ∈ Pj , Pi 6= Pj , has to go through
at least one node on the boundary of Pi and Pj respectively,
we can restrict ourselves to shortest paths between boundary
nodes. Of course, with this approach the flag for edges with
their source and target in the same partition Pi has to be set
true for Pi, in order to still allow queries to any node.

For CSP the number of edges on pareto-optimal paths be-
tween two regions is suprisingly small (see Figure 3), but
of course larger than the number of edges on shortest paths
only. In order to further reduce the number of important

238

Figure 3: Pareto-optimal paths (red) be-
tween source (top left) and destination
node (bottom right). Node colours in-
dicate elevation (from blue-243 m up to
red-786m). While there are 87 different
pareto-optimal solutions, the total number
of used edges is rather small.

edges for a query, we introduce the concept of resource-
dependent arc-flags. To that end we divide the range of pos-
sible bounds R into intervals [0, R1], (R1, R2], · · · (Rk,∞].
Now we split the edge flag for a certain partition Pi in k
flags. Such an interval flag for (Ri−1, Ri] is true iff a pareto-
optimal path to a node t ∈ Pi starts starting with this edge
has a resource consumption of at most Ri. Using again only
boundary nodes to determine arc-flags, we set all interval
flags for the partition that contain the edge to true.
Answering a query changes slightly: now we consider only
edges e = (v, w) if the resource consumption of the actual
label assigned to v lies in a true flagged interval for the tar-
get’s partition.

Combination
Combining arc-flags with contraction hierarchy promises an
even smaller search space and therefore better query times.
Computing the CH first, and assigning arc-flags to all edges
including shortcuts afterwards is very time-consuming, be-
cause adding shortcuts also increases the number of nodes
that are located on partition boundaries. Moreover, the edge
flags of shortcuts can be easily derived if the edge flags for
the original graph are known previously. Conventionally, a
shortcut that skips two edges e1, e2 can only have a true edge
flag for partition Pi if both respective edge flags of e1 and
e2 are true. Therefore, conventional arc-flags for shortcuts
can be derived by applying the bitwise and-operator to the
vectors of edge flags for e1, e2. Using resource-dependent
arc-flags we set the shortcut’s interval flag for (Ri−1, Ri] to
true if the according edge flag of e1 is true and the flag of e2
for the interval containing Ri − r(e1) is true as well.

Experimental Results
In this section we evaluate the impact of the introduced
speed-up techniques on real-world instances. We used five
test graphs (named according to the number of their nodes
10k, 100k, 500k, 1m, 5.5m), which are all cutouts of the
street network of Germany, based on OpenStreetMap1 data
and augmented with SRTM (Shuttle Radar Topography Mis-
sion)2 height information. Distances and elevations were
used with a precision of 1m. The average path lengths and
the average positive height differences for all test graphs can
be found in Table 1. Our implementations are written in
C++. Preprocessing times were taken on a 2-core, Intel Core
i3-2310M CPU with 2.10GHz and 8 GB RAM. Query times
were taken on a single core.

10k 100k 500k 1m 5.5m
shortest path
avg length 5618 28066 50102 77599 197334
avg height diff 189 715 1164 1677 4038
minimal height difference path
avg length 6925 30938 70657 98333 287461
avg height diff 116 553 766 1179 2116

Table 1: Characteristics of the test graphs: Average path
length as well as height difference for shortest paths and for
paths with minimal height difference. All values are given
in meters and are averaged over 1000 random queries.

We preprocessed all the test graphs using contraction
hierarchy – once in the conventional way, considering only
costs and aiming to maintain all shortest paths (SP), and
once using the new variant for CSP. For the latter we used
the described check procedure (considering first paths on

1www.openstreetmap.org/
2www2.jpl.nasa.gov/srtm/

239

Figure 4: Example of a shortest path (top, red, distance
7.5km, height diff. 517m) and the respective path with min-
imal height difference (bottom, black, distance 19.1 km,
height diff. 324m), which makes a very large detour. The
shortest path under the constraint of having a height differ-
ence smaller than 1.5 · 324m = 486m is a fair compromise
(middle, purple, distance 7.7km, height diff. 410m).

the lower convex hull) with three support points. Based on
that we could avoid about 62% of the local label setting
computations. We restricted ourselves to contracting 99.5%
of the nodes in each graph, in order to achieve reasonable
preprocessing times for the CSP-CH (4 seconds for the
10k graph, about 2h for the 5.5m graph). Edges between
uncontracted nodes were declared downward edges. The
total number of edges in the final CH-graphs can be found
in Table 2 for all five graphs. Surprisingly, the total number
of edges in the CSP-CH graph is only about 3 − 10%
larger than the number in the SP-CH graph. Hence we also
have only about twice the number of original edges in the
CH-graph. This might partly result from the fact that the
positive height difference is bounded in the path length, as
one can not achieve to gain 10 meters in height without
riding for at least 10 meters at the same time. Moreover,
the large number of edges with zero resource consumption
is beneficial here, as finding a witness for a path without
any resource consumption simply reduces to finding a path
with smaller costs, which is equivalent to the conventional
scenario.

edges
graph nodes original SP-CH CSP-CH
10k 11220 24119 50641 54383
100k 100242 213096 407034 419210
500k 500011 1074458 2090628 2160438
1m 999591 2131490 4150204 4276478
5.5m 5588146 11711088 23970043 26586530

Table 2: Number of nodes and edges for the used test graphs.
’Original’ describes the number of edges in G before apply-
ing CH. The last two columns show how conventional CH
for shortest paths (SP-CH) and CH for CSP augments the set
of edges.

 4400

 4500

 4600

 4700

 4800

 4900

 5000

 5100

 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420

le
n

g
th

 (
1

0
m

)

height difference (m)

Figure 5: All 91 pareto-optimal labels (consisting of path
length and corresponding height difference) assigned to a
single node during the label setting algorithm in the 100k
graph.

We measured query times and polls for the unidirectional
label setting algorithm. At first we picked a source and a
target vertex s, t randomly, and computed the path with
the minimal positive height difference H . Then we started
a LSC with a resource bound of 1.5H and aimed for the
shortest path fulfilling this constraint (see Figure 4 for a an
example in the 10k graph).
The results can be found in Table 3. In all test graphs the
number of edges in the subgraph of the CH-graph induced
by s and t is at least one order of magnitude smaller than
in the original graph. With the only exception of the 5.5m
graph, applying the pure CH reduced the number of edges
far more than the simple pruning approach. Neverthless,
in all cases the queries in the CH-graph could be answered
with siginficantly less poll operations than in the feasible
subgraph based on simple pruning. This is also reflected
in the runtime. While pruning with resource labels only
halves the runtime that was needed to answer a query in a
completely unpreprocessed graph, the respective CH-query
can be answered two oders of magnitude faster. The
combination of both techniques leads to query times below
1 second in graphs with a size up to 5 · 105 nodes. The
reason why for the 5.5m graph we achieve only a speed-up
of 20 using CH (50 for the combination of CH and simple
pruning) might be the incomplete contraction of the nodes
during the preprocessing, because all of the edges between
uncontracted nodes have to remain in the induced subgraph
for query answering. Moreover the runtime of a LSC
depends not only on the number of polls, but also on the
time required to check the pareto-optimality of a label and
prune dominated ones previously assigned to the respective
node. The costs of these operations increase, of course, with
the number of labels that are already assigned to a node. As
one can see in Figure 5 exemplarily for the 100k graph this
number might be very large in our scenario.
Nevertheless, reduction in the graph size was significant and
it allowed us to answer all queries using only 8GB of RAM.

240

subgraph edges
graph naive naive+p CH CH+p
10k 2.4 · 104 7.5 · 103 2.8 · 103 1.2 · 103
100k 2.1 · 105 1.0 · 105 5.2 · 103 2.9 · 103
500k 1.1 · 106 4.6 · 105 3.6 · 104 1.2 · 104
1m 2.1 · 106 5.3 · 105 8.1 · 104 3.4 · 104
5.5m 1.2 · 107 7.0 · 105 1.8 · 106 1.6 · 105

number of polls
graph naive naive+p CH CH+p
10k 3.6 · 104 1.2 · 104 4.9 · 102 2.3 · 102
100k 1.4 · 106 6.5 · 105 8.1 · 103 4.9 · 103
500k 8.9 · 106 6.7 · 106 8.9 · 104 7.4 · 104
1m 2.9 · 107 6.8 · 106 3.4 · 105 9.1 · 104
5.5m 9.2 · 107 3.7 · 107 1.7 · 106 8.7 · 105

query time (s)
graph naive naive+p CH CH+p
10k 0.0233 0.0117 0.0015 0.0002
100k 7.5942 2.7301 0.1294 0.0168
500k 123.0791 105.7814 1.0438 0.9895
1m 265.6990 117.6859 5.6712 2.5879
5.5m 2369.3361 1131.1603 124.2088 64.2364

Table 3: Experimental results for answering queries with
the label setting algorithm in the original graph (naive) and
the CH-graph, in combination with simple pruning (’+p’)
and without. All values are means based on 1000 random
queries. For all measurements standard deviations range be-
tween 1.2 and 1.6 times the average.

In contrast, using the naive approach, part of the queries in
1m and 5.5m failed (these were excluded from timings).
Even after switching to a server with 96GB RAM we ran
out of memory for some queries in the 5.5m graph. But with
our new techniques, the search space reduces remarkably,
and therefore enabling us to handle such queries on desktop
computers or even laptops.

As outlined in the previous section, we can also take ad-
vantage of the CH-graph when answering queries using dy-
namic programming. Here we first have to extract the fea-
sible subgraph to build the dynamic table upon. The num-
bers of nodes that remain in this subgraph (and therefore
determine one of the table’s dimensions) are given in Table
4. For all considered graphs the percentage of these nodes
lies below 1% of the original nodes, leading to an overall
reduction in table size of at least two orders of magnitude.
Therefore, the average CH-table size for the 5.5m graph is
now comparable to the original one for the 100k graph. Ac-
cordingly, we could again answer all queries using only 8GB
og RAM, while no queries in the 1m and 5.5m graph could
be answered at all in the original setting. The query times,
given also in Table 4, show a speed-up by a factor of 10−30,
though the runtime for larger graphs is prohibitive for practi-
cal use, taking about one hour for a query in the 5.5m graph.
But note that path lengths were computed with a very high
precision of one meter, and as the value of the optimal solu-
tion determines the second dimension of the dynamic table,
this leads to a large number of necessary table entries.

nodes table size query time (s)
graph CH naive CH naive CH
10k 100 6.5 · 107 5.6 · 105 13.7 1.9
100k 412 2.9 · 109 2.9 · 106 106.2 11.2
500k 2508 3.1 · 1010 1.5 · 108 3729.1 104.4
1m 4724 (8.5 · 1010) 4.2 · 108 - 498.9
5.5m 21486 (1.3 · 1012) 4.6 · 109 - 3573.5

Table 4: Experimental results for the dynamic programming
approach. The second column gives the number of nodes
in Gl, and hence equals the first dimension of the dynamic
table. Query times for the naive approach could not be mea-
sured for the graphs 1m and 5.5m, because we ran out of
memory. Values in brackets are estimates based on the opti-
mal solutions returned by the CH-variant and the number of
nodes in the respective graphs. All other values are averaged
over 100 random queries.

Finally we evaluated (resource-dependent) arc-flags in the
CSP setting. Due to very long preprocessing time and high
space consumption, we restricted ourselves to measurements
on the 10k and 100k graphs.
First we divided the 10k graph into 64 partitions (using a
uniform 8x8 grid). We achieved a speed-up similar to CH
(without simple pruning), but used about ten times the pre-
processing time. Secondly, we applied resource-dependent
arc-flags to the 100k graph, using 12 partitions and three in-
tervals with R1 = 400 and R2 = 800. The preprocessing
took about 4 hours and considered 2576 boundary nodes.
For high resource consumption bounds the number of polls
was reduced by an order of magnitude in comparison to the
naive approach. The combination of CH and arc-flags led
to an equal number of polls as CH plus simple pruning. In
addition with the help of all three of these techniques, the
number of polls and the subgraph size could be halved once
more.

Conclusions and Future Work
In this paper we described in detail how the speed-up tech-
nique of contraction hierarchy can be adapted to solve in-
stances of the NP-hard CSP problem exactly and efficiently
even in large street networks. This allows for faster query
answering in a wide range of applications, where resource
constraints play a role. On the example of the bicycle route
planning problem we showed that not only the runtime but
also the space consumption of a query can be reduced re-
markably with the help of CH.
Future work will include further investigations to reduce the
preprocessing time for CH and arc-flags. Also the combi-
nation with other heuristics, like A∗-search, might lead to
improved query times and less space consumption.

Acknowledgement
This work was partially supported by the Google Focused
Grant Program on Mathematical Optimization and Combi-
natorial Optimization in Europe.

241

References
Aggarwal, V.; Aneja, Y.; and Nair, K. 1982. Minimal span-
ning tree subject to a side constraint. In 32nd ACM Sympo-
sium on Theory of Computing (STOC), 286–295.
Aneja, Y. P.; Aggarwal, V.; and Nair, K. P. K. 1983. Shortest
chain subject to side constraints. Networks 13(2):295–302.
Batz, G. V.; Delling, D.; Sanders, P.; and Vetter, C. 2009.
Time-dependent contraction hierarchies. In ALENEX, 97–
105.
Bauer, R., and Delling, D. 2009. Sharc: Fast and robust
unidirectional routing. ACM Journal of Experimental Algo-
rithmics 14.
Delling, D., and Wagner, D. 2009. Pareto paths with sharc.
In SEA, 125–136.
Delling, D. 2008. Time-dependent sharc-routing. In ESA,
332–343.
Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction hierarchies: Faster and simpler hierarchi-
cal routing in road networks. In WEA, 319–333.
Geisberger, R.; Kobitzsch, M.; and Sanders, P. 2010. Route
planning with flexible objective functions. In ALENEX’10,
124–137.
Hassin, R. 1992. Approximation schemes for the restricted
shortest path problem. Mathematical Operational Research
17(1):36–42.
Joksch, H. 1966. The shortest route problem with con-
straints. Journal of Mathematical Analysis and Application
14:191–197.
Köhler, E.; Möhring, R.; and Schilling, H. 2005. Accelera-
tion of shortest path and constrained shortest path computa-
tion. In Experimental and Efficient Algorithms, volume 3503
of Lecture Notes in Computer Science. Springer. 126–138.
Lauther, U. 1997. Slow preprocessing of graphs for ex-
tremely fast shortest path calculations. Lecture at the Work-
shop on Computational Integer Programming at ZIB.
Mehlhorn, K., and Ziegelmann, M. 2000. Resource con-
strained shortest paths. In Paterson, M., ed., Algorithms -
ESA 2000, volume 1879 of Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg. 326–337.
Muhandiramge, R., and Boland, N. 2009. Simultaneous
solution of lagrangean dual problems interleaved with pre-
processing for the weight constrained shortest path problem.
Netw. 53:358–381.

242

