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Abstract
The paper illustrates a novel approach to conformant plan-
ning using classical planners. The approach relies on two core
ideas developed to deal with incomplete information in the
initial situation: the use of a classical planner to solve non-
classical planning problems, and the reduction of the size of
the initial belief state. Differently from previous uses of clas-
sical planners to solve non-classical planning problems, the
approach proposed in this paper creates a valid plan from a
possible plan—by inserting actions into the possible plan and
maintaining only one level of non-deterministic choice (i.e.,
the initial plan being modified). The algorithm can be instan-
tiated with different classical planners—the paper presents
the GC[LAMA] implementation, whose classical planner is
LAMA. We investigate properties of the approach, includ-
ing conditions for completeness. GC[LAMA] is empirically
evaluated against state-of-the-art conformant planners, us-
ing benchmarks from the literature. The experimental results
show that GC[LAMA] is superior to other planners, in both
performance and scalability. GC[LAMA] is the only planner
that can solve the largest instances from several domains. The
paper investigates the reasons behind the good performance
and the challenges encountered in GC[LAMA].

Introduction
Conformant planning is the problem of computing a se-
quence of actions that achieves a goal in presence of in-
complete information about the initial state (Smith and Weld
1998). Recent research shows that conformant planning
could be very useful in the construction of finite-state con-
trollers (Bonet, Palacios, and Geffner 2009) and in contin-
gent planning (Albore, Palacios, and Geffner 2009). One of
the most difficult issues, that directly affects the performance
and scalability of conformant planners, is the size of the
initial belief state—which is often exponential in the num-
ber of object constants of the problem. We observed that in
many problems drawn from the recent International Plan-
ning Competitions (IPC) and from the literature, the initial
belief states of many large instances contain more than 210

states, creating challenges to existing conformant planners.
Various techniques have been developed to deal with the

potentially huge size of the belief state. Some planners em-
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ploy a compact representation of belief states—e.g., CFF
(Brafman and Hoffmann 2004), POND (Bryce, Kambham-
pati, and Smith 2006), CNF (To, Son, and Pontelli 2010).
Other planners develop simplification techniques that can
reduce the size of the initial belief state, sometimes by sev-
eral orders of magnitude—as in CPA (Tran et al. 2009) and
DNF (To, Pontelli, and Son 2009). Most of these planners
search for solutions in the belief state space. An alterna-
tive approach has been proposed in (Castellini, Giunchiglia,
and Tacchella 2001) and (Kurien, Nayak, and Smith 2002),
where the conformant planning problem is viewed as a set
of sub-problems, which are classical planning problems, and
solutions are computed using a two-step approach.

C-PLAN, developed in (Castellini, Giunchiglia, and Tac-
chella 2001), starts by computing a solution for a sub-
problem, called a possible plan, using a SAT-planner. It then
checks whether the possible plan is a solution of the orig-
inal problem. If it is not, the possible plan is discarded, a
new possible plan is generated, and the process continues.
We refer to this approach as generate-and-test. To improve
the performance, C-PLAN implements different strategies to
limit the number of possible plans that need to be generated.

FRAG-PLAN, proposed in (Kurien, Nayak, and Smith
2002), follows a slightly different approach in computing
plans. It begins with the computation of a possible plan and
then attempts to extend it to a valid plan. During the exten-
sion phase, FRAG-PLAN assumes that a conformant plan for
k initial states has been found, selects fragments of this plan,
and uses them as the seed to find a conformant plan for k+1
sub-problems where k = 1, 2, . . . , n− 1 and n is the size of
the initial belief state. The main concern in FRAG-PLAN is
the potentially huge number of backtracking steps that need
to be performed. We refer to the approach used in FRAG-
PLAN as generate-and-extend.

Both C-PLAN and FRAG-PLAN do not use any technique
to reduce the number of initial states. The experimental eval-
uation in (Kurien, Nayak, and Smith 2002) shows that both
planners work well in some domains, but their coverage is
limited, and both planners do not scale up well.

In this paper, we propose an alternative approach to
the generate-and-extend approach of (Kurien, Nayak, and
Smith 2002). We refer to the new approach as generate-and-
complete. The approach is similar to generate-and-extend,
as it first generates a possible plan for a sub-problem and
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then uses it to construct a valid plan by considering other
initial states. In the second phase, our approach repairs the
possible plan, whenever necessary, to create a possible plan
for other sub-problems, one-by-one. The possible plan for
the last sub-problem will be checked for being a valid con-
formant plan. If it is not a solution, a new possible plan for
the first sub-problem is generated and the completion pro-
cess restarted. The key difference between our approach and
the approach of FRAG-PLAN lies in that our approach main-
tains a non-deterministic choice only on the plan for one
initial state, and it does not attempt to incrementally com-
pute a conformant plan for increasing subsets the the initial
belief state at each iteration. Furthermore, our approach em-
ploys the one-of-combination technique described in (Tran
et al. 2009) to reduce the number of possible initial states
that need to be considered.

We develop a generate-and-complete algorithm and im-
plement it in a conformant planner, called GC[LAMA],
based on the code of the LAMA classical planner.1
GC[LAMA] is evaluated using benchmarks from the liter-
ature and recent IPCs, and compared to state-of-the-art con-
formant planners. The results show that GC[LAMA] per-
forms exceptionally well in almost all domains and scales up
better than other planners. We discuss the reasons behind the
success of GC[LAMA] and identify possible weaknesses.

The Conformant Planning Problem
A conformant planning problem P is specified by a tuple
〈F,O, I,G〉, where F is a set of propositions, O a set of
action descriptions, I a set of formulae describing the initial
state of the world, and G a formula describing the goal.

A literal is a proposition p ∈ F or its negation ¬p. ¯̀ de-
notes the complement of the literal `—i.e., ¯̀ = ¬`, where
¬¬p = p for p ∈ F . For a set of literals L, L = {¯̀ | ` ∈ L},
and L is often used to represent ∧`∈L`.

A set of literals X is consistent if there is no p ∈ F s.t.
{p,¬p} ⊆ X . A state s is a consistent and complete set of
literals, i.e., s is consistent, and for each p ∈ F , p ∈ s or
¬p ∈ s. A belief state is a set of states. A set of literals X
satisfies a literal ` (a set of literals Y ) iff ` ∈ X (Y ⊆ X).

Each action a inO has a precondition, denoted by pre(a),
and a set of conditional effects of the form ψ → ` (denoted
by a : ψ→`), where pre(a) and ψ are sets of literals and ` is
a literal. We often write a : ψ → `1, . . . , `k as a shorthand
for the set {a : ψ → `1, . . . , a : ψ → `k}.

The initial state I is a set of literals, one-of clauses (each
of the form one-of(ψ1, . . . , ψn)), and or clauses (each of
the form or(ψ1, . . . , ψm)), where each ψi is a set of literals.

A set of literals X satisfies the one-of clause
one-of(ψ1, . . . , ψn) if there exists some i, 1 ≤ i ≤ n, such
that ψi ⊆ X and for every j 6= i, 1 ≤ j ≤ n, ψj∩X 6= ∅.X
satisfies the or clause or(ψ1, . . . , ψm) if there exists some
1 ≤ i ≤ m such that ψi ⊆ X .

By ext(I) we denote the set of all states satisfying every
literal in I , every one-of clause in I , and every or clause

1Note that we do not use the landmark feature of LAMA, only
its FF heuristic and multi-valued variable representation.

in I . E.g., if F={g, f, h} and I={or(g, h), one-of(f, h)}2

then ext(I) = {{g, h,¬f}, {g,¬h, f}, {¬g, h,¬f}}.
The goal G is a collection of literals and or clauses.
Given a state s and an action a, a is executable in s if

pre(a) ⊆ s. A conditional effect a : ψ → ` is applica-
ble in s if ψ ⊆ s. The set of effects of a in s, denoted
by ea(s), is defined as: ea(s) = {` | a : ψ → ` ∈
O is applicable in s}. The execution of a in a state s re-
sults in a successor state succ(a, s), where succ(a, s) =

(s ∪ ea(s)) \ ea(s) if a is executable in s, and succ(a, s) =
failed, otherwise. Using this function, we define ŝucc for
computing the state resulting from the execution of a se-
quence of actions α = [a1, . . . , an]: ŝucc(α, s) = s if
n = 0; ŝucc(α, s) = succ(an, ŝucc([a1, . . . , an−1], s)) if
n > 0; and ŝucc(γ, failed) = failed for any sequence
of actions γ. For a belief state S and action sequence α,
let ŝucc∗(α, S) = {ŝucc(α, s) | s ∈ S} if ŝucc(α, s) 6=
failed for every s ∈ S; and ŝucc∗(α, S) = failed, other-
wise. α is a solution of P iff ŝucc∗(α, ext(I)) 6= failed and
G is satisfied in every state belonging to ŝucc∗(α, ext(I)).

Intuition
In this section, we present the basic idea of GC[LAMA].
First, we introduce the notion of a sub-problem.

Definition 1. Let P = 〈F,O, I,G〉 be a conformant plan-
ning problem. For each s ∈ ext(I), the planning problem
P (s) = 〈F,O, s,G〉 is a sub-problem of P . A solution of a
sub-problem P (s) of P is called a possible plan of P .

It is easy to see that, for every s ∈ ext(I), the problem
P (s) is a classical planning problem. The following obser-
vation is an obvious consequence of the definition of a solu-
tion of a conformant planning problem.

Observation 1. Let P = 〈F,O, I,G〉 be a conformant
planning problem and P (s) be a sub-problem of P . Then,
every solution of P is also a solution of P (s).

This property has been used in the development of C-
PLAN (Castellini, Giunchiglia, and Tacchella 2001) and
FRAG-PLAN (Kurien, Nayak, and Smith 2002). In essence,
C-PLAN uses Algorithm 1.

Algorithm 1 C-PLAN(P)
1: Input: A planning problem P = 〈F,O, I,G〉
2: Output: A solution for P
3: repeat
4: Compute a possible plan α of P
5: if α is a solution of P then
6: return α
7: end if
8: until every possible plan of P has been considered
9: return failed

For efficiency, C-PLAN implements a variety of tech-
niques to reduce the number of possible plans that need to be
generated (Line (4)) without compromising completeness. A

2For simplicity we omit the singleton set notation.
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similar idea is present in (Kuter et al. 2008), applied to the
context of non-deterministic planning.

The authors of FRAG-PLAN observed that C-PLAN im-
mediately eliminates a possible plan α of P from considera-
tion when it is not a solution of P , indicating that the action
sequence is “useless”—nevertheless, there might be parts of
α that are useful. This led to the development of FRAG-
PLAN, which tries to extend α to construct a solution before
dismissing it as useless. While the idea seems reasonable,
the approach has some issues of its own. First, the extension
phase needs to decide which combinations of plans from the
individual initial states should be used. Second, backtrack-
ing is required if the current combination is not promising.
This is problematic, since the number of possible combina-
tions of fragments of an action sequence is exponential in its
size (or in the length of the plan).

In this paper, we propose a compromise between the ap-
proaches of FRAG-PLAN and C-PLAN—we employ the two
phases of FRAG-PLAN but simplify its extension phase by:
• Considering the possible plan as a single fragment (in-

stead of a collection of fragments, as in FRAG-PLAN)
when the extension phase starts; and

• Extending the possible plan to generate a new possible
plan for other initial states.

The first item removes the burden of having to decide which
fragments should be used and what is the order among
them (reducing backtracking). This also avoids the rigidity
of FRAG-PLAN, that imposes a fixed ordering among frag-
ments in the newly generated plan, and thus requires back-
tracking when the placement of the fragments is not suitable
even though the fragments are useful. The second item re-
laxes the requirement of immediately generating a confor-
mant plan—by focusing instead on possible plans for the
various initial states.
Example 1. Consider the problem

P = 〈{f, p, q, r, h}, O, I, {h}〉
where

O =

{
a : >→p, r b : >→q,¬f
c : >→¬f,¬q, r k : >→h

}
with pre(a) = {q}, pre(b) = {f}, pre(c) = {f, q}, and
pre(k) = {r}; and

I = {one-of(q,¬q),¬p,¬r, f,¬h}.
Here, ext(I) = {s0, s1} with s0 = {q,¬p,¬r, f,¬h} and
s1 = {¬q,¬p,¬r, f,¬h} (> stands for true).

Let us assume that s0 is selected to start the search for a
solution. Let us consider two scenarios:
• The possible plan α1 = [a; k] is generated. α1 is not a
solution of P because it is not a solution of P (s1). Thus,
we will attempt to find a solution for P (s1) which has α1

as a subsequence. This is done by executing α1 from s1.
Since pre(a) is not satisfied in s1, we would like to find
a plan that achieves pre(a) from s1. This process yields
[b]. If we insert b before a, we obtain the sequence β =
[b; a; k] which is executable in s1. Incidentally, β is also a
solution of P (s1)—i.e., β is a possible plan of P (s1).

A validity test reveals that β is indeed a solution of P , and
no other possible plans need to be explored.
• Let us assume that α2 = [c; k] is generated instead. We
can easily check that α2 is not a solution of P , since it
is not a solution of P (s1). Again, we will try to create a
solution for P (s1) which has α2 as a subsequence. Simi-
larly to the previous scenario, we would like to find a plan
that achieves pre(c) from s1. This will be unsuccessful,
since the only action that can generate q, a precondition
of c, is action b. However, b will make f false, and there
is no action that can generate f . We can quickly dismiss
α2 and request another possible plan of P (s0). 2

Note that we might need to invoke the classical planner more
than once in the completion phase to generate possible plans.
Example 2. Let us consider a modification of Example 1:

P = 〈{f, p, q, r, h}, O, I, {h}〉

where

O =

{
a : f→p, r a : ¬f→f,¬r
b : >→q,¬f
c : >→¬f,¬q, r k : >→h

}
with pre(a) = {q}, pre(b) = {f}, pre(c) = {f, q}, and
pre(k) = {r}; and

I = {one-of(q,¬q),¬p,¬r, f,¬h}.

Here, ext(I) = {s0, s1} with s0 = {q,¬p,¬r, f,¬h} and
s1 = {¬q,¬p,¬r, f,¬h}. The only difference is that the
execution of a yields different results in different contexts.

Assume that we select s0, generate α1 = [a; k] as a pos-
sible plan, and try to find a solution of P (s1) which has α1

as a subsequence. As before, since a is not executable in s1,
we need to insert b before a to achieve the precondition of a.
Unlike the previous example, the execution of [b; a] in s1 re-
sults in a state in which action k is no longer executable. This
requires the insertion of c before k. The sequence [b; a; c; k]
is a solution of P (s1), and a solution of P as well. 2

These examples illustrate the differences between our ap-
proach and FRAG-PLAN. For the first scenario in Example 1,
to search for a plan of length 3, FRAG-PLAN may have
to consider nine possible combinations of all fragments of
[a; k]; one of them is [∗; a; k], where ∗ indicates a missing
action, which will lead to the solution. For the second sce-
nario, for plan of length 3, FRAG-PLAN could find a solution
of the problem from the combination of fragments [∗; ∗; k].
Instead, we dismiss the possible plan [c; k] and compute an-
other possible plan. Example 2 shows that the classical plan-
ner is called more than once in the second phase.

Formalizing the Algorithm
The high-level idea of our approach, as discussed above, re-
lies on searching for a conformant plan by inserting actions
into a possible plan. The two critical issues are: (i) where to
insert an action or an action sequence; and (ii) how to deter-
mine them. This section will address these issues.

By reduct(P ) we denote the set of initial states obtained
by applying the one-of-combination technique of (Tran et
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al. 2009). This technique helps in reducing the size of the
initial belief state in several domains, by identifying pairs
of one-of clauses whose choices are independent—and can
thus be combined in a single one-of clause. For a thorough
evaluation of the impact of one-of, the interested reader is
referred to (Tran et al. 2012).

Our algorithm has two parameters—the classical planner
used to compute possible plans, denoted by Ω, and the con-
formant planning problem P . Observe that all state-of-the-
art sound and complete classical planners have the following
properties: they return (a) One or some solutions of the prob-
lem if the problem is solvable; (b) Failed if the problem is
unsolvable. As such, we can assume that Ω is a sound and
complete classical planner. For the sake of simplicity, we de-
note with Ω(X) the set of solutions of the planning problem
X returned by Ω; Ω(X) = {failed} if X is unsolvable.

Algorithm 2 GC[Ω](P )

1: Input: A planning problem P = 〈F,O, I,G〉
2: Output: A solution for P
3: Let Σ = [s0, . . . , sn] = reduct(P )
4: {Compute the set of initial states }
5: {that need to be considered}
6: Compute Sol = Ω(P (s0))
7: if Sol = {failed} then
8: return failed
9: end if

10: while Sol 6= ∅ do
11: Select αs0 ∈ Sol {Obtain a solution of P (s0)}
12: if αs0 is a solution of P then
13: return αs0
14: else
15: β = completion(αs0 , P,Σ, 1)
16: if β is a solution of P then
17: return β
18: end if
19: end if
20: Sol = Sol \ {αs0}
21: end while
22: return unknown

At first sight, Algorithm 2 is fairly similar to Algorithm 1.
However, they differ in three key aspects. First, Algorithm 2
considers only a subset of all possible initial states when-
ever possible (Line 3), i.e., when the one-of-combination is
applicable for problem P . Second, it attempts to construct
a possible plan for other initial states in the reduced set of
initial states (Line 15). Third, it repeatedly requests for a
possible plan from the same initial states. Algorithm 2 dif-
fers from the algorithm in FRAG-PLAN in its key step, Line
15, where a new possible plan is constructed.

Intuitively, the algorithm explores the solution space of
sub-problem P (s0) of P ; each plan αs0 of P (s0) is con-
sidered (Line 11) and an attempt is made to “repair” it, so
that it becomes a plan for other subproblems P (si), si ∈
reduct(P ). It returns failed if Ω indicates that P (s0) is not
solvable. The procedure completion(α, P,Σ, Index), exe-
cuted in Line 15, is the actual algorithm that encodes the

process of completing the action sequence α into a potential
solution of P , as described in Examples 1-2. If the comple-
tion fails, another solution for P (s0) is considered and the
process repeated. The algorithm returns unknown if it can-
not generate a solution. For this reason, the algorithm is in
general incomplete since Ω might not be able to generate all
solutions of a sub-problem.

Algorithm 3 completion(α, P,Σ, Index)

1: Input: α–a solution of P (s0)
P = 〈F,O, I,G〉–conformant planning problem
Σ = [s0, . . . , sn]–list of initial states of P
Index–the index for starting the completion

2: Output: A possible solution for P
3: Let αsIndex−1

= α
4: Initialize αsi = [] for i = Index, . . . , n
5: for i = Index to n do
6: {completion of α for the states sIndex, . . . , sn}
7: s = si {current state}
8: Assume that αsi−1

= [a0, . . . , alast]
9: for j = 0 to j = last do

10: tGoal = pre(aj) {create a temporary goal}
11: if tGoal = ∅ then
12: E = {aj : ψ → l | aj : ψ → l ∈ O is

applicable in ŝucc([a0, . . . , aj−1], si−1)}
13: tGoal = tGoal ∪ (

⋃
[aj :ψ→l]∈E ψ)

14: end if
15: Select γ ∈ Ω(〈F,O, s, tGoal〉)
16: if γ = failed then
17: return failed
18: end if
19: αsi = αsi ◦ γ ◦ [aj ] {update current plan}
20: s = succ(aj , ŝucc(γ, s)) {update current state}
21: end for
22: Select δ ∈ Ω(〈F,O, s,G〉) {select a solution}
23: if δ = failed then
24: return failed
25: end if
26: αsi = αsi ◦ δ {update current plan}
27: end for
28: return αsn

The procedure completion(α, P,Σ, Index) is described
in Algorithm 3. Its parameters are the conformant planning
problem P , whose initial belief state, represented as a list, is
Σ = [s0, . . . , sn], a solution α of P (s0), and an index used
to guide the start of the completion process. The procedure
attempts to create solutions αsi for P (si), i = 1, . . . , n.

For each iteration of the for-loop in Lines 5–27, the algo-
rithm constructs a solution of the sub-problem P (si) from
the solution αsi−1

of P (si−1), by inserting actions into
αsi−1

. To achieve this, the algorithm starts with the state si
(Line 7) and an empty plan and considers each action a in
αsi−1 (Lines 9–21):
• Task 1: inserts a sequence of actions before a (loop 9–

21), so that (1) a is executable and (2) the execution of a
maintains the effects of a if pre(a) = ∅, i.e., a is always
executable. To do this, the algorithm creates a goal tGoal
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and modifies it accordingly (line 10) and (lines 11–14).
There are several reasons behind this task. The step en-
sures that the preconditions are achieved to guarantee that
a plan remains such. Furthermore, most classical planners
are fairly sophisticated and do not generate redundant ac-
tions. As such, the existence of a in αsi−1

is (almost al-
ways) necessary for achieving the goal in si−1; thus, its
effects need to be maintained for the final plan to be a
conformant plan. Finally, planning from the current state
s to achieve tGoal is expected to be significantly simpler
compared to planning to achieve the final goal from s.
Observe that the algorithm needs to choose which ef-
fects of a should be maintained (line 9–21). Two obvi-
ous choices are: (1) the greedy choice requires tGoal to
be the union of pre(a) and the precondition of all ap-
plicable effects of a; (2) the ignorant choice considers
tGoal = pre(a). In GC[Ω], we use a compromise among
these two options. We discuss this in the next section.

• Task 2: makes sure that the final sequence of actions αsi
achieves the goal of P (si) (Line 22)—and this may re-
quire adding extra actions at the end of αsi .

Observe that each αsi is a solution of P (si) but it is possible
that none of the αsi is a solution of P . This due to the fact
that the insertion of actions into αsi−1

does not guarantee
that αsi remains a solution of P (si−1). This is also the rea-
son why Algorithm 2 includes the test in line 16. This aspect
is discussed in the summary section.

We will next discuss some properties of Algorithm 2. The
test in Lines 12 and 16 prove the soundness of GC[Ω].

Proposition 1. If Ω is a sound classical planner, then GC[Ω]
is sound.

Under the assumption that Ω is complete (i.e., it can return
some plans and return failed if the problem is unsolvable),
we have the following proposition that indicates a weak form
of completeness of Algorithm 2.

Proposition 2. If Ω is complete and GC[Ω](P ) returns
failed then P does not have a solution.

Proof. GC[Ω](P ) returns failed iff Ω(P (s0)) = {failed}
(Lines 6-8); this implies that P does not have a solution,
because of Observation 1 and the completeness of Ω.

In general, Algorithm 2 can be incomplete. There are two
sources of incompleteness for the algorithm: (a) Ω(P (s0))
may generate only solutions for P (s0) that can never be
completed to a solution of P by the completion algorithm;
and (b) Algorithm 3 considers only one possible way of
completion of a solution of P (s0). The next two examples
illustrate case (a) and case (b), respectively.

Example 3. Consider the problem P =
〈{p, q, r}, O, I, {r}〉 where O contains a : > → p, r;
b : q → ¬q; c : > → p; and d : ¬q, p → r
and pre(a) = q; pre(b) = pre(c) = pre(d) = >,
I = {one-of(q,¬q),¬p,¬r}. We have that
ext(I) = {s0, s1} with s0 = {q,¬p,¬r} and
s1 = {¬q,¬p,¬r}.

Suppose that Ω(P (s0)) generates only one solution, α =
[a], for P (s0). Since pre(a) = q and there is no action that

achieves q, the completion will fail (Lines 16–18); therefore,
α cannot be completed into a solution of P ; GC[Ω](P ) will
not be able to find the solution [b, c, d] of P . 2

Example 4. Consider the problem P =
〈{0, 1, 2}, O, I, {1}〉 where O contains l : i → i + 1
(i < 2) and r : i → i − 1 (i > 0), pre(l) = pre(r) = >,
and I = {one-of(0, 1, 2)}.

We have that ext(I) = {s0, s1, s2} with s0 =
{0,¬1,¬2}, s1 = {¬0, 1,¬2}, and s2 = {¬0,¬1, 2}.

Consider the solution α = [l] for P (s0). Suppose that the
completion algorithm uses the ignorant choice; it will return
β = [l, r] as its answer. β is not a solution of P . In particular,
for any plan α of P (s0), completion(α, P, [s0, s1, s2], 1)
will return an action sequence that is not a solution of P
if ignorant choice is used. 2

The above examples show that, in general, GC[Ω] is in-
complete. Let us identify properties of Ω that can guarantee
the completeness of GC[Ω]. We say that Ω is strongly com-
plete if, for every integer k and problem P , Ω is capable of
generating all solutions of P whose length is bounded by
k. Observe that strongly complete planners exist, with per-
formance comparable to state-of-the-art planners in many
problems and in different settings. Answer set programming
based planners (see, e.g., (Eiter et al. 2003; Lifschitz 2002;
Tu et al. 2011)) are an example of strongly complete plan-
ners. These planners are similar to SAT-planners in that a
planning problem is translated into a logical theory (logic
program) whose models (answer sets) correspond to solu-
tions of a given length. Answer set programming based plan-
ners use answer set solvers to compute solutions and these
solvers do generate all answer sets of a logic program.

We assume that calls made to Ω include an extra parame-
ter indicating the bounded length of solutions. Similarly, we
assume that GC[Ω] includes an additional argument aimed
at providing a bound to the length of the possible solutions.
Algorithm 2 can be modified with a loop around Lines 6–21
to explore solutions of P (s0) of increasing length, up to the
given bound.3 Then, we can easily have the following result.
Proposition 3. If P has a solution of length k and Ω is
strongly complete, then GC[Ω](P,k) finds a solution of P .

Proof. Consider a solvable problem P . Let α be a solu-
tion of P of length k. Thanks to Observation 1, α will
also be a solution of P (s0). As such, α ∈ Ω(P (s0), k).
Since GC[Ω](P, k) will consider every possible plan in
Ω(P (s0), k), it is clear that it will return a solution of P .

It is easy to see that, with a minor change, GC[Ω] could
be made to return a set of solutions and becomes strongly
complete whenever Ω is strongly complete (though its per-
formance could be impacted).

Implementation and Evaluation
We implemented Algorithm 2, setting Ω equal to the classi-
cal planner LAMA.4 We refer to this system as GC[LAMA].

3For brevity, we omit the details of the modified algorithm.
4www.informatik.uni-freiburg.de/˜srichter/software/lama.tar.

gz.
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We note that the choice of LAMA is justified by several rea-
sons. LAMA 2008’s performance is exceptional—it was the
winner of the Sequential Satisficing track of IPC 2008, and
its successor, LAMA 2011, was the winner of the same track
in IPC 2011. Furthermore, LAMA’s object-oriented imple-
mentation makes it easy to instantiate new planning modules
with different initial states and goals. For efficiency reason,
we do not compute all solutions of a problem (Algorithm 2,
Line 6). Instead, we request possible plans one by one.

The source code of GC[LAMA] is written in Python and
C++. In order to test GC[LAMA] on a wide range of con-
formant planning problems and achieve good performance,
we have made the following modifications to LAMA:
◦ The parser has been modified to consider various types

of actions, unsupported by LAMA (e.g., the action right
in the cube domain)—i.e., actions with several condi-
tional effects related to one variable. This problem could
be dealt with by modifying the encodings of the domains.
For the sake of fairness, we opted to maintain the original
encoding of the domains and modify the planner instead.

◦ The parser has been modified to enable the computation
of the initial belief state of conformant planning problems
and to identify the set of possible initial states that need
to be considered according to the one-of-combination of
(Tran et al. 2009).

◦ Algorithms 2 and 3 have been integrated in LAMA. To
generate multiple solutions of a problem, we disable the
A∗ feature of LAMA by keeping the open list (queue of
unexplored nodes) after the first solution is found, and
continuing the search for the next solution if needed.

We observe that Lines 12–13 in Algorithm 3 select a set
of applicable effects of an action and attempt to maintain
these effects. This represents an hybrid selection between
the two possible choices discussed in the previous section
(i.e., greedy vs. ignorant). This design is the results of our
empirical analysis over a large pool of benchmarks. Using
the ignorant choice, we can solve problems in all but two
domains (cube and sqr-center). On the other hand, using
the greedy choice, we can solve problems from all domains
but efficiency and scalability of the planner are not as good
as with the ignorant choice. This is due to the fact that the
call in Line 15 of Algorithm 3 often fails because not all of
the effects of aj can be maintained. To this end, we choose to
maintain only those applicable effects whose preconditions
are simple, where an effect a : ψ → l is simple if |ψ| ≤ 1.

Furthermore, in order to mitigate the fact that the insertion
of actions into αsi−1 does not guarantee that αsi remains a
solution of P (si−1), we introduce an additional call to the
completion procedure in Algorithm 2—i.e., we add the fol-
lowing lines after line 18:

18’ : if (β 6= failed) then
18” : β = completion(β, P,Σ, 0)
18”’: endif

This second cycle attempts to refine β (a solution for P (sn))
to become a solution of the other sub-problems. Apart from
these modifications, the implementation follows the previ-
ously described design without any additional changes (e.g.,
without any modifications concerning completeness).

We compare GC[LAMA] to other state-of-the-art
planners—i.e., CPA (Tran et al. 2009), DNF (To, Pontelli,
and Son 2009), and t0 (Palacios and Geffner 2009)—on
problems from the literature and from planning competi-
tions. Previously developed conformant planners, such as
CFF (Brafman and Hoffmann 2004), POND (Bryce, Kamb-
hampati, and Smith 2006), KACMBP (Cimatti, Roveri, and
Bertoli 2004), and C-PLAN (Castellini, Giunchiglia, and
Tacchella 2001) have been extensively investigated and do
not outperform the above planners; thus, we do not consider
them in our study. The authors of DNF have two new plan-
ners, but their performance is similar to DNF—thus, we in-
clude only DNF in our experiment. Similarly, the system
t1 (Albore, Ramirez, and Geffner 2011) has been shown to
have a performance comparable to the best of t0 or DNF.
Finally, we do not include in the experiment the planner
CPLS in (Nguyen et al. 2011) since CPLS uses a prelimi-
nary version of GC[LAMA], called CPCL, in its implemen-
tation. In this sense, a comparison between GC[LAMA] and
CPLS is already presented in (Nguyen et al. 2011) and we
can say that GC[LAMA] is comparable with CPLS in most
benchmarks. There exists no extensive comparison between
FRAG-PLAN and other planners. We were unable to obtain
a running version of FRAG-PLAN and, thus, could not con-
duct experiments with it. Judging from the original paper on
FRAG-PLAN, we believe that its performance is compara-
ble to C-PLAN and will not be able to outperform current
state-of-the-art planners. The experiments are conducted on
an Intel Core2 Quad CPU Q9400 2.66GHz machine, with
4Gb memory, and a run-time time-out of 30 minutes.

The benchmark set contains 777 instances of 20 domains
from recent IPCs (2006 and 2008), from the distributions
of CFF and t0, and from the literature. In particular, 5 do-
mains are from IPC 2006 (Bonet and Givan 2006): coins
(30 instances), comm (25), blw (4), uts (30), sortnet (15).
IPC 2008 (Bryce and Buffet 2008) introduces three new do-
mains: uts-cycle (15), raos-keys (30), and forest (9).
The distribution of CFF (Brafman and Hoffmann 2004) con-
tains classical domains such as bomb (16 instances), ring
(100), safe (10), sqr-center (31), cube (35). The distri-
bution of t0 (Palacios and Geffner 2009), contains a number
of interesting conformant planning domains: dispose (90),
push (90), look-n-grab (66), 1-dispose-dis (90), and
sortnum (30). The authors of (Bonet, Palacios, and Geffner
2009) introduced two domains halls-A (26), halls-R
(16), and markers (4), which appear to be challenging for
most conformant planners. Due to lack of space, we omit the
precise description of each domain.
Summary of Experimental Results: Table 1 summarizes
the results in terms of number of solved instances. In each
row, the number in boldface indicates the best among the
various planners. Observe that GC[LAMA] dominates all of
the other planners in term of coverage, i.e., it solves more in-
stances than any other planner in any domain. GC[LAMA]
solves 93% of the 777 instances from 20 domains. CPA, t0,
and DNF solve 46%, 50%, and 58% of the 777 instances, re-
spectively. Observe that the performance of CPA or DNF in
some domains (e.g., comm) relies on the goal splitting tech-
nique, described in (Tran et al. 2009). This technique can
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Domain(#Instances) CPA(H) t0 DNF GC[LAMA]
blw(4) 3 3 3 4
coins(30) 20 20 20 30
comm(25) 25 25 25 25
sortnet(15) 15 9 15 15
sortnum(30) 4 7 6 25
uts(30) 30 30 30 30
uts-cycle(30) 11 7 12 15
raos-keys(30) 2 2 2 3
forest(9) 2 8 2 9
bomb(16) 15 16 15 16
cube(35) 14 27 20 35
sqr-center(31) 19 25 25 31
ring(100) 5 48 5 100
safe(10) 10 10 10 10
dispose(90) 66 62 89 90
push(90) 44 33 75 90
look-n-grab(66) 39 15 39 66
1-dispose-dis(90) 9 7 24 90
hall-A(26) 19 20 20 23
hall-R(16) 10 16 10 16
marker-enc1(4) 0 0 1 4
Total (777) 362 390 448 727

Table 1: Number of solved problems

also be applied in GC[LAMA] and will be one of our con-
siderations for improving GC[LAMA] in the future.

GC[LAMA] is the only planner that can solve the coins-
21,. . . , coins-30 instances, a task that has been accom-
plished so far only by CNF (To, Son, and Pontelli 2010)
with a special technique called or-relaxation. GC[LAMA] is
also the only planner that can solve many instances that can-
not be solved by any other planners (e.g., raos-keys-04,
sortnum-09,. . . ,sortnum-14, forest-09, marker-enc,
and so on). In addition, it is also the only planner that can
solve all instances of the challenging problems included in
the distribution of t0.
Domains from IPCs: Table 2 contains the results of our ex-
periments with domains from the IPCs 2006/2008—in terms
of the time and length of the first solution reported by each
planner. Boldface indicates the fastest planner. AB denotes
an execution aborted by the planner due to“out of memory,”
and TO denotes time-out. For the large instances of these
domains, the main difficulty lies in the huge numbers of
objects, which lead to very large initial belief states (e.g.,
the coins-30 instance has, theoretically, 1025 initial states).
This is the main reason for the AB results in the table.

GC[LAMA] performs exceptionally well, both in term
of efficiency and scalability. The two hardest instances for
GC[LAMA] are uts-cycle-15 and forest-9, for which
GC[LAMA] takes 22 and 3 minutes, respectively, to find
a solution. For all other instances, it uses about a minute.
GC[LAMA] consistently outperforms other planners on
large instances. In many domains, GC[LAMA] is the only
planner that can solve all available instances (e.g., blw,
coins, forest). It is also interesting to observe that the
length of solutions generated by GC[LAMA] in these do-

Instance CPA(H) t0 DNF GC[LAMA]
blw-01 0.20/4 0.056/5 0.20/7 0.049/8
blw-03 20.4/205 48.51/80 307/325 1.3/266
blw-04 AB AB AB 29.5/1384∗

coins-10 0.03/48 0.04/26 0.20/27 0.037/36
coins-30 AB AB AB 1.0/1107
comm-15 2.29//95 0.092/110 3.43/125 0.1/97
comm-25 1222/389 1.55/453 1797/501 0.8/294
sortnet-5 0.02/13 0.18/15 0.03/15 0.05/15
sortnet-15 240/74 AB 35/118 63.9/120
sortnum-5 AB 1.9/10 1.67/10 0.81/10
sortnum-20 AB AB AB 12.3/190
uts-10 14.3/89 0.88/59 2.66/66 0.26/58
uts-30 4.9/74 0.79/67 1.39/73 0.17/64
uts-cycle-03 0.01/3 0.14/3 0.01/3 0.04/3
uts-cycle-05 0.12/10 1.84/10 0.10/10 0.11/12
uts-cycle-15 AB AB AB 1314/272
raos-keys-02 0.26/32 0.02/21 0.09/39 0.05/38
raos-keys-03 4.21/152 0.22/66 0.80/153 0.207/172
raos-keys-04 AB AB AB 16.78/163
forest-03 AB 0.62/45 TO 0.46/167
forest-09 AB AB AB 183.8/963

Table 2: Results for IPC 2006/08 Domains (Time in seconds)

mains is somewhat mixed. In some cases, GC[LAMA] gen-
erates the shortest plan among all four planners. In other
cases, it generates the longest plan.

We have used the verifier software from the IPC2008
to re-verify the output of GC[LAMA]. In some cases,
GC[LAMA] uses about half a minute to find a solution but
the verifier takes about half an hour to check its correctness.
In an extreme case (marked with ∗), the verifier stops due to
insufficient memory (blw-4).

Instance CPA(H) t0 DNF GC[LAMA]
bomb-10-1 0.15/19 0.01/20 0.05/19 0.02/19
bomb-100-100 AB 6.26/200 TO 4.27/100
cube-39-19 TO 3.6/171 198/1023 0.23/171
cube-119-59 AB AB AB 1.9/531
sqr-center-32-16 14.8/928 0.95/93 7.3/340 0.12/94
sqr-center-120-60 AB AB AB 1.03/358
ring-20 AB 1.78/95 AB 0.12/72
ring-100 AB AB AB 8.71/1640
safe-10 0.04/10 0.02/10 0.029/10 0.027/10
safe-100 339/100 1.26/100 4.06/100 0.93/100

Table 3: Results for Domains inn the CFF Distribution

Domains in CFF’s Distribution: Table 3 contains the re-
sults from the domains in CFF’s distribution. As with the
domains in the IPCs, scalability is the main issue in these
domains. Again, we can see that GC[LAMA] is outstand-
ing in all domains. It is slower than t0 only in the smaller
instances of the bomb domain. GC[LAMA] is the only plan-
ner that scales well and the only planner that can solve ev-
ery instance included in the distribution. To test the scala-
bility of GC[LAMA], we also generated some new, larger
instances for these domains; GC[LAMA] is able to solve
them while all the other planners cannot deal with them (we
omit these additional results due to lack of space). We note
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that GC[LAMA] also generates the shortest plan in all but
one domain in this set of problems.
Challenging Domains: Table 4 shows that GC[LAMA] is
particularly effective in the domains from the grid family. In
this group of domains, GC[LAMA] is exceptional, both in
performance and in scalability. It is the only planner that can
solve all instances from these domains, each in less than 2
minutes. However, the solutions generated by GC[LAMA]
are often longer than those generated by other planners.

GC[LAMA] is an order of magnitude faster than other
planners when there are more than 2 objects. Its perfor-
mance does not seem to change when the number of objects
increases, while this causes an order of magnitude perfor-
mance change in CPA and t0.
Domains for Finite-State Controllers: The domains in
this group are described in the paper (Bonet, Palacios,
and Geffner 2009). They encode the problem of automati-
cally generating finite-state controllers and represent a chal-
lenge in scalability for t0. Table 5 presents the results of
GC[LAMA] and compares them to those obtained from t0.
The results show that GC[LAMA] is again superior to other
planners, both in performance and scalability.

Instance CPA(H) t0 DNF GC[LAMA]
ds-8-1 15.0/741 1.67/426 47.12/150 1.15/706
ds-8-3 224.7/2227 133.92/761 34.42/629 1.57/962
ds-12-5 AB AB AB 10.03/3460
ds-12-9 AB AB AB 20.34/4612
push-8-1 17.76/465 61.85/464 51.21/163 1.73/655
push-8-3 AB AB 103.8/1477 3.44/1105
push-12-5 AB AB AB 23.29/2429
push-12-9 AB AB AB 35.10/2761
lng-8-1-1 182.4/554 109.2/145 51.28/99 1.72/692
lng-12-1-4 AB AB AB 95.18/2010
lng-12-5-2 AB AB AB 114.7/2010
lng-12-5-4 AB AB AB 264.7/2010
1-ds-8-5-dis AB AB AB 2.61/1026
1-ds-8-9-dis AB AB AB 3.81/1026
1-ds-12-9-dis AB AB AB 83.16/3462

Table 4: Results for Challenging Domains

Instance CPA(H) t0 DNF GC[LAMA]
hall-A-ui-q2-1x10 39 / 77 1.09/56 0.29/58 0.01/46
hall-A-ui-q2-1x20 AB 7.2/116 0.7/118 0.04/86
hall-A-ui-q4-3x2 AB TO AB 0.05/19
hall-A-ui-q4-4x2 AB TO AB 0.04/42
hall-R-ui-q1-1x10 828/93 0.42/109 680/91 0.01/138
hall-R-ui-q1-2x2 AB 0.03/24 AB 0.0/24
hall-R-ui-q1-3x3 AB 0.12/40 AB 0.01/63
hall-R-ui-q1-4x4 AB 0.19/50 AB 0.01/110
marker-enc1-q2-5x4 AB TO 124/25 0.37/25
marker-enc1-q2-7x5 AB TO AB 11.1/31
marker-enc1-q2-8x5 AB TO AB 11.5/39
marker-enc1-q2-9x5 AB TO AB 0.02/45

Table 5: Finite-State Controllers Domains

Related Work and Discussion
GC[LAMA] is closely related to C-PLAN and FRAG-
PLAN. Algorithmic differences and similarities between
GC[LAMA] and these planners have been discussed in de-
tail in the previous sections. The experimental results in the
last section show that GC[LAMA] is better than C-PLAN
and FRAG-PLAN, both in term of coverage and scalability.

Although both GC[LAMA] and t0 employ a classical
planner in the search for conformant plans, the method
used by these planners is radically different. t0 translates
the original problem into a classical planning problem, and
hence, changes the problem and often increases its size.
GC[LAMA] does not change the original problem. We be-
lieve that this factor is an important reason behind the limits
in scalability of t0 in several domains.

The experimental evaluation shows that GC[LAMA]’s
performance is superior to other state-of-the-art planners.
The simplicity of the algorithm implemented in GC[LAMA]
raises the question of what are the reasons behind these per-
formance results. We believe that there are two reasons for
this. First of all, by dealing with the sub-problems sepa-
rately, GC[LAMA] can take advantage of techniques that
have been developed in conformant planning research for re-
ducing the size of the initial belief state. Second, by attempt-
ing to achieve only the precondition of an action during the
completion phase, which often needs only a few actions,
GC[LAMA] can exploit the best heuristic classical planners
in computing a solution.

We observe that, even though GC[LAMA] can solve a
wide range of benchmarks from various sources, which
seem to be difficult for other state-of-the-art conformant
planners, there are still domains in which GC[LAMA] does
not work well. Among them, the adder and rao-keys
domains seem to be the most difficult ones. The adder do-
main is special in that the size of the initial belief state is
very small, but the number of actions which can be executed
in a state is very large. Furthermore, the conditional effects
of the actions are much more complex than those in other
domains. The rao-keys domain is similar to adder, as it
contains actions with many conditional effects (we can solve
only 3 out of 30 instances). We hypothesize that these two
factors make this domain difficult for conformant planners.

Conclusion and Future Work
We proposed a novel approach to conformant planning using
classical planners whose key ingredient is a completion al-
gorithm, which takes a solution of a sub-problem and creates
a solution for a sequence of sub-problems. We implemented
the algorithm using the source code of the classical plan-
ner LAMA, and evaluated the new planner, GC[LAMA],
against state-of-the-art conformant planners. GC[LAMA]
outperforms other planners in both performance and scal-
ability, indicating that the proposed approach is a strong al-
ternative to current state-of-the-art approaches. The experi-
mental results, especially in the new set of domains (Finite-
State Controller), confirm that the proposed technique can
be applied to a wide range of problems and that GC[LAMA]
could be used in real-world applications.
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The exceptional performance of GC[LAMA] also pro-
vides us with a set of questions that we would like to further
investigate in the near future. First, we would like to inves-
tigate alternatives to the completion algorithm (e.g., identi-
fying effects that need to be maintained). Second, we would
like to construct domains that are difficult for GC[LAMA].
One observation that we made during our experiment is that,
for several domains, GC[LAMA] was able to find a solution
by generating only one possible plan forP (s0) (Alg. 2). This
might provide hints for the construction of difficult problems
for GC[LAMA] and for other conformant planners.
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