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Abstract

Considering cost-optimal heuristic search, we introduce the
notion of global admissibility of a heuristic, a property
weaker than standard admissibility, yet sufficient for guar-
anteeing solution optimality within forward search. We de-
scribe a concrete approach for creating globally admissible
heuristics for domain independent planning; it is based on
exploiting information gradually gathered by the search via a
new form of reasoning about what we call existential optimal-
plan landmarks. We evaluate our approach on some state-of-
the-art heuristic search tools for cost-optimal planning, and
discuss the results of this evaluation.

Introduction
These days, the most prominent domain-independent ap-
proach to cost-optimal deterministic planning is state-space
search with the A∗ algorithm and admissible heuristic func-
tions (Hart, Nilsson, and Raphael 1968). A heuristic func-
tion is admissible if it never overestimates the cost of
achieving the goal from the given state. Recent progress
in cost-optimal planning is primarily due to spectacular
advances in automatic construction of admissible heuris-
tics (Bonet and Geffner 2001; Haslum and Geffner 2000;
Edelkamp 2001; Helmert, Haslum, and Hoffmann 2007;
Katz and Domshlak 2010a; Karpas and Domshlak 2009;
Helmert and Domshlak 2009). Admissibility, however, is
also an unfortunately strong property: adopting admissibil-
ity may force the search to examine an exponential number
of states even if the heuristic is almost perfect (Pearl 1984;
Helmert and Röger 2008).

In our work we revive a long-standing observation that, at
least in theory, heuristic admissibility is not a necessary con-
dition for forward search to guarantee optimality of the dis-
covered plan (Dechter and Pearl 1985). We define a weaker
yet sufficient condition of global admissibility, and intro-
duce a concrete inference technique that yields such globally
admissible heuristics. Our technique reasons about candi-
date plan prefixes π generated by the search process, uti-
lizing the well-known notion of causal links (Tate 1977).
Causal links are widely exploited in partial-order plan-
ning (Penberthy and Weld 1992; Mcallester and Rosenblitt
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1991), constraint-based planning (Vidal and Geffner 2006),
and recently also in satisficing state space search (Lipovet-
zky and Geffner 2011). Our use of causal links here is novel:
we use them to infer constraints that must be satisfied by an
optimal plan having π as its prefix, and then use these con-
straints to enhance the heuristic evaluation of the end-state
of π.

The technique is based on the simple observation that, for
each action along each optimal plan for the problem, there
must be some justification for applying that action. Consider
a simple logistics problem, depicted in Figure 1, with two lo-
cations A and B, two trucks t1 and t2, and a single package
o. In the initial state both trucks and the package are at loca-
tion A, and the goal is to have the package at B. Clearly, any
solution must load the package into one of the trucks. Now,
suppose we have already loaded the package onto truck t1.
While it is still possible to unload the package from t1, load
it onto t2, and use t2 to deliver the package to B, any opti-
mal solution from the state in question will exploit the fact
that some effort has already been put into loading the pack-
age onto t1, and will use t1 to deliver the package. This
is precisely the type of inference our technique attempts to
perform.

We note that our work is in fact not the first in the prac-
tice of cost-optimal planning to rely on global admissibility.
Optimality-preserving techniques for search space pruning,
such as symmetry breaking and state-space reductions (Fox
and Long 2002; Rintanen 2003; Coles and Smith 2008;
Chen and Yao 2009; Pochter, Zohar, and Rosenschein 2011;
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Domshlak, Katz, and Shleyfman 2012), can be seen as as-
signing a heuristic value of ∞ to some states, despite the
fact that the goal is achievable from these states. In that re-
spect, our work can be seen as extending the palette of tech-
niques, as well as (and even more importantly) the sources
of information that can be used for relaxing admissibility:
while the aforementioned pruning techniques are typically
based on syntactic properties of the problem description
(such as functional equivalence of two objects), the tech-
nique described in what follows performs a continuous se-
mantic analysis of information revealed by the search pro-
cess.

Bounded intention planning (Wolfe and Russell 2011) is
based upon a similar notion to ours, that each action should
have some purpose. However, the way we exploit this no-
tion is quite different from BIP. Specifically, we do not mod-
ify the planning task, and our technique is not restricted to
unary-effect problems with acyclic causal graphs.

Preliminaries
We consider planning tasks formulated in STRIPS with ac-
tion costs; our notation mostly follows that of Helmert and
Domshlak (2009). A planning task Π = 〈P,A, C, s0, G〉,
where P is a set of propositions,A is a set of actions, each of
which is a triple a = 〈pre(a), add(a), del(a)〉, C : A → R0+

is a cost function on actions, s0 ⊆ P is the initial state, and
G ⊆ P is the goal. For ease of notation and without loss of
generality, in what follows we assume that there is a single
goal proposition (G = {pg}), which can only be achieved
by a single action, END.

An action a is applicable in state s if pre(a) ⊆ s, and if
applied in s, results in the state s′ = (s\del(a))∪add(a). A
sequence of actions 〈a0, a1, . . . , an〉 is applicable in state s0
if a0 is applicable in s0 and results in state s1, a1 is applica-
ble in s1 and results in s2, and so on. The cost of action se-
quence π = 〈a0, a1, . . . , an〉 is

∑n
i=0 C(ai), and is denoted

by C(π). The state resulting from applying action sequence
π in state s is denoted by s�π�. If π1 and π2 are action se-
quences, by π1 · π2 we denote the concatenation of π1 and
π2. An action sequence 〈a0, a1, . . . , an〉 is an s-path if it is
applicable in state s, and it is also an s-plan if an = END.
Optimal plans for Π are its cheapest s0-plans, and the objec-
tive of cost-optimal planning is to find such an optimal plan
for Π. We denote the cost of a cheapest s-plan by h∗(s).

Finally, let π = 〈a0, a1, . . . an〉 be an action sequence
applicable in state s. The triple 〈ai, p, aj〉 forms a causal
link in π if i < j, p ∈ add(ai), p ∈ pre(aj), p 	∈
s�〈a0, a1, . . . ai−1〉�, and for i < k < j, p 	∈ del(ak) ∪
add(ak). In other words, ai is the actual provider of pre-
condition p for aj . In such a causal link, ai is called the
provider, and aj is called the consumer.

Minimal Preconditions and Intended Effects
Before we describe our inference technique in detail, we
must first define some basic notions, upon which our infer-
ence technique is based. The first such notion is that of min-
imal precondition after following path π, which refers to the
minimal set of propositions that is needed to continue π into

an optimal plan. However, the formal notion is somewhat
involved, and distinguishes between the minimal precondi-
tions after an s0-path π in the context of different sets of
optimal plans:

Definition 1 (Minimal Precondition)
Let Π = 〈P,A, C, s0, G〉 be a planning task, and OPT
be a set of optimal plans for Π. Given an s0-path π =
〈a0, a1, . . . an〉, a set of propositions X ⊆ s0�π� is an OPT-
minimal precondition after π iff there exists an X-plan π′
such that π · π′ ∈ OPT and for every X ′ ⊂ X , π′ is not
applicable in X ′.

In other words, X is an OPT-minimal precondition after π
if it is possible to continue π into some plan in OPT, using
only the propositions in X . While Definition 1 is intuitive,
our inference technique is better understood by considering
the notion of the intended effects of an s0-path π:

Definition 2 (Intended Effect)
Let Π = 〈P,A, C, s0, G〉 be a planning task, and OPT
be a set of optimal plans for Π. Given an s0-path π =
〈a0, a1, . . . an〉, a set of propositions X ⊆ s0�π� is an OPT-
intended effect of π iff there exists an s0�π�-plan π′ such
that π ·π′ ∈ OPT and π′ consumes exactly X , that is, p ∈ X
iff there is a causal link 〈ai, p, aj〉 in π · π′, with ai ∈ π and
aj ∈ π′.

The basic observation underlying this notion is very sim-
ple, if not to say trivial: every action along an optimal plan
should be there for a reason — there should be some use of
at least one of the effects of each of the plan’s actions. The
following theorem shows that the notions of intended effects
and minimal preconditions are equivalent:

Theorem 1 (Definition Equivalence)
Let Π = 〈P,A, C, s0, G〉 be a planning task with s0 = ∅,
and a unique START action. Then Definitions 1 and 2 are
equivalent.

The proof of Theorem 1 can be found in Appendix A.
As mentioned previously, our inference technique is better
understood by considering intended effects, and thus we will
continue and discuss only those. We denote the set of all
OPT-intended effects of an s0-path π by IE(π|OPT); when
OPT is the set of all optimal plans for Π, then IE(π|OPT)
is simply called “intended effects” and is denoted by IE(π).
Note that if π is not a cheapest path from s0 to s0�π� then
IE(π|OPT) = ∅ for all optimal plan sets OPT.

We illustrate this concept using the logistics task depicted
in Figure 1. There are two optimal solutions for this task:
one using truck t1 to deliver the package, and another us-
ing truck t2. Thus, assuming the initial state is established
by a START action, it is easy to see that the intended ef-
fects of the initial state are described by IE(〈START〉) =
{{at(t1, A), at(o,A)}, {at(t2, A), at(o,A)}}. However,
after loading the package o into truck t1, there is only
one optimal way to continue — by delivering the pack-
age using t1, and thus IE(〈START, load(o, t1, A)〉) =
{{at(t1, A), in(o, t1)}}.
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If provided to us, the intended effects of π can reveal valu-
able information about what any continuation of π must do.
For example, if for some proposition p we have p ∈ X for all
intended effects X ∈ IE(π), then clearly any optimal contin-
uation of π must contain some action consuming p. This ex-
ample suggests that intended effects of π can be used either
for deriving a heuristic estimate of s0�π�, or for enhancing
such an existing estimate. We now suggest one such frame-
work for exploiting intended effects. It is based on what we
call existential optimal-plan landmarks, or ∃-opt landmarks,
for short.

First, interpreting proposition subsets X ⊆ P as valua-
tions of P , assume that a set of intended effects IE(π|OPT)
is given to us as a propositional logic formula φ such that
that X ∈ IE(π|OPT) ⇔ X |= φ. By M(φ) we denote the
set of φ’s models, that is, M(φ) = {X ⊆ P | X |= φ}. For
an s0-path π, let us also treat any continuation π′ of π as a
valuation of P , assigning true to the propositions produced
by π and consumed by π′, and false to all other proposi-
tions. This way, the semantics of statements “π′ satisfies
φ”, π′ |= φ, is well defined. In our example logistics task,
such a formula φ for the intended effects of the START action
could be φ = at(o,A) ∧ (

at(t1, A) ∨ at(t2, A)
)
. After ap-

plying load(o, t1, A), the intended effects are described by
at(t1, A) ∧ in(o, t1).

Theorem 2
Let OPT be a set of optimal plans for a planning task Π, π be
an s0-path, and φ be a propositional logic formula describ-
ing IE(π|OPT). Then, for any s0�π�-plan π′, π · π′ ∈ OPT
implies π′ |= φ.

Theorem 2, proof of which is immediate from Defini-
tion 2, establishes our interpretation of the formula φ as a
∃-opt landmark: While φ is not a landmark in the standard
sense of this term (Hoffmann, Porteous, and Sebastia 2004),
that is, not every plan (and not even every optimal plan) must
satisfy φ, some optimal plan starting with π must satisfy φ
after π.

In line with the recent work on regular landmarks, hence-
forth we assume that φ is given in CNF. The CNF represen-
tation of φ is advantageous mainly in that it has a natural
interpretation as a set of disjunctive fact landmarks, where
each clause describes one such landmark. Note that unlike
regular landmarks, where a fact landmark stands for a dis-
junctive action landmark composed of its achievers, in our
∃-opt landmarks a fact stands for a disjunctive action land-
mark composed of its consumers. However, it is possible,
for instance, to combine the information captured by the ∃-
opt landmark(s) φ and the information captured by the regu-
lar landmarks of the hLA heuristic, by performing an action
cost partition over the union of their landmarks (Karpas and
Domshlak 2009). When cost partitioning is optimized via,
e.g., the linear programming technique (Karpas and Domsh-
lak 2009; Katz and Domshlak 2010b), the resulting estimate
is guaranteed to dominate hLA. In fact, if we could find
just a single OPT-intended effect X ∈ IE(π|OPT), we could
then use X as a regular landmark, pruning some parts of the
search space without sacrificing optimality: Since we know

there must exist some continuation π′ with π · π′ ∈ OPT, X
by itself constitutes an ∃-opt landmark.

So far, we have outlined the promise of ∃-opt landmarks
induced by intended effects, yet that promise is, of course,
only potential since the intended effects IE(π|OPT) were as-
sumed to be somehow provided to us. It is hardly surprising,
however, that finding just a single intended effect of an ac-
tion sequence is as hard as STRIPS planning itself.

Theorem 3
Let INTENDED be the following decision problem: Given

a planning task Π = 〈P,A, C, s0, G〉, an s0-path π, and a
set of propositions X ⊆ P , is X ∈ IE(π)?

Deciding INTENDED is PSPACE-hard.

Proof: The proof is by reduction from the complement of
PLANSAT — the problem of deciding whether a given plan-
ning task is solvable. For STRIPS, PLANSAT is known to be
PSPACE-hard even when all actions are unit cost (Bylander
1994), and since PSPACE = CO-PSPACE, so is its comple-
ment.

Given a planning task Π = 〈P,A, C, s0, G〉 with unit cost
actions and |P | = n, we construct a new planning task Π′ =
〈P ′, A′, C′, s′0, G

′〉 as follows:

• P ′ := P ∪ {di | 0 ≤ i ≤ n+ 1};

• A′ := A ∪ {inc(i) | 0 ≤ i ≤ n + 1}, where inc(i) =
〈{dj | j < i}, {di}, {dj | j < i}〉;

• C′ assigns costs of 1 to all actions in a′;

• s′0 := s0; and

• G′ := G ∨ (d0 ∧ d1 ∧ . . . ∧ dn+1).

The goal G′ is disjunctive, but this disjunction can be
straightforwardly compiled away.

Note that Π′ is always solvable because there will always
be a solution of cost 2n+2 − 1, using the inc operators to
increment a binary counter composed of d0, . . . , dn+1. Now,
if the original task Π is solvable, then it has a solution of
cost at most 2n − 1. Therefore, the inc operators and the
di propositions are part of an optimal solution iff Π is not
solvable, and thus {d0} is an optimal intended effect in Π′
after applying inc(0) iff Π is not solvable.

Although Theorem 3 shows that computing IE(π|OPT)
precisely is not feasible, the promise of ∃-opt landmarks still
remains: we can approximate IE(π|OPT) while still guaran-
teeing optimality, and thus maintain the correctness of the
reasoning. In particular, below we show that any superset
of IE(π|OPT) induces possible intended effects and provides
such a “safe” approximation.

Theorem 4
Let OPT be a set of optimal plans for a planning task Π,
π be an s0-path, PIE(π|OPT) ⊇ IE(π|OPT) be a set of
possible OPT-intended effects of π, and φ be a logical for-
mula describing PIE(π|OPT). Then, for any s0�π�-plan π′,
π · π′ ∈ OPT implies π′ |= φ.
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Proof: Let π′ be an s0�π�-plan such that π · π′ ∈ OPT,
and let X be the set of all propositions produced by π and
consumed by π′. From Definition 2, X ∈ IE(π|OPT), and
since IE(π|OPT) ⊆ PIE(π|OPT), X ∈ PIE(π|OPT). Since φ
describes PIE(π|OPT), it holds that X |= φ.

We now proceed with describing a concrete proposal for
finding and utilizing useful PIE approximations of this type
in the context of OPT containing either all optimal plans or
just one optimal plan.

Approximating Intended Effects
One easy way of obtaining a set PIE(π) such that IE(π) ⊆
PIE(π) is to take PIE(π) = 2P . Needless to say, how-
ever, it provides us with no useful information whatso-
ever. A slightly tighter approximation of IE(π) would be
PIE(π) = 2s0�π�. Clearly, no continuation of π can con-
sume anything that π achieved but does not hold in the state
reached by π. However, this approximation of IE(π) still
does not provide us with any useful information.

We begin by showing that it is possible to obtain a much
tighter approximation of IE(π|OPT) for OPT consisting of a
single optimal plan ρ, and that this approximation can pro-
vide us with useful information about the OPT-continuations
of π. Obviously, the plan ρ will not actually be known to us;
or otherwise there would be no point in planning in the first
place. In itself, however, that will not be an obstacle.

This approximation is based on exploiting a set of s0-
paths, which we refer to as out shortcut library L; later we
discuss how such a library can be obtained automatically,
but for now we assume we are simply provided with one.
Given a planning task Π, let ≺ be a lexicographic order on
its action sequences, based on an arbitrary total order of the
actions. Let ρ be the optimal plan forΠ that is minimal (low-
est) with respect to ≺. That is the plan we focus on, and we
can now describe our approximation of IE(π|{ρ}). For that,
we define an additional ordering � on action sequences:

π′ � π ⇔ C(π′) < C(π) ∨ (C(π′) = C(π) ∧ π′ ≺ π).

Note that π′ � π implies C(π′) ≤ C(π). Using �, we approx-
imate IE(π|{ρ}) with

PIEL(π|{ρ}) = {X ⊆ s0�π� |�π′ ∈ L :

π′ � π,X ⊆ s0�π
′�}.

In other words, for anyX ⊆ s0�π�, L proves that X is not an
intended effect of π if it can offer a cheaper way of achieving
X from s0, or if it can offer a way of achieving X from s0
at the same cost, but that alternative way is “preferred” to π
with respect to ≺.

Theorem 5
Let ≺ be a lexicographic order on action sequences, and let
ρ be an optimal solution of Π that is minimal in ≺. For any
s0-path π, it holds that IE(π|{ρ}) ⊆ PIEL(π|{ρ}).
Proof: Assume to the contrary that there exists some X ∈
IE(π|{ρ}) \ PIEL(π|{ρ}). Since X ∈ IE(π|{ρ}), there ex-
ists some path π′ such that π · π′ = ρ, and π′ consumes all

propositions in X . X 	∈ PIEL(π|{ρ}), so from the defini-
tion of PIEL(π|{ρ}) there exists some s0-path π′′ ∈ L such
that π′′ is applicable at s0, π′′ � π, and X ⊆ s0�π

′′�.
π′ is applicable at s0�π′′�, since π′ consumes exactly the

propositions in X , and X ⊆ s0�π
′′�. π · π′ = ρ is a valid

plan, so the last action in π′ must be the END action, which
implies that π′′ · π′ is a valid plan.
π′′ � π, and so one of (I-II) below must be true:

I C(π′′) < C(π).
But then, C(π′′ · π′) < C(π · π′), contradicting the op-
timality of π · π′ = ρ.

II C(π′′) = C(π) and π′′ ≺ π.
But then C(π′′ · π′) = C(π · π′), and thus π′′ · π′ is an
optimal plan. Since ≺ is a lexicographic order, π′′ ·π′ ≺
π · π′, contradicting the minimality of π · π′ = ρ in ≺.

We have seen that either case of π′′ � π leads to a contradic-
tion, thus proving the theorem.

We note that, very similarly, one can obtain an approxi-
mation of the intended effects IE(π) of π with respect to all
optimal plans, with no need for the lexicographic order ≺ on
the action sequences. Specifically, one can use

PIEL(π) = {X ⊆ s0�π� |�π′ ∈ L :

C(π′) < C(π), X ⊆ s0�π
′�},

and the proof that IE(π) ⊆ PIEL(π) is very similar to the
proof of Theorem 5. However, it is worth discussing the
differences between the two approximations. Using land-
marks derived from PIEL(π) will yield admissible estimates
along all optimal plans, while using landmarks derived from
PIEL(π|{ρ}) might prune some, possibly almost all, opti-
mal plans. However, PIEL(π|{ρ}) is guaranteed to never
prune ρ, ensuring that there will always be at least one op-
timal plan along which estimates are admissible, namely ρ.
We get back to this point later on when we discuss the mod-
ifications that need to be made to A∗ to guarantee optimality
of the search.

From PIEL(π|{ρ}) to Optimal-Plan Landmarks
As mentioned, in order to use PIEL(π|{ρ}) as a set of dis-
junctive fact landmarks, we have to derive a CNF formula
that compactly represents it. Recall that PIEL(π|{ρ}) con-
sists of all sets of propositions in s0�π� for which there is no
“shortcut” in L. Let π be an s0-path, and let π′ ∈ L be an s0-
path in the library such that π′�π. If π is the beginning of our
≺-minimal optimal plan ρ, then there must be some propo-
sition p consumed by the continuation of π along ρ which
is achieved by π but not by π′, that is, p ∈ s0�π� \ s0�π

′�.
In CNF, this information, derived from π on the basis of the
library L, is encoded as

φL(π|{ρ}) =
∧

π′∈L:π′�π

∨p∈s0�π�\s0�π′� p.

As a special case of φL(π|{ρ}), note that if there ex-
ists π′ ∈ L with C(π′) < C(π) and s0�π� ⊆ s0�π

′�,
then φL(π|{ρ}) contains an empty clause, meaning that
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there is no optimal continuation of π. This is the case cap-
tured by the definition of a dominating action sequence (Ne-
dunuri, Cook, and Smith 2011), and φL(π|{ρ}) generalizes
their definition. The following theorem demonstrates that
φL(π|{ρ}) describes PIEL(π|{ρ}), and thus by Theorem 5
approximates IE(π|{ρ}):

Theorem 6
For any s0-path π, PIEL(π|{ρ}) = M(φL(π|{ρ})).
Proof: We first show that PIEL(π|{ρ}) ⊆ M(φL(π|{ρ})).
Assume to the contrary that there exists X ∈ PIEL(π|{ρ})\
M(φL(π|{ρ})). X 	∈ M(φL(π|{ρ})), so there exists some
clause cπ′ = ∨p∈s0�π�\s0�π′�p in φL(π|{ρ}), corresponding
to path π′ ∈ L, which X does not satisfy. Since the clause
cπ′ contains the propositions s0�π�\s0�π′�, this implies that
X∩(

s0�π�\s0�π′�
)
= ∅. We know that X ⊆ s0�π�, and so

we have that X ⊆ s0�π
′�. However, X ∈ PIEL(π|{ρ}), so

there is no “shortcut” in L for achieving X . Therefore, for
any π′ ∈ L such that π′ � π, we have that X 	⊆ s0�π

′�—a
contradiction.

We now show that M(φL(π|{ρ})) ⊆ PIEL(π|{ρ}). As-
sume to the contrary that there exists X ∈ M(φL(π|{ρ})) \
PIEL(π|{ρ}). X 	∈ PIEL(π|{ρ}), so there exists some
π′ ∈ L such that π′ � π and X ⊆ s0�π

′�. Let cπ′ =
∨p∈s0�π�\s0�π′�p be the clause corresponding to π′ in
φL(π|{ρ}). We know that X ⊆ M(φL(π|{ρ})), thus X
must satisfy every clause of φL(π|{ρ}), and specifically, X
must satisfy cπ′ . However, X ⊆ s0�π

′�, and cπ′ does not
contain any of these propositions. Thus, X cannot satisfy
cπ′ — a contradiction.

Similarly, we can derive a CNF formula φL(π) which
describes PIE(π) (with a very similar proof of the equiva-
lence):

φL(π) =
∧

π′∈L:C(π′)<C(π)
∨p∈s0�π�\s0�π′� p.

Obtaining a Shortcut Library
So far we assumed our “shortcut” library L is given. We
now describe a concrete approach to obtaining it. Impor-
tantly, note that L does not have to be a static list of action
sequences, but rather can be generated dynamically for each
s0-path π constructed by the search procedure. In particu-
lar, such a path-specific library can be generated using a set
of rules similar to the plan rewrite rules of Nedunuri, Cook,
and Smith (2011). A plan rewrite rule is a rule of the form
π1 → π2, where π1 and π2 are some action sequences and
the rule means that whenever π1 is a subsequence of a plan,
it can be replaced in that plan with π2 without violating the
plan’s validity. We do not require such a strong connection
between π1 and π2. First, instead of requiring that π1 be
applicable whenever π2 is applicable, we can simply check
whether π1 is applicable for the current state. Second, we do
not require π2 to achieve everything that π1 does, since we
can also exploit information from the set difference of their
effects — that is, that any optimal continutation will need to
use something that π1 achieved and π2 did not.

drive(t1, A,B)

drive(t1, B, C)

drive(t1, C,A)

drive(t2, A,B)

Figure 2: Causal Structure of Example

Given a path π and a set of plan rewrite rules, we construct
a library L(π) specifically for π. To construct L(π), we first
need to define a digraph, which we call the causal structure
of π. The nodes of this graph are the action instances in π,
and there is an edge from ai to aj when there is a causal link
in π with ai as the provider and aj as the consumer. Given
a plan rewrite rule π1 → π2 with π2 � π1, we can check
whether π1 appears as a chain in the causal structure of π.
We can then attempt to replace π1 with π2, and check if the
resulting action sequence is still applicable in s0. Note that
π1 does not have to appear in π as a contiguous subsequence,
making this a more general strategy than simply looking for
contiguous occurrences of π1.

Our current implementation is a special case of this
scheme that uses plan rewrite rules of the form π → 〈〉,
that is, the tail of each rule is the empty sequence. We look
for two types of chains in the causal structure of π. The first
type are isolated chains, that is, chains with no edges going
out from any node in the chain to any node outside the chain.
This ensures that removing every suffix of the causal chain
still leads to a valid s0-path. As a special case of this, remov-
ing the last operator in each causal chain will yield the same
landmarks as those from the “unjustified actions” (Karpas
and Domshlak 2011), up to ordering of the action sequence.
The second type of chains we look for correspond to “action
a supports its inverse action a′”, where the notion of action
invertibility is adopted from Hoffmann (2002).

To illustrate how this process works, we consider the fol-
lowing example action sequence in a Logistics problem:
π = 〈drive(t1, A,B), drive(t1, B, C), drive(t2, A,B),
drive(t1, C,A)〉. The causal structure of this action se-
quence is shown in Figure 2. Clearly, truck t1 drives in
a loop here, without doing anything useful on the way.
Thus, 〈drive(t1, A,B), drive(t1, B, C), drive(t1, C,A)〉
form an isolated causal chain. We can replace this causal
chain with the empty sequence, yielding the “shortcut” π′ =
〈drive(t2, A,B)〉, which leads to the same state as π, al-
lowing us to prove that π cannot be the beginning of any
optimal solution. Note that while truck t1 drives in a loop,
there is no loop in the state space (which could be detected
by the search algorithm), since truck t2 moved in between
the moves of t1. However, our shortcut library allows us
to eliminate non-contiguous subsequences of π, making this
stronger than simple duplicate state detection.

Unfortunately, as the following example Blocksworld
task demonstrates, our inference technique is an approx-
imation of the intended effects. Assume in the initial
state, the crane is holding block A, and the goal is to
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have all of the blocks on the table. Then performing
putdown(A) adds three facts: ontable(A), clear(A) and
hand-empty. ontable(A) is a goal, and is an intended ef-
fect of 〈putdown(A)〉. If there are other blocks that are
out of place, meaning that the crane needs to move more
blocks, hand-empty is also an intended effect. However,
clear(A) is not an intended effect of 〈putdown(A)〉, as we
do not need to move block A, or put any other blocks on
it. Nevertheless, our inference technique can only deduce
that we need to use one of the effects of putdown(A), thus
generating the ∃-opt landmark ontable(A) ∨ clear(A) ∨
hand-empty, which has clear(A) as a possible intended ef-
fect.

In terms of previous uses of causal links, the PROBE plan-
ner’s (Lipovetzky and Geffner 2011) causal commitments
bear similarity to our use of the causal structure, with one
major difference. While PROBE chooses the causal com-
mitments (that is, which proposition each action will be used
to achieve) as soon as the action is chosen, we look at all
possible causal commitments. This is why PROBE cannot
guarantee optimality, while we can.

Optimality Without Admissibility
Performing some admissible action cost partitioning over
∃-opt landmarks is not guaranteed to yield an admissible
heuristic. This is because the ∃-opt landmarks we derive are
not guaranteed to hold in every possible plan, but rather only
in some optimal plans. However, admissibility is a strong re-
quirement, which states that the heuristic h must not overes-
timate the distance from every state to the goal. We now de-
fine a weaker notion than admissibility, which we call global
admissibility.

Definition 3 (Globally Admissible Heuristics)
A heuristic h is called globally admissible if, for any plan-
ning task Π, if Π is solvable, then there exists an optimal
plan ρ for Π such that, for any state s along ρ, h(s) ≤ h∗(s).

Following the proof that A∗ leads to finding an optimal
solution (Pearl 1984, p. 78), it is easy to see that the same
proof also works when h is globally admissible. The intu-
ition behind this is that if h is globally admissible, then it is
admissible for the states along some optimal plan, and thus
these states will be expanded by A∗. Given that, the heuris-
tic estimates can be arbitrarily high for all other states as we
anyway prefer not to expand them. As a special case, a glob-
ally admissible heuristic can assign a value of ∞ to a state
which is not on the “chosen” optimal solution, declaring it
as a dead-end. And while this sufficiency of global admissi-
bility has been well noted before (Dechter and Pearl 1985),
to the best of our knowledge (and somewhat to our surprise),
no formal definition of this property for a heuristic appears
in the literature.

Having said that, it should be noted that incorporating our
∃-opt landmarks into heuristic estimate of a state s makes
the resulting heuristic path-dependent, because our ∃-opt
landmarks come from reasoning about a concrete s0-path π
to s. A path-dependent heuristic assigns a heuristic value

to a path, rather than a state. As, in principle, a path-
dependent estimate can depend only on the end-state of the
path, path-dependent heuristics generalize the more com-
mon state-dependent heuristics.

We therefore define a new type of admissibility for path-
dependent heuristics, which, like intended effects is based
on a set of plans.

Definition 4 (χ-path Admissible Heuristics)
Let χ be a set of valid plans for Π. Path-dependent heuristic
h is χ-path admissible if, for any planning task Π, for any
prefix π of any plan ρ ∈ χ, h(π) ≤ h∗(s0�π�).

A χ-path admissible heuristic assigns admissible esti-
mates to any prefix of any plan in χ. Note that χ-path ad-
missible heuristics are not “admissible” in the traditional
sense, as they might assign a non-admissible estimate to
some state, if the path used to evaluate that state is not a
prefix of some plan in χ. If χ is the set of all optimal plans,
and h is χ-path admissible, we will simply call h path ad-
missible.

For a set of optimal plans OPT, it is fairly easy to see that
given a CNF formula φL(π|OPT) which describes some ap-
proximation of IE(π|OPT), any admissible action cost parti-
tion over φL(π|OPT) yields an OPT-path admissible heuris-
tic. Specifically, any admissible action cost partition over
φL(π|{ρ}) yields a {ρ}-path admissible heuristic, and any
admissible action cost partition over φL(π) yields a path ad-
missible heuristic.

However, using A∗ with a path admissible heuristic does
not guarantee optimality of the solution found. For example,
suppose there is only a single optimal solution, but one of the
states along that optimal solution is first reached via a sub-
optimal path. Then the heuristic value associated with that
state could be ∞, and the optimal solution will be pruned.

Given a path admissible heuristic, such as the one derived
from φL(π), we can guarantee finding an optimal solution.
To do this, we modify A∗ to recompute the heuristic estimate
for a state s every time a cheaper path to s has been found.
Note that if a new path to s, that is more expensive than the
currently best-known path, is found, then the heuristic esti-
mate derived from that path is clearly not guaranteed to be
admissible, as admissibility is only guaranteed for prefixes
of some optimal solution.

For an arbitrary χ-path admissible heuristic, it is not
as easy to guarantee that an optimal solution will be
found. However, where our specific inference technique
for φL(π|{ρ}) is concerned, we know which optimal solu-
tion is the “chosen” solution: the ≺-minimal optimal plan
ρ. Thus we recompute the heuristic estimate for s when a
cheaper path to s is found, or if a path of the same cost as
the best known path, which is lower according to ≺ is found.
These two small modifications to A∗ are enough to guaran-
tee the optimality of the solution that is found, even when
the heuristic in use is not admissible.

Empirical Evaluation
Although the direction of using ∃-opt landmarks to derive a
χ-path admissible heuristic is interesting, a priori it is not
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coverage φL(π) φL(π|{ρ}) hLA LM-A∗

airport (50) 28 27 28 28
blocks (35) 21 21 21 21
depot (22) 5 5 4 4
driverlog (20) 9 9 7 7
elevators (30) 7 0 7 7
freecell (80) 51 49 51 51
grid (5) 2 2 2 2
gripper (20) 5 5 5 5
logistics00 (28) 20 20 20 20
logistics98 (35) 3 3 3 3
miconic (150) 141 141 141 141
mprime (35) 19 17 15 15
mystery (30) 15 15 12 12
openstacks (30) 12 12 12 12
parcprinter (30) 12 12 11 11
pathways (30) 4 4 4 4
pegsol (30) 26 26 26 26
pipesworld-notankage (50) 15 15 15 15
pipesworld-tankage (50) 10 8 10 9
psr-small (50) 48 48 48 48
rovers (40) 5 5 5 5
satellite (36) 6 4 4 4
scanalyzer (30) 13 13 13 13
sokoban (30) 15 0 15 15
storage (30) 14 13 13 13
tpp (30) 6 5 5 5
transport (30) 9 9 9 9
trucks-strips (30) 7 7 6 6
woodworking (30) 11 11 11 11
zenotravel (20) 8 8 8 8

SUM 547 514 531 530

Table 1: Coverage

clear how much we can gain from following this direction
in practice. Therefore, we have implemented the ∃-opt land-
marks machinery on top of the Fast Downward planning sys-
tem (Helmert 2006), and performed an empirical evaluation,
comparing the regular landmarks heuristic hLA (Karpas and
Domshlak 2009) using the complete set of delete-relaxation
fact landmarks (Keyder, Richter, and Helmert 2010) to the
same heuristic enhanced with ∃-opt landmarks. In order to
avoid loss of accuracy due to differences in action cost par-
titioning, we used only the optimal cost partitioning, com-
puted via linear programming (Karpas and Domshlak 2009).
The evaluation comprised all the IPC 1998-2008 STRIPS do-
mains, including those with non-uniform action costs. All of
the experiments reported here were run on a single core of
an Intel E8400 CPU, with a time limit of 30 minutes and a
memory limit of 6 GB, on a 64-bit linux OS.

We tested the two variants of ∃-opt landmark formulae
discussed above: φL(π) and φL(π|{ρ}). Recall that while
φL(π) is path admissible, φL(π|{ρ}) is {ρ}-path admissi-
ble. Consequently, the criterion for when to recompute the
heuristic value for a state which is reached via a new path
differs: With φL(π) we only recompute the heuristic esti-
mate for state s when a cheaper path to s has been found.
With φL(π|{ρ}) we also recompute the heuristic estimate
when the new path π′ to s of the same cost as the current
path π has been found, if π′ is lexicographically lower than
π.

Table 1 shows the number of problems solved in each do-
main under each configuration. The column titled hLA lists
the number of problems solved using the regular landmarks
heuristic, and the columns titled φL(π) and φL(π|{ρ}) list
the number of problems solved in each domain using the re-
spective ∃-opt landmarks. Because A∗ is not suited for the

expansions φL(π) φL(π|{ρ}) hLA

airport (27) 211052 420947 211647
blocks (21) 1064433 1160581 1070441
depot (4) 290141 388822 401696
driverlog (7) 170534 224226 363541
freecell (49) 403030 556692 403030
grid (2) 227288 231599 467078
gripper (5) 458498 594875 458498
logistics00 (20) 816589 1487932 862443
logistics98 (3) 13227 22014 45654
miconic (141) 135213 183319 135213
mprime (15) 35308 42093 313576
mystery (14) 37698 48785 290133
openstacks (12) 1579931 1756117 1579931
parcprinter (11) 101178 146959 158090
pathways (4) 32287 58912 173593
pegsol (26) 3948303 4364821 3948303
pipesworld-notankage (15) 1248036 1775363 1377390
pipesworld-tankage (8) 24080 36830 28761
psr-small (48) 358647 373242 698003
rovers (5) 98118 343152 231380
satellite (4) 5906 8817 10623
scanalyzer (13) 22251 27893 23213
storage (13) 313259 359482 475049
tpp (5) 4227 7355 12355
transport (9) 915027 1062859 929285
trucks-strips (6) 230699 314618 1261745
woodworking (11) 92195 163589 152975
zenotravel (8) 66600 86782 186334

SUM 12903755 16248676 16269980

Table 2: Expansions

multi-path dependent landmark heuristic hLA (Karpas and
Domshlak 2009), for hLA we used the same search algo-
rithm as for φL(π), which recomputes the heuristic estimate
for a state when a cheaper path to it is found. As the results
show, using φL(π) solves the most problems, becauseφL(π)
is more informative than hLA alone. The poor performance
of φL(π|{ρ}) can be explained by its pruning of optimal so-
lutions those other than ρ, which increases the time until a
solution is found.

Table 2 lists the total number of expansions performed in
each domain, on the problems solved by all three configura-
tions. Note that the ELEVATORS and SOKOBAN domains are
missing from this table, as using φL(π|{ρ}) results in solv-
ing no problems in these two domains. The results clearly
demonstrate that φL(π) greatly increases the informative-
ness over hLA.

Having said that, using ∃-opt landmarks limits our choice
of search algorithm, and specifically prevents us from using
LM-A∗ (Karpas and Domshlak 2009) — a search algorithm
specifically designed to exploit the multi-path dependence
of hLA. We therefore also compared to the number of prob-
lems solved by LM-A∗ using the hLA heuristic. The number
of problems this configuration solved appears in Table 1, un-
der LM-A∗. As the results show, our modified version of A∗

with φL(π) solves more problems than LM-A∗ with hLA.
We do not compare the number of states expanded by our
modified A∗ with ∃-opt landmarks with these expanded by
LM-A∗: comparing the number of expansions between dif-
ferent search algorithms does not tell us anything about the
informativeness of the heuristics used.

Conclusion and Future Work
We have defined the notions of global admissibility and χ-
path admissibility, and demonstrated that it is possible to
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derive a χ-path admissible heuristic and exploit it in cost-
optimal planning. Our experimental results indicate that this
technique can substantially reduce the number of states that
must be expanded until an optimal solution is found.

While the heuristic we evaluated in this paper is already
more informative than the regular landmarks heuristic, we
believe this is not the end of the road. First, the dynamic
shortcut library generation process can be improved by in-
troducing more general forms of plan rewrite rules — not
just rules which attempt to delete some action sequences
from the current path, but rules which attempt to replace
some action sequences with other action sequences. There
are several possible sources for these rules, including learn-
ing them online, during search.

Furthermore, it is quite likely that other methods of deriv-
ing ∃-opt landmarks could be found. In fact, the inference
technique we present here could be enhanced with additional
reasoning, as demonstrated in the following scenario. As-
sume that action a was applied, and achieved proposition
p. Our current inference technique can deduce that at some
later point, some action which consumes p must be applied.
Still, the question is when a consumer of p should be applied.
One natural option is to apply it directly after a. However,
there are two possible reasons this might not be the best
choice: either the consumer requires some other precondi-
tions which have not yet been achieved, or the consumer
threatens another action, which should be applied before the
consumer. Incorporating this type of reasoning into our in-
ference technique poses an interesting challenge.
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Appendix A
Theorem 1 (Definition Equivalence)
Let Π = 〈P,A, C, s0, G〉 be a planning task with s0 = ∅,
and a unique START action. Then Definitions 1 and 2 are
equivalent.

Proof: Let X be a OPT-minimal precondition after π. Then
there exists some path π′, such that π · π′ ∈ OPT, and π′ is
applicable in X , but not in any proper subset of X .

To show that X is an OPT-intended effect of π, we must
show that p ∈ X iff there exists some causal link 〈ai, p, aj〉
in π · π′, with ai ∈ π and aj ∈ π′. Denote the achiever of
p ∈ s0�π� by ach(p) := max{i|0≤i≤n,p∈add(ai)} i. Every
proposition must have an achiever, because s0 = ∅.

If p ∈ X , then it must be a precondition of some action
in π′, because otherwise π′ would be applicable in X \ {p}.
Denote the first action in π′ which has p as a precondition by
cons(p). Then clearly 〈ach(p), p, cons(p)〉 is a causal link
as required.

If p /∈ X , then either (a) there is no action in π′ which has
p as a precondition, or (b) there is some action aj ∈ π′ which
has p as a precondition, and there is some action ai ∈ π′

with i < j which achieves p. Otherwise, π′ would not be an
X-plan. In case (a), there is clearly no causal link on p with
a consumer in π′, as there is no action in π′ which requires
p. In case (b) denote the first action in π′ which requires p
by aj , and denote by ai ∈ π′ the latest action to achieve p
before aj . There is no causal link on p with a producer in π.

We have seen that p ∈ X iff there exists some causal link
〈ai, p, aj〉 in π · π′, with ai ∈ π and aj ∈ π′.

Now assume X is an OPT-intended effect of π. Then there
exists some path π′, such that p ∈ X iff there exists some
causal link 〈ai, p, aj〉 in π · π′, with ai ∈ π and aj ∈ π′. We
will show that X is a OPT-minimal precondition after π (that
is, that π′ is applicable in X , but not in any proper subset of
X).

Assume to the contrary that π′ is not applicable in X . De-
note by aj the first action in π′ which is not applicable, and
denote by p ∈ pre(aj) some proposition that does not hold
before applying aj (after following π′ until aj from state
X). If p ∈ X , then there is some causal link 〈ai, p, aj〉 in
π · π′, with ai ∈ π and aj ∈ π′. But then p could not have
been deleted before aj , and p ∈ X , which means that p must
hold before applying aj — a contradiction. If p /∈ X , then
there is no causal link between π and π′ on p. Therefore,
when applying π′ in s0�π�, p must be achieved by some ac-
tion in π′. But then, when applying π′ in X , aj should be
applicable — a contradiction.

Therefore, π′ is applicable in X . We must now show
that there is no X ′ ⊂ X , such that π′ is applicable in X ′.
Assume to the contrary that there exists such X ′, and let
p ∈ X \ X ′. p ∈ X , so there must exist some causal link
〈ai, p, aj〉 in π · π′, with ai ∈ π and aj ∈ π′. π′ is applica-
ble in X ′, but but p /∈ X ′, implying that some action in π′
achieved p for aj . But 〈ai, p, aj〉 is a causal link in π · π′,
with ai ∈ π, implying that there is no action that achieves p
before aj in π′ — a contradiction.
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