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Abstract

The Liner Shipping Fleet Repositioning Problem (LSFRP)
poses a large financial burden on liner shipping firms. Dur-
ing repositioning, vessels are moved between services in a
liner shipping network. The LSFRP is characterized by chains
of interacting activities, many of which have costs that are
a function of their duration; for example, sailing slowly be-
tween two ports is cheaper than sailing quickly. Despite its
great industrial importance, the LSFRP has received little at-
tention in the literature. We show how the LSFRP can be
solved sub-optimally using the planner POPF and optimally
with a mixed-integer program (MIP) and a novel method
called Temporal Optimization Planning (TOP). We evaluate
the performance of each of these techniques on a dataset
of real-world instances from our industrial collaborator, and
show that automated planning scales to the size of problems
faced by industry.

Introduction
Situated at the heart of global trade, liner shipping networks
transported over 1.3 billion tons of cargo on over 9,600 con-
tainer vessels in 2011 (UNCTAD 2011). Vessels are reg-
ularly repositioned between services in liner shipping net-
works to adjust the networks to the world economy and
stay competitive. Since repositioning a single vessel can cost
hundreds of thousands of US dollars, optimizing the reposi-
tioning activities of vessels is an important problem to the
liner shipping industry.

The Liner Shipping Fleet Repositioning Problem (LS-
FRP) consists of finding minimal cost sequences of activi-
ties that move vessels from one service to another within a
liner shipping network. Fleet repositioning involves sailing
and loading activities subject to complex handling and tim-
ing restrictions. As is the case for many industrial problems,
the objective is cost minimization (including costs for CO2

emissions and pollution), and it is important that all cost el-
ements, including those that are only loosely coupled with
activity choices, can be accurately modeled.

In this paper, we consider three methods for solving the
LSFRP. First, we describe an automated planning model of
the LSFRP that is available as a PDDL domain, and show
that it can be solved using the planner POPF (Coles et al.
2011) by extending its TIL handling capabilities. However,
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since POPF is not an optimal planner, and no automated plan-
ner that is capable of solving the LSFRP to optimality exists,
we propose a novel framework called Temporal Optimiza-
tion Planning (TOP). TOP uses durative planning to build
optimization models. In contrast to advanced temporal plan-
ning languages, e.g. (Fox and Long 2006), TOP does not
enforce a strong semantic relation between planning actions
and optimization components, since this enables the formu-
lation of richer optimization models. TOP solves problems
using an optimization version of partial-order planning (Pen-
berthy and Weld 1992), based on a branch-and-bound algo-
rithm. We define a general lower bound for partial plans in
the naturally occurring case where the minimum costs of op-
timization components are non-negative. We show that this
bound can be improved by an extension of the hmax heuris-
tic (Haslum and Geffner 2000) that makes it possible to es-
timate the cost of required actions not currently in the plan.

We also model and solve the LSFRP with a mixed integer
program (MIP) using a graph based model. And, finally, we
present experimental results comparing solving time and so-
lution quality for all three approaches on a number of prob-
lem instances based on a scenario from our industrial collab-
orator. Our results show that automated planning is capable
of solving real-world scenarios of the LSFRP within the time
required to create a usable decision support system.

Liner Shipping Fleet Repositioning
Container vessels are routinely repositioned, i.e. moved
from one service to another, in order to better orient a liner
shipping network to the economy. A liner shipping network
consists of a set of circular routes, called services, that visit
ports on a regular, usually weekly, schedule. Shipping lines
regularly add and remove services from their networks in or-
der to stay competitive, requiring vessel repositionings. The
repositioning of vessels is expensive due to the cost of fuel
(in the region of hundreds of thousands of dollars) and the
revenue lost when a ship is not on a service carrying cus-
tomers’ cargo. Given that liner shippers around the world
reposition hundreds of vessels per year, optimizing vessel
movements can significantly reduce the economic and envi-
ronmental burdens of containerized shipping.

Given a set of vessels, where each vessel is assigned an
initial service and a goal service, the aim of the LSFRP is
to reposition each vessel to its goal service within a given
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time period at minimal cost. Each vessel begins its reposi-
tioning when it phases out from its current service, mean-
ing it ceases regular operations on the service. Vessels may
phase out of any port on the service they are sailing on at
the time the port is normally called by the service. After a
vessel has phased out, it may undertake activities that are
not part of its normal operations until it phases in at its goal
service, which, like phasing out, must happen at a goal ser-
vice port at the time the goal service is scheduled to call it.
Throughout the time between the phase-out and the phase-
in, except where noted, the repositioning vessel pays a fixed
hourly cost, referred to as the hotel cost in shipping parlance.

Between the phase-out and the phase-in, a vessel may un-
dertake the following activities. First, vessels may sail di-
rectly between two ports, incurring a cost that actually de-
clines as the duration of the sailing increases, due to the fuel
efficiencies of engines at low speeds. Second, a vessel may
also sail with equipment, e.g. empty containers, from ports
where they are in excess to ports where they are in demand,
earning a profit per TEU1 carried, but incurring a delay to
load and unload the equipment. And third, a vessel may per-
form a sail-on-service (SOS), in which the vessel replaces a
vessel on an already running service.

SOS opportunities are desirable because the repositioning
vessel incurs no hotel or fuel costs on an SOS, but cargo
may need to be transshipped from the replaced vessel to the
repositioning vessel, depending on where the repositioning
vessel starts the SOS. Cargo transshipments are subject to a
fee per TEU transshipped and vessels are delayed depend-
ing on how much cargo must be transferred. An SOS may
only start at certain ports due to cabotage restrictions, which
are laws that prevent foreign vessels from offering domes-
tic cargo services. Note that while we do not take a detailed
view of cargo flows, the activities we allow a vessel to un-
dertake are chosen such that they do not significantly disrupt
the network’s cargo flows.

One of the key difficulties in the LSFRP lies in the con-
straints that dictate how vessels may phase in to a new ser-
vice. It is essential that the liner shipping nature of the ser-
vice is enforced, meaning that once a vessel visits a port
on the goal service, there must be a vessel visiting that port
in every subsequent week within the planning horizon. This
constraint is a business requirement, as once a service is
started, customers expect to be able to ship their cargo with-
out interuption. This constraint, however, leads to v! differ-
ent orderings at each port on the goal service, where v is the
number of vessels being repositioned. Thus, each ordering
at each port is potentially associated with a different cost.

We performed a case study with our industrial partner to
better understand the nature of fleet repositioning problems.
A new service in the network, the “Intra-WCSA”, required
three vessels2 that were sailing on services in Asia. Reposi-
tioning coordinators were tasked with moving the vessels to
the Intra-WCSA at as low a cost as possible.

1TEU stands for twenty-foot equivalent unit and represents a
single twenty-foot intermodal container.

2For reasons of confidentiality, some details of the case study
have been changed.

Figure 1: A subset of the case study we performed with our
industrial collaborator is shown. A vessel on the CHX service

must be repositioned to the new Intra-WCSA service.

Figure 1 shows a subset of the case study and the cost sav-
ing opportunities that repositioning coordinators had avail-
able to them. The Intra-WCSA required three vessels, one
of which was on the CHX service. Two further vessels were
on services that are not shown in the figure, but were also in
southeast Asia. Vessels could carry equipment from northern
China to South America, as well as utilize the AC3 service
as a sail-on-service opportunity. The problem was solved by
hand, as no automated tools existed to assist in solving the
LSFRP. The solution sent all vessels on the AC3 SOS op-
portunity to BLB, where they phased in to the Intra-WCSA.

The LSFRP has received little attention in the literature,
and was not mentioned in either of the most influential sur-
veys of work in the liner shipping domain (Christiansen et al.
2007; Christiansen, Fagerholt, and Ronen 2004). Neither the
Fleet Deployment Problem (Powell and Perakis 1997) nor
the Liner Shipping Network Design Problem (Løfstedt et al.
2010) deals with the repositioning of ships or the important
phase-in requirements. Tramp shipping problems, such as
(Korsvik, Fagerholt, and Laporte 2011), also differ from the
LSFRP due to a lack of cost-saving activities for vessels.

It has been observed in both the AI-planning and OR-
scheduling fields (e.g. (Karger, Stein, and Wein 1997; Smith,
Frank, and Jónsson 2000)) that the compound objectives of
real-world problems, such as those found in the LSFRP, are
often hard to express in terms of the simple objective cri-
teria like makespan and tardiness minimization. Schedul-
ing (Karger, Stein, and Wein 1997) has focused mainly on
problems that only involve a small, fixed set of choices,
while planning problems like the LSFRP often involve cas-
cading sets of choices that interact in complex ways (Smith,
Frank, and Jónsson 2000). Another limitation is that main-
stream scheduling research has focused mainly on the opti-
mization of selected, simple objective criteria such as mini-
mizing makespan or minimizing tardiness (Smith 2005).

Existing Temporal-Numeric Planners
In this section we consider modelling and then solving the
fleet repositioning problem using existing AI planners.

Modelling Fleet Repositioning in PDDL
The PDDL model of the LSFRP (Tierney et al. 2012) has
interesting temporal features: required concurrency (Cush-
ing et al. 2007), timed initial-literals (TILs) (Edelkamp
and Hoffmann 2003) and duration-dependent effects. A
basic model requires 6 actions, phase-out, phase-in,
sail, sail-on-service, sail-with-equipment and
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calculate-hotel-cost. We discuss only the main points
of interest for each action.

The actions phase-out and phase-in have precondi-
tions that depend on absolute time. To model these, we use
two collections of TILs: one representing the short windows
of opportunity in which a given vessel will be at a given
port and can phase out; and another representing the win-
dows during which a port is open (to any ship) for phasing
in. This yields problems with a much larger number of TILs
than any existing planning benchmark problem: the smallest
test problem has 146 TILs, the largest 266.

A challenging constraint from a PDDL modelling per-
spective is that all the vessels must phase-in in sequen-
tial weeks. Critically, it is not that vessels must phase in
at exactly (or less than) one week spacings, but that once
the first vessel has phased in, there must be one phase-in
per calendar week. One can model weeks using proposi-
tional TILs adding is-week facts, and a week parameter
for phase-in actions. This, however, forces commitment to
the phase-in week, leading to backtracking to change what
are effectively scheduling decisions. We therefore chose an-
other model: a continually executing process encompassing
the plan has an effect (increase (time-elapsed) #t),
giving a counter of the current time. The phase-in action for
the first ship has conditional effects that set the value of a
variable to t ∈ [0..w], where t ∈ N gives the week in which
the action occurred, according to (time-elapsed). Sub-
sequent phase-in actions require (time-elapsed) to be in
the range [168t, 168(t+ n)) (n is the number of vessels).

Duration-dependent effects are key in this problem. The
cost of sail is higher if a vessel sails faster. It is com-
puted as a fixed cost for the journey, minus a fixed con-
stant multiplied by the duration. The duration can be cho-
sen by the planner, within the bounds of the specified min-
imum and maximum possible journey time. To compute
the hotel cost for a vessel we use an envelope action that
must be started before a vessel can phase out, and may
only finish once the vessel has phased in. This action,
calculate-hotel-cost, also has a duration-dependent
effect, increasing cost by a value proportional to its dura-
tion. We permit a vessel’s calculate-hotel-cost action
to end if it begins a sail-on-service action, so that hotel-
cost need not be paid, but require it to be executing before
sail-on-service ends. The necessary interleaving of ac-
tions in this way leads to required-concurrency3. We note
that it would be more natural to model hotel cost calculation
using PDDL+ processes (Fox and Long 2006), however the
only available planner to handle these is UPMurphi (Penna
et al. 2009), which we could not use directly as it requires the
input of a discretization of the model in addition to PDDL.
Discretizing the LSFRP is undesirable due to the vast differ-
ences in time scale between action durations.

Solving the Fleet Repositioning Problem
The major challenges the LSFRP poses to planners are its
tightly coupled temporal and numeric interactions, includ-

3Many problems also exhibit required concurrency insofar as
vessels must sail in parallel for a solution to be found.

ing duration-dependent effects, and the requirement for op-
timization with respect to these. In recent years, a num-
ber of powerful planners capable of reasoning with dura-
tive actions and real-valued variables have been developed.
Sapa (Do and Kambhampati 2003), which has a number of
heuristics designed to work with multi-objective criteria, and
LPG (Gerevini, Saetti, and Serina 2003), which remains one
of the best optimizing planners, were amongst the first of
these. Whilst a new version of LPG exists that handles re-
quired concurrency (Gerevini and Saetti 2010), the schedul-
ing techniques employed by these planners are insufficient
to reason about duration-dependent effects (with non-fixed
durations). Recent Net-Benefit planners (e.g. HSP∗, MIPS-
XXL and Gamer) (Helmert, Do, and Refanidis 2008), whilst
also strong at optimization, suffer from the same problem.

More sophisticated scheduling techniques exist in the
more recent cohort of planners capable of reasoning with
continuous numeric change: Colin (Coles et al. 2009),
POPF (Coles et al. 2010), Kongming (Li and Williams 2008)
and TMLPSAT (Shin and Davis 2005). Each of these makes
use of a linear program (LP) or a MIP to perform scheduling
with respect to continuous dynamics, and this is sufficient to
capture duration-dependent change. Colin and its successor
POPF are the only two available systems that can reason with
all the necessary language features for this problem. Kong-
ming does not allow multiple parallel updates to the same
variable, but here total cost is updated by multiple vessels
sailing in parallel, and TMLPSAT does not exist in a runnable
form. Colin and POPF are not optimal planners, though POPF
has a mechanism for continuing search once a solution is
found to improve quality (Coles et al. 2011). Solving the
problem proved challenging for POPF, and highlighted that
there is much scope for general planning research into solv-
ing problems with many TILs and cost-based optimization.

POPF uses a forward-chaining search approach to tempo-
ral planning, splitting durative actions into two snap-actions
representing the start and end of the action. To ensure a
plan is temporally consistent, and to assign timestamps to
actions, an LP is used. Each step i of the plan has a real-
valued time-stamp variable stepi in the LP, directly con-
strained in two ways. First, if the search orders i before j,
then stepj ≥ stepi+ε, where ε is some small constant. Sec-
ond, for an action starting at i and finishing at k, the value of
(stepk − stepi) must obey the action’s duration constraints.
The numeric effects and preconditions of actions are cap-
tured by adding further variables, constrained to capture ac-
tions’ preconditions, and to reflect their effects. For exam-
ple, the effect of hotel-cost-calc (starting at b and ending at
e) on total-cost would be appear as a term in the LP objective
function as (stepe − stepb) ∗ hotelcost .

In POPF, TILs have traditionally been treated as dummy
actions that must be applied in sequence order. At each point
in search, the planner can choose to apply an action or the
next TIL. However, when there are many TILs, as in the LS-
FRP, the search space is unnecessarily blown up by what are
often scheduling choices. To this end, we have developed
a domain-independent technique for abstracting TILs repre-
senting time windows of opportunity. This introduces binary
variables, and hence the LP is now a MIP; though we solve
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the LP relaxation of the MIP at non-goal states. We consider
a fact f suitable for abstraction if it is only ever added and
deleted by TILs. A TIL-controlled fact f may be added and
deleted multiple times, presenting nwindows of opportunity
in which to use it. Once identified, we remove the f -TILs
from search, and presume f to be true in the initial state. If
step i of the plan requires f , we add the following disjunc-
tive temporal problem (DTP) constraints to the MIP:∑n

k=0 f
+
k w

i
k ≤ stepi ≤

∑n
k=0 f

−
k w

i
k∑n

k=0 w
i
k = 1,

where wik is a binary variable indicating whether stepi oc-
curs in window k, and f+k and f−k are the timestamps at
which f is added and deleted for the kth time, respectively.

A related case is if a fact f is added and deleted by
TILs, and all snap-actions with a precondition on f delete
it. Again, this is a general idea, e.g. a machine becoming
available once a day, and available for one task only. In fleet
repositioning, it occurs in the phase-in action: once a given
vessel phases in at a given opportunity no other vessel can
take that opportunity. Given the set of steps F that all refer
to f , we add the following constraint:

∀nk=1

∑
i∈F w

i
k ≤ 1.

Having removed these TILs from being under the explicit
control of search, we must still consider them in the heuris-
tic. For this, we make a slight modification to Temporal Re-
laxed Planning Graph (TRPG) expansion: once the non-TIL-
controlled preconditions for a snap-action have become true
in fact layer t, it appears in the next action layer t′ ≥ t, such
that at time t′, all the TIL-controlled preconditions of the
action would be true. This is stronger than the TRPG previ-
ously: effectively, we no longer ignore TIL-delete effects on
facts that are only ever added by TILs.

To improve the cost estimation in the heuristic in the pres-
ence of duration-dependent costs, we make a further modi-
fication. Suppose we have previously found a solution with
cost c′, and are now evaluating a state S, with cost c. We
know that it is not worth taking any action with cost greater
than (c′ − c) in order to complete the solution plan from
S (assuming we have proved cost is monotonically worsen-
ing). Therefore, no action can have a duration that would
give a duration-dependent cost in excess of this, and we can
tighten the bounds on RPG actions’ durations accordingly.

Optimality Considerations
To solve this problem to guaranteed optimality we need a
temporally-aware cost-sensitive admissible planning heuris-
tic. We can obtain an admissible estimate of the cost of a
partial plan costsp to reach state S by solving the correspond-
ing MIP minimizing cost. Given a solution of cost c′ we can
discard any state with costsp > c′ (assuming monotonically
increasing cost). This equates to assuming the cost of reach-
ing the goal is zero: an admissible, but poor, heuristic.

POPF records the minimum cost to achieve each fact at
each timestamped TRPG layer during graph building (Coles
et al. 2011). These estimates are, however, only admissible
within the timeframe covered by the TRPG: graph expansion
terminates when all goals appear, but expanding the TRPG

further could potentially reduce the cost. We can gain admis-
sible estimates of the cost to achieve each goal by expand-
ing the TRPG until new actions have stopped appearing, and
costs have stopped changing, as is possible in Sapa (Do and
Kambhampati 2003). In general, since one action could con-
tribute towards the achievement of multiple goals, we cannot
add the costs of achieving the goals; instead, to maintain ad-
missibility, we can only take the cost of achieving the most
expensive goal. Additive hmax (Haslum, Bonet, and Geffner
2005) allows some addition of costs with no loss of admis-
sibility, but we leave this for future work.

Temporal Optimization Planning
In the absence of an optimal method for solving prob-
lems with duration linked objectives, we introduce Tempo-
ral Optimization Planning (TOP). TOP fundamentally di-
verges from classical AI-planning approaches by introduc-
ing two sets of variables that decouple the planning problem
from the optimization model. Thus, the optimization model
is not tightly bound to the semantics of actions. Actions are
merely used as handles to optimization components that are
built together to complete optimization models using partial-
order planning. This decoupling makes it possible to formu-
late any objective that can be expressed by the applied op-
timization model. Moreover, computationally expensive ac-
tion models, including real-valued state variables and gen-
eral objective functions, are avoided.

TOP is built on a state variable representation of propo-
sitional STRIPS planning (Fikes and Nilsson 1971). TOP
utilizes partial-order planning (Penberthy and Weld 1992),
and extends it in several ways. First, an optimization model
is associated with each action in the planning domain. This
allows for complex objectives and cost interactions that are
common in real world optimization problems to be easily
modeled. Second, instead of focusing on simply achieving
feasibility, TOP minimizes a cost function. Finally, begin
and end times can be associated with actions, making them
durative. Such actions can have variable durations that are
coupled with a cost function.

In contrast to the current trend in advanced temporal
planning, TOP bypasses computationally expensive dense
time models of shared resources like electric power con-
sumption during activities. These models are important for
the robotic or aerospace applications often targeted in AI-
planning (e.g., (Frank, Gross, and Kurklu 2004; Muscettola
1993)), but TOP focuses on more physically separated activ-
ities where resources are exclusively controlled. While this
decoupling offers some new possibilities, it makes TOP less
capable of solving traditional planning problems, specifi-
cally where resources can appear in preconditions and are
not solely for tracking an optimization function.

TOP differs from existing temporal planners in two fur-
ther ways. First, TILs are not needed to model problems
in which some actions are only available at specific times,
such as the phase-out and phase-in actions in the LS-
FRP. Rather, constraints on the start or end time of an action
can be built directly into actions’ optimization models and
exploited for guidance. Second, through shared variables
in their optimization models, actions can refer directly to
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start/end times of other actions. This means the encoding of,
e.g., the hotel cost calculation can be embedded within the
effects of other actions that imply it. PDDL actions cannot
directly refer to start/end times of other actions, hence our
use of hotel cost envelopes, which expand the search space.

Formally, let V = {v1, · · · , vn} denote a set of state
variables with finite domains D(v1), · · · , D(vn). A state
variable assignment ω is a mapping of state variables to
values {vi(1) 7→ di(1), · · · , vi(k) 7→ di(k)} where di(1) ∈
D(vi(1)), · · · , di(k) ∈ D(vi(k)). We also define vars(ω) as
the set of state variables used in ω.

A TOP problem is represented by a tuple
P = 〈V,D,A, I,G, pre, eff ,x, obj , con〉,

where D is the Cartesian product of the domains D(v1) ×
· · ·×D(vn),A is the set of actions, I is a total state variable
assignment (i.e. vars(I) = V) representing the initial state,
G is a partial assignment (i.e. vars(G) ⊆ V) representing
the goal states, prea is a partial assignment representing the
precondition of action a, eff a is a partial assignment repre-
senting the effect of action a4, x ∈ Rm is a vector of opti-
mization variables5 that includes the begin and end time of
each action, xab and xae respectively, for all actions a ∈ A,
obj a : Rm → R is a cost term introduced by action a, and
cona : Rm → B is a constraint expression introduced by
action a with cona |= xab ≤ xae ∧ xab ≥ 0 ∧ xae ≥ 0.

Let S = {ω|vars(ω) = V} denote the set of all the pos-
sible states. An action a is applicable in s ∈ S if prea ⊆ s
and is assumed to cause an instantaneous transition to a suc-
cessor state defined by the total assignment

succa,s(v) =

{
eff a(v) if v ∈ vars(eff a),

s(v) otherwise.
We further define Ma = min{obj a|cona}, which is the

minimal cost of action a’s optimization model component.
A temporal optimization plan is represented by a tuple

〈A,C,O,M〉, whereA is the set of actions in the plan,C is a
set of causal links a

µ−→ b with a, b ∈ A and µ ∈ eff a∪preb,
O is a set of ordering constraints of the form a ≺ b with
a, b ∈ A, and M is an optimization model associated with
the plan defined by

min
∑
a∈A

obj a(x)

s.t. xaie ≤ x
aj
b ∀ai ≺ aj ∈ O (1)

cona(x) ∀a ∈ A. (2)
The objective of M is to minimize the sum of the costs in-
troduced by actions, subject to action orderings (1) and the
constraints associated with each action in π (2). Let cost(π)
be the cost of an optimal solution to M to a partial plan π.

4In practice, it is often more convenient to represent actions
in a more expressive form, e.g. by letting the precondition be a
general expression on states prea : S → B and represent con-
ditional effects like resource consumption by letting the effect be
a general transition function, depending on the current state of S,
eff a,s : S → S. Such expressive implicit action representations
may also be a computational advantage. We have chosen a ground
explicit representation of actions because it simplifies the presen-
tation and more expressive forms can be translated into it.

5We sometimes let x denote a set rather than a vector.

An open condition
µ−→ b is an unfulfilled precondition µ

of action b ∈ A, that is, µ ∈ preb and ∀a ∈ A, a µ→ b 6∈ C.
An unsafe link is a causal link a

µ→ b that is threatened by
an action c such that i) vars(µ) ∈ eff c, ii) µ 6∈ eff c, and
iii) {a ≺ c ≺ b} ∪O is consistent.

To deal with durative actions in TOP we need to keep
track of another type of flaw called interference. We adopt an
interference model based on the exclusive right to state vari-
ables (Sandewall and Rönnquist 1986). Thus, two actions a
and b interfere if vars(eff a)∩vars(eff b) 6= ∅ andO implies
neither a ≺ b nor b ≺ a.

An open condition flaw
µ−→ b can be repaired by linking µ

to an action a such that µ ∈ eff a and by posting an ordering
constraint over a and b. Thus, C ← C ∪ {a µ→ b} and
O ← O ∪ {a ≺ b}. In the case that a 6∈ A, A ← A ∪ {a}
and O ← O ∪ {a0 ≺ a, a ≺ a∞}.

An unsafe link a
µ→ b that is threatened by action c can

be repaired by either adding the ordering constraint c ≺ a
(demotion) or b ≺ c (promotion) to O. Similar to unsafe
links, an interference between actions a and b can be fixed
by posting either a ≺ b or b ≺ a to O.

Together, open conditions, unsafe links and interferences
constitute flaws in a plan. Let flaws(π) = open(π) ∪
unsafe(π) ∪ interfere(π) be the set of flaws in the plan
π, where open(π) is the set of open conditions, unsafe(π)
is the set of unsafe links, and interfere(π) is the set of inter-
ferences. We say that π is a complete plan if |flaws(π)| = 0,
otherwise π is a partial plan. A plan π∗ is optimal if it is fea-
sible and for all feasible solutions π, cost(π∗) ≤ cost(π).

Linear Temporal Optimization Planning
To solve the LSFRP, we introduce linear temporal optimiza-
tion planning (LTOP). In LTOP, all of the optimization mod-
els associated with planning actions have a linear cost func-
tion and a conjunction of linear constraints. Thus, obj a is
of the form cax′, where ca ∈ Rm and cona is of the form∧

1≤i≤na
(αai x

′ ≤ βi), where αai ∈ Rm, βi ∈ R (na is the
number of constraints associated with action a). Thus, Ma

and M are LPs. Note that M is very similar to the LPs in
POPF, and serves a similar purpose: enforcing temporal con-
straints and optimizing cost.

Figure 2 shows an example LTOP plan for the reposi-
tioning in Figure 1. The optimization variables hb,v and
he,v , representing the begin and end of the hotel period, re-
spectively, are of particular note, as they replace the action
calculate-hotel-cost required by our PDDL model.
Each action updates the upper bound of hb,v , this shared
variable allows the hotel cost of the vessel to be accounted
for, even in a partial plan. An example of implicit TIL han-
dling within LTOP can be seen in the out action. The starting
time of the action is bound to tout

CHX ,TPP , which is a constant
representing the time the vessel may phase out at port TPP.

Algorithm 1 shows a branch-and-bound algorithm that
finds an optimal plan to an LTOP problem, based on the
POP algorithm in (Williamson and Hanks 1996). First, an
initial plan πinit is created by the INITIALTOP function (line
2). We define πinit = 〈{a0, a∞}, ∅, {a0 ≺ a∞},Minit}〉,
where a0 is an action representing I with prea0 = ∅ and
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Figure 2: A complete TOP plan showing a solution to the repositioning in Figure 1. Boxes represent actions and contain their associated
optimization models. Causal links are shown with arrows. The optimization variables xab and xae represent the begin and end time of action
a, and hb,v , he,v are the begin and end hotel time of the vessel, respectively. The state variable sv ∈ {I, T, G} represents the vessel being on

its initial service, in transit or at its goal service, respectively.

Algorithm 1 Temporal optimization planning algorithm.
1: function TOP(I, G)
2: Π← {INITIALTOP(I,G)}
3: πbest ← null
4: u←∞ . Cost of the incumbent (upper bound)
5: while Π 6= ∅ do
6: π ← SELECTPLAN(Π)
7: Π← Π \ {π}
8: if NUMFLAWS(π) = 0 ∧ COST(π) < u then
9: u← COST(π)

10: πbest ← π
11: else if ESTIMATECOST(π) < u then
12: f ← SELECTFLAW(π)
13: Π← Π ∪ REPAIRFLAW(π, f )
14: return πbest

eff a0 = I; a∞ is an action representing G with prea∞ = G
and eff a∞ = ∅; and Minit is an optimization model with no
objective and two constraints, cona0 and cona∞ , which are
special constraints on the dummy actions a0 and a∞ such
that cona0 = (xa0b = xa0e ∧x

a0
b ≥ 0) and cona∞ = (xa∞b =

xa∞e ∧ xa∞b ≥ 0). The optimization variables xa0b , x
a0
e , x

a∞
b

and xa∞e represent the begin and end times of actions a0 and
a∞ respectively. The algorithm then selects a plan from Π
(line 6) and checks if it is a complete plan. If so, its cost is
compared with the current upper bound (u), and if the cost is
lower, the incumbent πbest is replaced with the current plan
π and the upper bound is updated (lines 9 and 10). When π is
a partial plan, an estimated lower bound of the plan is com-
puted: if it is higher than the cost of the incumbent solution,
the plan is discarded (line 11). Otherwise, a flaw is selected
and repaired (lines 12 and 13). This process is repeated until
Π=∅ , then the current incumbent is returned, if one exists.

The algorithm of POPF (if we force A*) can be un-
derstood in a similar manner. POPF uses different heuris-
tics in SELECTPLAN(Π) and to compute COST(π) and
ESTIMATECOST(π). Instead of selecting a flaw to repair
(lines 12,13), POPF creates a new plan by selecting an action
to append (Π initially contains the empty plan). Effectively,
POPF searches forwards, while LTOP searches backwards.

Algorithm 1 is guaranteed to find the optimal solution (if
there is one) as long as ESTIMATECOST does not overes-
timate the cost of completing a partial plan. To prune as
much of the branch-and-bound tree as possible, we need
tight lower bounds. If we require that the cost of each ac-
tion subject to its constraints is non-negative, we can prove
that cost(π) is such a lower bound.

Proposition 1. Given any valid partial plan π =
〈A,C,O,M〉 where Ma ≥ 0, ∀a ∈ A, cost(π) ≤ cost(π̄)
for any completion π̄ of π.

Proof. Let π′ be π with a single flaw repaired. The flaw is
either i) an unsafe link, ii) an interference, iii) an open con-
dition being satisfied by an action in the plan, or iv) an open
condition being satisfied by an action not in the plan.

In cases i and ii the flaw is repaired by adding an ordering
constraint to π, which further constrains π, thus cost(π) ≤
cost(π′). Case iii results in a new causal link and an ordering
constraint, and is therefore the same as cases i and ii. In case
iv, the action’s optimization model is added to π, but since
the cost function of the action must be non-negative under its
constraints, cost(π′) cannot be less than cost(π). By apply-
ing this argument inductively on the complete branch-and-
bound subtree grown from π, we get cost(π) ≤ cost(π̄) for
any completion π̄ of π.

Heuristic Cost Estimation
Although cost(π) provides a reasonable lower bound for
π, the bound is only computed over actions in the plan.
As we noted when discussing POPF, it can be strengthened
by also reasoning over actions that are needed to complete
the plan. We present an extension of hmax (Haslum and
Geffner 2000), hcost

max , which estimates the cost of achiev-
ing the open conditions of a plan π in a similar manner to
VHPOP (Younes and Simmons 2003). The extension is that
instead of using action cost, we use the (precomputed) value
of the minimized objective model of an action (Ma).

hcost
max (ω, π) =


0 if ω ⊆ effsπ , else
f(ω, π) if ω = {µ}, else
g(ω, π) if |ω| > 1,

f(ω, π) = min{a∈A\A|µ∈eff a}{Ma + hcost
max (prea, π)},

g(ω, π) = maxµ∈ω{hcost
max ({µ}, π)},

where ω is a partial state variable assignment, µ is a single
state variable assignment v 7→ d, and effsπ =

⋃
a∈Aeff a.

The heuristic takes the max over the estimated cost of
achieving the elements in the given assignment ω. The cost
is zero if the elements are already in π, otherwise the mini-
mum cost of achieving each element is computed by finding
the cheapest way of bringing that element into the plan. A
comparison of hmax to costed-RPG style heuristics (such as
that of POPF) can be found in (Do and Kambhampati 2003).

It is possible to extend more recent work in admis-
sible heuristics for cost-optimal planning (Haslum et al.
2007; Helmert, Haslum, and Hoffmann 2007; Helmert and
Domshlak 2009; Katz and Domshlak 2010; Haslum, Bonet,
and Geffner 2005) in the same way to produce even more
accurate admissible estimates, we leave this to future work.
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Proposition 2. Given any valid partial plan π =
〈A,C,O,M〉 where Ma ≥ 0, ∀a ∈ A, cost(π) +
hcost

max (open(π), π) ≤ cost(π̄) for any completion π̄ of π.

Proof. We have hcost
max (ω, π) =

∑
a∈RMa, where R is a set

of actions not currently in π (R∩A = ∅) that are required to
resolve ω and among such sets has the minimum cost. Thus,
any completion π̄ of π as described in Proposition 1 must at
least increase cost(π) by hcost

max (ω, π) =
∑
a∈RMa.

Domain Specific Heuristics We also explored domain
specific heuristics in order to better solve the LSFRP. First,
we modified the branching scheme of LTOP in order to avoid
multiple sail actions in a row, observing that it will never
be cheaper to sail through an intermediate port than to di-
rectly sail between two ports. This is straightforward to im-
plement, requiring only for LTOP to check if adding a sail
action to a partial plan would result in two sailings in a row.

Our second heuristic is able to complete a vessel’s repo-
sitioning once the vessel is assigned a sail-on-service
action. Since the starting time of the sail-on-service is
fixed, and so are the times of the phase-outs, the optimal
completion to the plan can be computed by simply looping
over the vessel’s allowed phase-out ports and choosing the
one with the lowest cost. We add a phase-out action to the
plan along with a sail action, if necessary.

Mixed Integer Programming (MIP) Model
We have modeled the same subset of fleet repositioning as
in our PDDL and LTOP models using a MIP. Our model
considers the activities that a vessel may undertake and con-
nects activities based on which ones can feasibly follow one
another temporally. Thus, the structure of the LSFRP is em-
bedded directly into the graph of our MIP, meaning that the
MIP is unable to model general automated planning prob-
lems as in (Van Den Briel, Vossen, and Kambhampati 2005)
and (Kautz and Walser 1999). Note that, unlike LTOP, the
MIP is capable of handling negative costs.

Given a graph G = (A, T ), where A is the set of ac-
tions (nodes), and T is the set of transitions, with (a, b) ∈ T
iff action b may follow action a, let the decision variable
ya,b ∈ {0, 1} indicate whether or not the transition (a, b) ∈
T is used or not. The auxiliary variable wa =

∑
(a,b)∈T ya,b

indicates whether action a is chosen by the model, and
xsa, x

e
a ∈ R+ are action a’s start and end time, respectively.

Finally, the variables hsv and hev are the start and end time of
the hotel cost period for vessel v.

Each action a ∈ A is associated with a fixed cost, ca ∈ R,
a variable (hourly) cost, αa ∈ R, and a minimum and maxi-
mum action duration, dmin

a and dmax
a . The set At ⊆ A spec-

ifies actions that must begin at a specific time, ta. The use
of a particular action may exclude the use of other actions.
These exclusions are specified by η : A → 2|A|. There
are also n sets of mutually exclusive actions, given by µ :
{1, . . . , n} → 2|A|. We differentiate between phase-out and
phase-in actions for each vessel using the sets Apo

v , A
pi
v ⊆

At, respectively, and letA′ = A\∪v∈V (Apo
v ∪Api

v ). Finally,
let cHv ∈ R+ represent each vessel’s hourly hotel cost.

There are several “big-Ms” in the model, which are con-
stants used in MIP models to enforce logical constraints. The

upper bound on the difference between the end and start of
two actions is given by My

a,b. The upper bound on the start
of a vessel’s hotel period, and the lower bound on the end of
the vessel’s hotel period, are given by Ms

v and me
v respec-

tively. The MIP model is as follows:
min

∑
a∈A

(cawa + αa(xea − xsa)) +
∑
v∈V

cHv (hev − hsv)

s.t.
∑

(a,b)∈T

ya,b = 1 ∀a ∈ Apo
v , b ∈ A \Apo

v , v ∈ V (3)

∑
(a,b)∈T

ya,b =
∑

(b,c)∈T

yb,c ∀b ∈ A′ (4)

∑
(a,b)∈T

ya,b ≤ 1 ∀b ∈ A′ (5)

xea − xsb ≤My
a,b(1− ya,b) ∀(a, b) ∈ T (6)

xsa ≤ xea ∀a ∈ A (7)

dmin
a wa ≤ xea − xsa ≤ dmax

a wa ∀a ∈ A (8)

xsa = tawa ∀a ∈ At (9)

hsv +Ms
vwa ≤Ms

v + ta ∀a ∈ Apo
v , v ∈ V (10)

hev +me
vwa ≥ me

v + ta ∀a ∈ Api
v , v ∈ V (11)∑

a∈µ(i)

wa ≤ 1 for i = 1, 2, . . . n (12)

|η(a)|wi +
∑
b∈η(b)

wb ≤ |η(a)| ∀a ∈ A (13)

The objective sums the fixed and variable costs of each ac-
tion that is used along with the hotel cost for each vessel. The
single unit flow structure of the graph is enforced in (3) – (5),
and (6) enforces the ordering of transitions between actions,
preventing the end of one action from coming after the start
of another if the edge between them is turned on. Action
start and end times are ordered by (7), and the duration of
each action is limited by (8). Actions with fixed start times
are bound to this time in (9), and (10) – (11) connect the
hotel start and end times to the time of the first and last ac-
tion, respectively. The mutual exclusivity of certain sets of
actions is enforced in (12), and (13) prevents actions from
being included in the plan if they are excluded by an action
that was chosen.

Experimental Evaluation
Using a dataset of real-world instances based on a scenario
from our industrial collaborator, we evaluated the perfor-
mance of POPF, LTOP, and our MIP model. We created ten
instances based on the case study shown in Figure 1 contain-
ing up to three vessels and various combinations of sail-on-
service, equipment opportunities (e) and cabotage restric-
tions (c). The instances have between 99 and 590 grounded
actions in LTOP, and between 470 and 2378 decision vari-
ables in the reduced MIP computed by CPLEX.

Table 1 shows the results of solving the LSFRP to op-
timality with the MIP model and with LTOP, and sub-
optimally with POPF6. We explored the performance of sev-
eral combinations heuristics in LTOP, using domain specific

6All experiments were conducted on AMD Opteron 2425 HE
processors with a maximum of 4GB of RAM per process. The MIP
and LTOP used CPLEX 12.3, POPF used CPLEX 12.1.
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Inst. MIP
LTOP POPF (Optimal) POPF (Satisficing)

DLH DL LH L Forwards Reversed Standard Makespan No MIP relax No-TIL-Abs Reversed
AC3 1 0 0.4 1.1 1.1 1.1 1.1 0.7 1.4 0.4 (0.0) 0.1 (1.7) 0.7 (0.0) 105.8 (0.0) 0.4 (0.0)
AC3 2 0 9.3 51.0 51.5 50.4 53.5 - 809.6 32.5 (0.0) 3.2 (1.6) 113.2 (0.0) 13.0 (0.1) 78.1 (0.0)
AC3 3 0 23.0 188.3 196.8 193.3 202.0 - - 1105.1 (0.0) 117.5 (2.3) 3041.6 (0.0) 88.2 (0.1) 39.2 (0.8)
AC3 1 1e 3.8 3.9 3.9 5.2 5.3 3.3 4.0 1.7 (0.0) 0.1 (0.7) 2.3 (0.0) 1079.3 (0.3) 1.2 (1.2)
AC3 2 2ce 27.7 15.2 25.2 55.2 126.8 - - 1550.6 (0.3) 1.1 (19) 2284.2 (0.0) 31.3 (3.7) 892.5 (1.6)
AC3 3 2c 250.5 203.2 362.2 2979.7 3715.8 - - 399.2 (0.2) 9.2 (7.3) 26.3 (1.4) 303.4 (1.3) 602.8 (1.1)
AC3 3 2e 228.8 217.1 263.0 1453.1 2092.8 - - 291.5 (1.3) 9.6 (11) 28.4 (2.4) 310.8 (2.3) 688.6 (1.9)

AC3 3 2ce1 312.2 218.2 260.8 1451.6 2068.4 - - 303.9 (1.3) 9.7 (11) 28.4 (2.4) 314.5 (2.3) 697.2 (1.9)
AC3 3 2ce2 252.6 192.4 216.0 2624.1 3094.3 - - 1464.2 (1.6) 10.0 (12) 204.9 (2.8) 303.4 (2.7) 690.1 (2.3)
AC3 3 2ce3 706.5 516.9 685.5 2959.1 - - - 348.0 (1.1) 10.3 (8.7) 29.4 (1.9) 308.4 (1.7) 603.3 (1.5)

AC3 3 3 148.3 80.0 102.4 735.0 1140.8 - - 1975.5 (2.3) 10.1 (15) 226.0 (3.6) 352.6 (3.4) 699.6 (2.9)

Table 1: Results comparing our MIP model to POPF and LTOP using several different planning heuristics with a timeout of one hour. All
times are the CPU time in seconds. Figures in brackets are the best optimality gap found by POPF alongside the CPU time required to find it.

The optimality gap is computed by (c− c∗)/c∗, where c is the plan cost and c∗ is the optimal solution.

heuristics (D), the hcost
max heuristic (H), and using the LP of a

partial plan (L). The MIP outperforms LTOP on AC3 1 0
through AC3 1 1e, the smallest instances in our dataset.
Once the instances begin growing in size with AC3 2 2ce,
LTOP requires only 75% of the time of the MIP with the
DLH heuristics. The MIP easily outperforms LTOP with
only domain independent heuristics (LH and L), but this
is not surprising considering that the MIP is able to take
our domain specific heuristics into account through its graph
construction. The instance that most realistically represents
the scenario our industrial collaborator faced is AC3 3 3,
which LTOP is able to solve in slightly over half the time of
the MIP. Overall, the MIP requires an average time of 178
seconds versus only 153 seconds for LTOP on our dataset.

POPF is a highly expressive general system and as a result
of the overhead of the additional reasoning it has to do is
not as efficient as the MIP or LTOP. Each temporal action is
split into a start and end action (necessary for completeness
in general temporal planning), which dramatically increases
plan length. Recall also that the PDDL model contains ac-
tions to model hotel cost calculation, which also introduces
extra steps in the search, meaning the POPF plan correspond-
ing to the LTOP plan of length four in Figure 2 has ten steps.

Not only does POPF have a deeper search tree, it has
a higher branching factor, due to the above factors and
plan permutations. The state memoization in POPF is not
sophisticated enough to recognize that different orders
of hotel-cost-calc actions for different vessels are
equivalent (similarly for unrelated hotel-cost-calc and
sail actions). Thus, if using POPF to prove optimality
(A*, admissible costs from expanding the TRPG fully) it
spends almost all of its time considering permutations of
hotel-cost-calc actions. To synthesize as close a com-
parison to LTOP as possible, we made a reversed domain:
vessels begin by phasing in and end by phasing out. We
did not model the problem this way initially due to the
‘physics, not advice’ mantra of PDDL: it is less natural,
though more efficient here, and closer to LTOP. Using this,
POPF can prove optimality in only 3 problems: AC3 1 0
and AC3 1 1e which have 1 vessel; and AC3 2 0 which
has 2 vessels. In AC3 1 1e, it expands twice as many nodes
(and evaluating each takes far longer.) This is an interesting
new problem for temporal-numeric planning research, mo-
tivating research into supporting processes to avoid explicit

search over cost-counting actions, and more sophisticated
state memoization.

To highlight some of the successes of POPF, when per-
forming satisficing search, the column ‘Standard’ in Table 1
demonstrates that POPF is sensitive to the metric specified,
and is successfully optimizing with respect to a cost func-
tion that is not makespan. The ‘Makespan’ results confirm
that optimizing makespan would not be a surrogate for low-
cost in this domain, and indeed reflect that whilst POPF does
not find optimal solutions in all problems, the solutions it is
finding are relatively rather good.

As an evaluation of our modifications to POPF, the ‘No
MIP relax’ column indicates performance when not relax-
ing the MIP to an LP at non-goal states. This configuration
suffers from high per-state costs, limiting the search space
covered in one hour. An alternative means of avoiding the
MIP is to disable TIL abstraction, which again is demon-
strably worse than the ‘Standard’ configuration. Finally, the
‘Reversed’ model, though better for optimal search, gives
worse performance: it forces premature commitment to the
phase-in port without having considered how to sail there.
This is harmless in the optimal case, where all phase-in op-
tions are considered anyway, but detrimental here.

Conclusion
We have shown three methods of solving the LSFRP, an im-
portant real-world problem for the liner shipping industry,
and in doing so extended the TIL handling capabilities of the
planner POPF, as well as introduced the novel method TOP.
Our results indicate that automated planning techniques are
capable of solving real-world fleet repositioning problems
within the time required to create a usable LSFRP deci-
sion support system. For future work, we will explore tighter
lower bounds in LTOP, as well as improved state memoiza-
tion and the reduction of dummy actions in POPF.
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