

Tractable Monotone Temporal Planning

Martin C. Cooper* Frédéric Maris* Pierre Régnier*
IRIT, University of Toulouse

Toulouse, France
{cooper, maris, regnier}@irit fr

Abstract
This paper describes a polynomially-solvable sub-problem
of temporal planning. Polynomiality follows from two
assumptions. Firstly, by supposing that each sub-goal fluent
can be established by at most one action, we can quickly
determine which actions are necessary in any plan.
Secondly, the monotonicity of sub-goal fluents allows us to
express planning as an instance of STP≠ (Simple Temporal
Problem, difference constraints). Our class includes
temporally-expressive problems, which we illustrate with an
example of chemical process planning.

Introduction
Planning is a field of AI which is intractable in the general
case (Erol, Nau, Subrahmanian, 1995). In particular,
propositional planning is PSPACE-Complete (Bylander,
1994).

Nevertheless, a lot of work has been done on the
computational complexity of non-optimal and optimal
planning for classical benchmark domains. (Helmert, 2003,
2006), (Slaney, Thiébaux, 2001) proved that most of them
can be solved by simple procedures running in low-order
polynomial time. Moreover, the planners FF (Hoffmann,
2005) and eCPT (Vidal, Geffner, 2005) empirically proved
that the number of benchmarks that can be solved without
search may be even larger.

Since the work of (Bäckström, Klein, 1991) on the SAS
formulation of planning, several studies have also been
performed to define tractable classes of planning problems.
Many of these tractability results are based on syntactic
restrictions on the set of operators (Bylander, 1994),
(Bäckström, Nebel, 1995), (Erol, Nau, Subrahmanian,
1995), (Jonsson, Bäckström, 1998) and another important
body of work focused on the underlying structure of

* supported by ANR Project ANR-10-BLAN-0210.

planning problems which can be highlighted using the
causal graph (Knoblock, 1994). With restrictions on the
causal graph structure, tractable classes can be exhibited
(Jonsson, Bäckström, 1994, 1995, 1998), (Williams,
Nayak, 1997), (Domshlak, Dinitz, 2001), (Brafman,
Domshlak, 2003, 2006), (Helmert, 2003, 2006), (Jonsson,
2007), (Haslum 2007, 2008), (Giménez, Jonsson, 2008),
(Katz, Domshlak, 2008). A unified framework to classify
the complexity of planning under causal graph restrictions
is given in (Chen, Giménez, 2008).

However, in real application domains, the assumptions of
classical planning are too restrictive: a temporal planning
framework must be used to formalize temporal relations
between actions as temporal constraints. In the PDDL 2.1
temporal framework (McDermott, 1998), (Fox, Long,
2003), the PSPACE-complete complexity of classical
planning can be preserved only when different instances of
the same action cannot overlap. If they do overlap, testing
the existence of a valid plan becomes an EXPSPACE-
complete problem (Rintanen, 2007). In this paper we
present a polynomially-solvable sub-problem of temporal
planning. To our knowledge no previous work has
specifically addressed this issue.

The article is organized as follows: Section 2 presents our
temporal framework. Section 3 introduces the notion of
monotonicity of fluents. Section 4 studies how to
determine whether fluents are monotone. Section 5 gives
an example of a temporal planning problem that can be
solved in polynomial time: temporal chemical process
planning. All solutions to this example require concurrent
actions. Sections 6 and 7 conclude and give an outlook on
future research.

 Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

20

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling

Temporal Planning
We study temporal propositional planning in a language
based on the temporal aspects of PDDL2.1. A fluent is a
positive or negative atomic proposition. As in PDDL2.1,
we consider that changes of the values of fluents are
instantaneous but that conditions on the value of fluents
may be imposed over an interval. An action a is a
quadruple <Cond(a), Add(a), Del(a), Constr(a)>, where
the set of conditions Cond(a) is the set of fluents which are
required to be true for a to be executed, the set of additions
Add(a) is the set of fluents which are established by a, the
set of deletions Del(a) is the set of fluents which are
destroyed by a, and the set of constraints Constr(a) is a set
of constraints between the relative times of events which
occur during the execution of a. An event corresponds to
one of four possibilities: the establishment or destruction of
a fluent by an action a, or the beginning or end of an
interval over which a fluent is required by an action a. In
PDDL2.1, events can only occur at the beginning or end of
actions, but we relax this assumption so that events can
occur at any time provided the constraints Constr(a) are
satisfied.

We use the notation a → f to denote the event that action a
establishes fluent f, a → ¬f to denote the event that a
destroys f, and f |→ a and f →| a, respectively, to denote
the beginning and end of the interval over which a requires
the condition f. If f is already true (respectively, false)
when the event a → f (a → ¬f) occurs, we still consider
that a establishes (destroys) f. A temporal plan may contain
several instances of the same action, but since most of the
temporal plans studied in this paper contain at most one
instance of each action, for notational simplicity, we only
make the distinction between actions and instances of
actions if this is absolutely necessary. The notation τ(E)
represents the time in a plan at which an event E occurs.

For a given action a, let Events(a) represent the different
events which constitute its definition, namely (a → f) for
all f in Add(a), (a → ¬f) for all f in Del(a), (f |→ a) and
(f →| a) for all f in Cond(a). The definition of an action a
includes constraints Constr(a) on the relative times of
events in Events(a). As in PDDL2.1, we consider that the
length of time between events in Events(a) is not
necessarily fixed and that Constr(a) corresponds to interval
constraints on pairs of events, such as τ(f |→ a) − τ(f →| a)
∈ [α, β] for some constants α,β. We use [αa(E1,E2),
βa(E1,E2)] to denote the interval of possible values for the
relative distance between events E1,E2 in action a. A fixed
length of time between events E1,E2 ∈ Events(a) can, of
course, be modelled by setting α a(E1,E2) = β a(E1,E2). We
now introduce two basic constraints that all temporal plans
must satisfy.

inherent constraints on the set of actions A: for all a∈A, a
satisfies Constr(a), i.e. for all pairs of events E1,E2 ∈
Events(a), τ(E1) − τ(E2) ∈ [αa(E1,E2), βa(E1,E2)].

contradictory-effects constraints on the set of actions A:
for all ai,aj∈A, for all positive fluents f ∈ Del(ai) ∩
Add(aj), τ(ai → ¬f) ≠ τ(aj → f).

Definition 1. A temporal planning problem <I,A,G>
consists of a set of actions A, an initial state I and a goal G,
where I and G are sets of fluents.

Notation: If A is a set of action-instances, then Events(A)
is the union of the sets Events(a) (for all action-instances
a ∈ A).

Definition 2. P = <A,τ>, where A is a set of action-
instances {a1,...,an} and τ is a real-valued function on
Events(A), is a temporal plan for the problem <I,Aʹ′,G> if
(1) A ⊆ Aʹ′, and
(2) P satisfies the inherent and contradictory-effect
constraints on A;

and when P is executed (i.e. fluents are established or
destroyed at the times given by τ) starting from the initial
state I:
(3) for all ai ∈ A, each f ∈ Cond(ai) is true when it is
required, and
(4) all goal fluents g ∈ G are true at the end of the
execution of P.

We now look in more detail in the type of constraints that
we impose on the relative times of events within an action.

Definition 3. An interval constraint C(x,y) on real-valued
variables x,y is a binary constraint of the form x-y ∈ [a,b]
where a,b are real constants.

Definition 4. (Jeavons and Cooper 1995) A binary
constraint C(x,y) is min-closed if for all pairs of values
(x1,y1), (x2,y2) which satisfy C, (min(x1,x2),min(y1,y2)) also
satisfies C.

Lemma 1. Let A={a1,...,an} be a set of actions and Aʹ′ a set
of action-instances in which each action ai (i=1,...,n) occurs
ti≥1 times. Let τ be a real-valued function on the set of
events in Aʹ′. For each E ∈ Events(ai), let E[j] (j=1,...,ti)
represent the occurrence of event E within the jth instance
of ai. For i ∈ {1,...,n}, define the real-valued function τmin
on the set of events in the set of actions A by τmin(E) =
min{τ(E[j]) | j=1,...,ti}. If τ satisfies the inherent constraints
on Aʹ′, then τmin satisfies the inherent constraints on A.

21

Proof: All interval constraints are min-closed (Jeavons and
Cooper 1995). By applying the definition of min-
closedness ti−1 times, for each action ai, we can deduce
that if τ satisfies an interval constraint on each of the ti
instances of ai, then τmin satisfies this constraint on the
action ai. In other words, for all pairs of events E1,E2 in
Events(ai), if τ(E1[j]) − τ(E2[j]) ∈ [αa(E1,E2), βa(E1,E2)] for
j=1,...,ti, then τmin(E1) − τmin(E2) ∈ [αa(E1,E2), β a(E1,E2)].
Hence if τ satisfies the inherent constraints on Aʹ′, then τmin
satisfies the inherent constraints on A.

Definition 5. A temporal planning problem <I,A,G> is
positive if there are no negative fluents in the conditions of
actions nor in the goal G.

In this paper, we will only consider positive temporal
planning problems <I,A,G>. It is well known that any
planning problem can be transformed into an equivalent
positive problem in linear time by the introduction of a
new fluent notf for each positive fluent f (Ghallab, Nau,
Traverso 2004). By this assumption, G and Cond(a) (for
any action a) are composed of positive fluents. By
convention, Add(a) and Del(a) are also composed
exclusively of positive fluents. The initial state I, however,
may contain negative fluents.

We will need the following notion of establisher-
uniqueness in order to define our tractable class of
temporal planning problems. This is equivalent to post-
uniqueness in SAS+ planning (Jonsson, Bäckström, 1998)
restricted to Boolean variables but generalised so that it
applies to a specific subset of the positive fluents. In the
next section, we apply it to the set of subgoals S, those
fluents which are essential to the realisation of the goal.

Definition 6. A set of actions A={a1,...,an} is establisher-
unique relative to a set of positive fluents S if for all i ≠ j,
Add(ai) ∩ Add(aj) ∩ S = ∅, i.e. no fluent of S can be
established by two distinct actions of A.

If a set of actions is establisher-unique relative to the set of
subgoals of a problem, then we can determine in
polynomial time the set of actions which are necessarily
present in a temporal plan. There remains the problem of
determining how many times each action must occur and
then scheduling these action-instances in order to produce
a valid temporal plan.

Monotone Planning
In this section, we introduce the notion of monotonicity of
fluents. Together with establisher-uniqueness, the
monotonicity of fluents is sufficient for a polynomial-time
algorithm to exist for temporal planning.

Definition 7. A fluent f is –monotone (relative to a positive
temporal planning problem <I,A,G>) if, after being
destroyed f is never re-established in any temporal plan for
<I,A,G>. A fluent f is +monotone (relative to <I,A,G>) if,
after having been established f is never destroyed in any
temporal plan for <I,A,G>. A fluent is monotone (relative
to <I,A,G>) if it is either + or −monotone (relative to
<I,A,G>).

Examples: In fairly obvious contexts, the following fluents
are –monotone: alive (of a person), never-used, live (of a
match), ready-to-eat (of a meal). Similarly, the following
fluents are all +monotone: not-alive, burnt, dissolved, burst
(of a balloon), eaten, cooked, graduated, born and extinct.
The detection of the monotonicity of fluents is discussed in
Section 4.

Notation: If A is a set of actions, we use the notation
Del(A) to represent the union of the sets Del(a) (for all
actions a ∈ A). Add(A), Cond(A), Constr(A) are defined
similarly.

The following lemma follows trivially from Definition 7.

Lemma 2. If f ∉ Add(A) ∩ Del(A), then f is both
−monotone and +monotone relative to the positive
temporal planning problem <I,A,G>.

We now introduce three other sets of constraints which
will only be applied to monotone fluents:

−authorisation constraints on the positive fluent f and the
set of actions A: for all ai,aj∈A, if f ∈ Del(aj) ∩ Cond(ai),
then τ(f →| ai) < τ(aj → ¬f).

+authorisation constraints on the positive fluent f and the
set of actions A: for all ai,aj∈A, if f ∈ Del(aj) ∩ Add(ai) ∩
(Cond(A) ∪ G), then τ(aj → ¬f) < τ(ai → f).

causality constraints on the positive fluent f and the set of
actions A: for all ai,aj∈A, if f ∈ (Cond(aj) ∩ Add(ai))\I
then τ(ai → f) < τ(f |→ aj).

Definition 8. A temporal plan for a positive temporal
planning problem <I,A,G> is monotone if each pair of
actions (in A) satisfies the +authorisation constraints for all
+monotone fluents and the –authorisation constraints for
all –monotone fluents.

The following lemma follows directly from the definition
of monotonicity along with the fact that a fluent cannot be
simultaneously established and destroyed in a temporal
plan.

22

Lemma 3. Suppose that the positive fluent f is monotone
relative to a positive temporal planning problem <I,A,G>
and that actions ai,aj ∈ A are such that f ∈ Add(ai) ∩
Del(aj). If f is +monotone relative to this problem, then in
all temporal plans including both ai and aj, τ(aj → ¬f) <
τ(ai → f). If f is –monotone relative to this problem, then in
all temporal plans including both ai and aj, τ(ai → f) < τ(aj
→ ¬f).

Proposition 1. If each fluent in Cond(A) is monotone
relative to a positive temporal planning problem <I,A,G>,
then all temporal plans for <I,A,G> are monotone.

Proof: Let P be a temporal plan. Consider firstly a positive
–monotone fluent f. We have to show that the
−authorisation constraints are satisfied for f in P i.e. that f
is not destroyed before (or at the same time as) it is
required in P. But this must be the case since f cannot be
re-established once it is destroyed. Consider secondly a
positive +monotone fluent f. By Lemma 3, the
+authorisation constraint is satisfied for f in P.

Definition 9. Given a temporal planning problem <I,A,G>,
the set of sub-goals is the minimum subset SG of
Cond(A) ∪ G satisfying

1. G ⊆ SG
2. for all a ∈ A, if Add(a) ∩ (SG\I) ≠ ∅, then

Cond(a) ⊆ SG.
The reduced set of actions is Ar = {a ∈ A | Add(a) ∩
(SG\I) ≠ ∅}.

We can clearly determine SG and then Ar in polynomial
time and the result is unique. If each fluent in Cond(Ar) ∪
G is monotone, we say that a plan P for the temporal
planning problem <I,A,G> satisfies the authorisation
constraints if each −monotone fluent satisfies the
−authorisation constraints and each +monotone fluent
satisfies the +authorisation constraints (it is assumed that
we know, for each fluent f ∈ Cond(Ar) ∪ G, whether f is +
or –monotone.)

Theorem 1. Given a positive temporal planning problem
<I,A,G>, where A is a set of actions such that Constr(A)
are interval constraints, let SG and Ar be, respectively, the
set of sub-goals and reduced set of actions. If the set of
actions Ar is establisher-unique relative to SG, each fluent
in Cond(Ar) ∪ G is monotone relative to <I,Ar,G> and
each fluent in I ∩ (Cond(Ar) ∪ G) is –monotone relative to
<I,Ar,G>, then <I,A,G> has a temporal plan P if and only if
(1) G ⊆ (I\Del(Ar)) ∪ Add(Ar)
(2) Cond(Ar) ⊆ I ∪ Add(Ar)
(3) all fluents g ∈ G ∩ Del(Ar) ∩ Add(Ar) are +monotone
relative to <I,Ar,G>

(4) the set of authorisation, inherent, contradictory-effects
and causality constraints has a solution over the set of
actions Ar.

Proof: (⇒) Ar is the set of actions which establish sub-
goals f in SG\I. SG = Cond(Ar) ∪ G. Since Ar is
establisher-unique relative to SG, each sub-goal f ∈ SG\I
has a unique action which establishes it. Hence each action
in Ar must occur in the plan P. Furthermore,
(Add(A)\Add(Ar)) ∩ (Cond(Ar)\I) = ∅ by Definition 9. It
follows that (2) is a necessary condition for a temporal plan
P to exist.
 Let Pʹ′ be a version of P in which we only keep actions in
Ar. Pʹ′ is also a valid temporal plan since no conditions of
actions in Pʹ′ and no goals in G are established by any of
the actions eliminated from P, except possibly if they are
also in I. Such fluents f ∈ I ∩ (Cond(Ar) ∪ G) are –
monotone, by hypothesis, and hence cannot be established
in P after being destroyed. It follows that any such f was
already true when established in P by any action in A\ Ar.
 (1) is clearly a necessary condition for Pʹ′ to be a valid
temporal plan. Consider g ∈ G ∩ Del(Ar) ∩ Add(Ar).
From Lemma 3, we can deduce that g cannot be
−monotone, since g is true at the end of the execution of Pʹ′.
Thus (3) holds. Let Pmin=<Ar,τmin> be the version of the
temporal plan Pʹ′=<Ar,τ> in which we only keep one
instance of each action ai ∈ Ar (and no instances of the
actions in A\Ar) and τmin is defined from τ by taking the
first instance of each event in Events(ai), for each action ai
∈ Ar, as described in the statement of Lemma 1. We will
show that Pmin satisfies the authorisation, inherent,
contradictory-effects and causality constraints.
 By Proposition 1, the temporal plan Pʹ′ must be
monotone. Since Pʹ′ is monotone and by the definition of a
temporal plan, the authorisation constraints are all
satisfied. Pʹ′ must also, by definition of a temporal plan,
satisfy the inherent and contradictory-effects constraints. It
follows from Lemma 1 that Pmin also satisfies the inherent
constraints. Since the events in Pmin are simply a subset of
the events in Pʹ′, Pmin necessarily satisfies both the
authorisation constraints and the contradictory-effects
constraints.
 Consider a positive fluent f ∈ (Cond(aj) ∩ Add(ai))\I,
where ai, aj ∈ Ar. Since aj ∈ Ar, we know that Add(aj) ∩
(SG\I) ≠ ∅ and hence that Cond(aj) ⊆ SG, by the definition
of the set of sub-goals SG. Since f ∈ Cond(aj) we can
deduce that f ∈ SG. In fact, f ∈ SG\I since we assume that
f ∉ I. It follows that if f ∈ Add(a) for some a ∈ A, then a ∈
Ar. But we know that Ar is establisher-unique (relative to
SG). Hence, since f ∈ Cond(aj) ⊆ Cond(Ar) and f ∈
Add(ai), f can be established by the single action a=ai in A.
Since f ∉ I, the first establishment of f by an instance of ai
must occur in Pʹ′ before f is first required by any instance of

23

aj. It follows that the causality constraint must be satisfied
by f in Pmin.

(⇐) Suppose that (1) and (2) are satisfied by Ar. Let P be a
solution to the set of authorisation, inherent, contradictory-
effects and causality constraints over Ar. A solution to
these constraints uses each action in Ar (in fact, it uses each
action exactly once since it assigns one start time to each
action in Ar). Consider any g ∈ G. By (1), g ∈ (I\Del(Ar))
∪ Add(Ar). If g ∉ Del(Ar), then g is necessarily true at the
end of the execution of P. On the other hand, if g ∈ Del(aj)
for some action aj ∈ Ar, then by (1) there is necessarily
some action ai ∈ Ar which establishes g. Then, by (3) g is
+monotone. Since P satisfies the +authorisation constraint
for g, ai establishes g after all deletions of g. It follows that
g is true at the end of the execution of P.
 Consider some –monotone f ∈ Cond(aj) where aj ∈ Ar.
Since the –authorisation constraint is satisfied for f in P, f
can only be deleted in P after it is required by aj. Therefore,
it only remains to show that f was either true in the initial
state I or it was established some time before it is required
by aj. By (2), f ∈ I ∪ Add(Ar), so we only need to consider
the case in which f ∉ I but f ∈ Add(ai) for some action ai ∈
Ar. Since P satisfies the causality constraint, τ(ai → f) <
τ(f |→ aj) and hence, during the execution of P, f is true
when it is required by action aj.
 Consider some f ∈ Cond(aj), where aj ∈ Ar, which is
not –monotone. By the assumptions of the theorem, f is
necessarily +monotone and f ∉ I. First, consider the case f
∉ Del(Ar) ∩ Add(Ar). By Lemma 2, f is −monotone which
contradicts our assumption. Therefore f ∈ Del(ak) ∩
Add(ai), for some ai, ak ∈ Ar, and recall that f ∉ I. Since
the +authorisation constraint is satisfied for f in P, any
destruction of f occurs before f is established by ai. It then
follows from the causality constraint that the condition f
will be true when required by aj during the execution of P.

Theorem 2. Let ΠU+M be the class of positive temporal
planning problems <I,A,G> in which A is establisher-
unique relative to Cond(A) ∪ G, all fluents in Cond(A) ∪
G are monotone relative to <I,A,G> and all fluents in I ∩
(Cond(A) ∪ G) are −monotone relative to <I,A,G>. Then
ΠU+M can be solved in time O(n3) and space O(n2), where n
is the total number of events in the actions in A. Indeed, we
can even find a temporal plan with the minimum number
of action-instances in the same complexity.

Proof: This follows almost directly from Theorem 1 and
the fact that the set of authorisation, inherent,
contradictory-effects and causality constraints are STP≠
(Koubarakis, 1992). An instance of STP≠ can be solved in
O(n3+k) time and O(n2+k) space (Gerevini, Cristani, 1997),
where n is the number of variables and k the number of
inequations (i.e. constraints of the form xj – xi ≠ d). Here,

the only inequations are the contradictory-effects
constraints of which there are at most n2, so k=O(n2).
Furthermore, the calculation of SG and Ar is clearly O(n2).
 Establisher-uniqueness tells us exactly which actions
must belong to the temporal plan. Then, as shown in the
proof of Theorem 1, the monotonicity assumptions imply
that we only need one instance of each of these actions. It
then trivially follows that we solve the optimal version of
the temporal planning problem, in which the aim is to find
a temporal plan with the minimum number of action-
instances, by solving the set of authorisation, inherent,
contradictory-effects and causality constraints.

Detecting Monotonicity of Fluents
A class Π of instances of an NP-hard problem is generally
considered tractable if it satisfies two conditions: (1) there
is a polynomial-time algorithm to solve Π, and (2) there is
a polynomial-time algorithm to recognise Π. It is clearly
polynomial-time to detect whether all actions are
establisher-unique. On the other hand, our very general
definition of monotonicity of fluents implies that this is not
the case for determining whether fluents are monotone.

Theorem 3. Determining whether a fluent of a temporal
planning problem <I,A,G> is monotone is PSPACE-hard if
overlapping instances of the same action are not allowed in
plans and EXPSPACE-complete if overlapping instances
of the same action are allowed.

Proof: Notice that if <I,A,G> has no solution, then all
fluents are trivially monotone by Definition 7, since they
are neither established nor destroyed in any plans. It is
sufficient to add two new goal fluents f1,f2 and two new
instantaneous actions to A, a1 which simply adds f1 and a2
which has f1 as a condition, adds f2 and deletes f1 (a1 and a2
being independent of all other fluents) to any problem
<I,A,G>: f1 is monotone if and only if the resulting
problem has no temporal plan. The theorem then follows
from the fact that testing the existence of a temporal plan
for a temporal planning problem <I,A,G> is PSPACE-hard
if overlapping instances of the same action are not allowed
in plans and EXPSPACE-complete if overlapping
instances of the same action are allowed (Rintanen, 2007).

We can nevertheless detect the monotonicity of certain
fluents in polynomial time. There are several ways in
which we might demonstrate that a fluent is monotone. In
this section we give some examples which give rise to low-
order polynomial-time algorithms. Given Theorem 3, we
clearly do not claim to be able to detect all monotone
fluents with these rules. The set of temporal planning
problems whose fluents can be proved +monotone or

24

−monotone by the rules given in this section, as required
by the conditions of Theorem 2, represents a tractable
class, since it can be both recognised and solved in
polynomial time.

Our first rule simply restates Lemma 2 from the previous
section.

Rule 1: If there are no actions a, aʹ′ ∈ Ar such that f ∈
Del(a) ∩ Add(aʹ′) then f is both +monotone and
−monotone.

It may also be possible to show that a fluent is monotone
because of its links with other fluents which are already
known to be monotone. Consider a simple example of a
planning problem with the two fluents item_in_shop,
item_for_sale and only two actions which have these
fluents as conditions or effects: the action
DISPLAY_ITEM which has a condition item_in_shop and
establishes item_for_sale, and the action SELL_ITEM
which has a condition item_for_sale and destroys both
item_for_sale and item_in_shop. For simplicity, suppose
that both actions are instantaneous. The fluent
item_in_shop is –monotone since it can never be
established. (It may or may not be present in the initial
state.) We cannot apply Rule 1 to deduce the monotonicity
of item_for_sale, since it can be both established and
destroyed. However, since item_in_shop is –monotone, it
is clear that DISPLAY_ITEM cannot be executed after
SELL_ITEM. It then follows that item_for_sale is –
monotone. We formalise this basic idea in the following
two rules.

Rule 2: Suppose that the reduced set of actions Ar is
establisher-unique relative to the set of sub-goals SG (as
defined by Definition 9) and let af denote the unique action
that establishes fluent f ∈ SG. If for all a ∈ Ar such that f ∈
Del(a),
either ∃ a −monotone fluent p ∈ Del(a) ∩ Cond(af) such
that τ(a → ¬p) − τ(a → ¬f) ≤ τ(p →| af) − τ(af → f),
or ∃ a −monotone fluent p ∈ Del(a) ∩ Add(af) such that
 τ(a → ¬p) − τ(a → ¬f) ≤ τ(af → p) − τ(af → f),
or ∃ a +monotone fluent p ∈ Add(a) ∩ Del(af) such that
 τ(a → p) − τ(a → ¬f) ≤ τ(af → ¬p) − τ(af → f),
or ∃ a +monotone fluent p ∈ (Cond(a) ∩ Del(af))\I such
 that τ(p →| a) − τ(a → ¬f) ≤ τ(af → ¬p) − τ(af → f),
then f is −monotone.

Rule 3: Suppose that set of actions Ar is establisher-unique
relative to the set of sub-goals SG and let af denote the
unique action that establishes fluent f ∈ SG. If for all a ∈
Ar such that f ∈ Del(a),
either ∃ a −monotone fluent p ∈ Cond(a) ∩ Del(af) such
that τ(af → ¬p) − τ(af → f) ≤ τ(p →| a) − τ(a → ¬f),

or ∃ a −monotone fluent p ∈ Add(a) ∩ Del(af) such that
 τ(af → ¬p) − τ(af → f) ≤ τ(a → p) − τ(a → ¬f),
or ∃ a +monotone fluent p ∈ Del(a) ∩ Add(af) such that
 τ(af → p) − τ(af → f) ≤ τ(a → ¬p) − τ(a → ¬f),
or ∃ a +monotone fluent p ∈ (Del(a) ∩ Cond(af))\I such
 that τ(p →| af) − τ(af → f) ≤ τ(a → ¬p) − τ(a → ¬f),
then f is +monotone.

Proposition 2. Rules 2 and 3 are valid.

Proof: We only give the proof of the validity of Rule 2,
since the proof of Rule 3 is entirely similar. Suppose that
the premises of Rule 2 hold. Consider an arbitrary fluent f
∈ SG and let af denote the unique action that establishes
fluent f ∈ SG. Suppose that f ∈ Del(a) and there is a
−monotone fluent p ∈ Del(a) ∩ Cond(af) such that τ(a →
¬p) − τ(a → ¬f) ≤ τ(p →| af) − τ(af → f). But, since p is
−monotone, we know that τ(p →| af) < τ(a → ¬p). It
follows directly that τ(af → f) < τ(a → ¬f). By a similar
argument for the other three cases listed in Rule 2, we can
deduce that for all actions a ∈ Ar such that f ∈ Del(a), τ(af
→ f) < τ(a → ¬f). Since af is the unique action that
establishes f, we can deduce that f can never be established
after it is destroyed and hence is −monotone.

The following theorem now follows from the fact that
Rules 1,2 and 3 can clearly be applied until convergence in
polynomial time.

Theorem 4. Let Π be the class of positive temporal
planning problems <I,A,G> in which A is establisher-
unique relative to Cond(A) ∪ G, all fluents in Cond(A) ∪
G are monotone and all fluents in I ∩ (Cond(A) ∪ G) are
−monotone, where monotonicity of all fluents can be
detected by applying Rules 1, 2 and 3 until convergence.
Then Π is tractable.

An Example of Chemical Process Planning
The Temporal Chemical Process domain involves different
kinds of operations on chemicals that are performed in the
industrial production of compounds. For example, there is
an operator that can activate a source of raw material.
Then, this raw material can be catalysed in two ways to
synthesize two different products. These products can be
mixed and reacted using the raw material once again to
produce the desired compound. This process is illustrated
by the temporal plan given in the figure. We represent non-
instantaneous actions by a rectangle. The duration of an
action is given in square brackets after the name of the
action. Conditions are written above an action, and effects
below.

25

The initial state and the goal of corresponding planning
problem are:
I={Available(water),Available(s),Available(c1),
 Available(c2)}

G={Reacted(p1,p2)}

Given the temporal planning problem <I,A,G>, where A is
the set of all actions from the Temporal Chemical Process
domain, the set of sub-goals SG and the reduced set of
actions Ar are:
SG={Reacted(p1,p2), Reacting(s), Mixed(p1,p2),
Available(water), Available(s), End-Catalyze(p1),
End-Catalyze(p1), Synthesized(p2),
Synthesized(p2), Available(c1), Available(c2),
Catalyzing(p1,c1), Catalyzing(p2,c2)}

Ar={REACT(p1,p2,s), ACTIVATE(s), MIX(p1,p2),
CATALYZE(p1,s,c1), SYNTHESIZE(p1,c1),
CATALYZE(p2,s,c2), SYNTHESIZE(p2,c2)}

For all i ≠ j such that {ai, aj} ⊂ Ar we have
Add(ai) ∩ Add(aj) ∩ SG = ∅. Hence, the set of actions Ar
is establisher-unique relative to SG. We can immediately
remark that fluent Available(water) is never added or
destroyed, fluents Reacted(p1,p2), Mixed(p1,p2), End-

Catalyze(p1), Synthesized(p1), End-Catalyze(p2),
Synthesized(p2) are only added, and fluents
Available(s), Available(c1), Available(c2) are only
destroyed. Thus, none of these fluents are in Add(Ar) ∩
Del(Ar), and by Rule 1, they are –monotone. Using Rule 2,
we can then prove that Reacting(s) is –monotone. af =

ACTIVATE(s) is the unique action that establishes fluent f =
Reacting(s) ∈ SG. a = ACTIVATE(s) is also the unique
action that destroys f = Reacting(s) and for the –
monotone fluent p = Available(s) ∈ Del(a) ∩ Cond(af),
we have τ(a → ¬p) − τ(a → ¬f) ≤ τ(p →| af) − τ(af → f).
Therefore, by Rule 2, Reacting(s) is –monotone. By a
similar argument, again using Rule 2, we can prove that
Catalyzing(p1,c1) and Catalyzing(p2,c2) are –
monotone.

The set of actions Ar is establisher-unique relative to SG,
each fluent in Cond(Ar) ∪ G is monotone and each fluent
in I ∩ (Cond(Ar) ∪ G) is –monotone relative to <I,Ar,G>.
Moreover,
(1) G ⊆ (I\Del(Ar)) ∪ Add(Ar)
(2) Cond(Ar) ⊆ I ∪ Add(Ar)
(3) all fluents g ∈ G ∩ Del(Ar) ∩ Add(Ar) are +monotone
relative to <I,Ar,G> (trivially, since this set is empty)
(4) There are no contradictory effects nor +authorisation
constraints. The remaining set of constraints has a solution
over the set of actions Ar.
Thus, by Theorem 1, the problem <I,A,G> has a solution-
plan, shown in the figure (causality constraints are
represented by bold arrows, and –authorisation constraints
by dotted arrows), and, by Theorem 2, this solution can be
found in polynomial time.

Available(s)

Available(water)

Mixed(p1,p2)

ACTIVATE(s)[22]

CATALYZE(p1,s,c1)[8]

MIX(p1,p2)[5]

SYNTHESIZE(p1,c1)[6]
REACT(p1,p2,s)[5]

Catalyzing(p1,c1) ¬Catalyzing(p1,c1)
End-Catalyze(p1)

Reacting(s)

Reacting(s)

Catalyzing(p1,c1)

Synthesized(p1)

CATALYZE(p2,s,c2)[8]

SYNTHESIZE(p2,c2)[6]

Catalyzing(p2,c2) ¬Catalyzing(p2,c2)
End-Catalyze(p2)

Reacting(s)

Synthesized(p2)

Catalyzing(p2,c2)

End-Catalyze(p1)

End-Catalyze(p2)
Synthesized(p1)

Synthesized(p2)

Mixed(p1,p2)

Reacted(p1,p2)

Reacting(s)

¬Available(s)

¬Reacting(s)

¬Available(c1)

Available(c2)

¬Available(c2)

Available(c1)

26

Many other temporal planning problems from the chemical
industry can also be solved in polynomial time in a similar
manner. For example, acetylene is a raw material derived
from calcium carbide using water. Then, a vinyl chloride
monomer is produced from acetylene and hydrogen
chloride using mercuric chloride as a catalyst. PVC is then
produced by polymerization. Other examples occur in the
pharmaceutical industry in the production of drugs (such as
paracetamol or ibuprofen) and, in general, in many
processes requiring the production and combination of
several molecules, given that there is a unique way to
obtain them (often imposed by industrial, economical or
ecological reasons).

Discussion
The results in this paper can also be applied to non-
temporal planning since, for example, a classical STRIPS
planning problem can be modelled as a temporal planning
problem in which all actions are instantaneous. It is worth
pointing out that the tractable class of classical planning
problems in which all actions are establisher-unique and all
fluents are detectable as (both + and −) monotone by
applying only Rule 1, is covered by the PA tractable class
of (Jonsson, Bäckström, 1998).

For simplicity of presentation and for conformity with
PDDL2.1, we have considered that inherent constraints
between the times of the events within the same action-
instance are all interval constraints. We can, however,
generalise our tractable classes to allow for arbitrary min-
closed constraints since this was the only property required
of the constraints in the proof of Theorem 1. An example
of such a constraint C(x,y) is a binary interval constraint
with variable bounds: y-x ∈ [f(x,y),g(x,y)], which is min-
closed provided that f(x,y) is a monotone increasing
function of x and g(x,y) is a monotone decreasing function
of y. Another example of a min-closed constraint is the
ternary constraint (x+y)/2 ≤ z, which could be used, for
example, to impose that an effect takes place in the latter
half of an action.

An important aspect of temporal planning, which is absent
from non-temporal planning, is that certain temporal
planning problems, known as temporally-expressive
problems, require concurrency of actions in order to be
solved (Cushing et al. 2007). A typical example of a
temporally-expressive problem is cooking: several
ingredients or dishes must be cooked simultaneously in
order to be ready at the same moment. In industrial
environments, concurrency of actions is often used to keep
storage space and turn-around times within given limits.
(Cooper et al. 2010) identified a subclass of temporally

expressive problems, known as temporally-cyclic, which
require cyclically-dependent sets of actions in order to be
solved. A simple example of this type of problem is the
construction of two pieces of software, written by two
different subcontractors, each needing to know the
specification of the other program in order to correctly
build the interface between the two programs. The
tractable class of temporal planning problems described in
Theorem 4 contains both temporally-expressive and
temporally-cyclic problems. This follows from that fact
that, as illustrated by the example given in (Cooper et al.
2010) it is possible to construct an example of a
temporally-cyclic problem which is establisher-unique and
in which no fluents are destroyed by any action (and hence,
by Lemma 2, all fluents are both + and −monotone). The
chemical process planning problem given in Section 5 is
another example of a problem which is temporally-
expressive since concurrency of actions is required in any
solution.

Conclusion
We have presented a class of temporal planning problems
which can be solved in polynomial time. We have
identified a number of possible applications in the
chemical industry. Further research is required to discover
other possible application areas and, on a theoretical level,
to uncover other rules to prove the monotonicity of fluents.

27

References
Bäckström C., Klein I. (1991) Parallel non-binary planning in
polynomial time. Proceedings IJCAI’1991, pp. 268-273.
Bäckström C., Nebel B. (1995) Complexity results for SAS+
planning). Computational Intelligence 11(4), pp. 625-655.
Brafman R.I., Domshlak C. (2003) Structure and Complexity in
Planning with Unary Operators. Journal of Artificial Intelligence
Research 18, pp. 315-349.
Brafman R.I., Domshlak C. (2006) Factored Planning: How,
When, and When Not". Proceedings of the 21st National
Conference on Artificial Intelligence.
Bylander T. (1994) The Computational Complexity of
Propositional STRIPS Planning. Artificial Intelligence, 69(1-2),
pp.165-204.
Chen H., Giménez O. (2008) Causal Graphs and Structurally
Restricted Planning. Proceedings of the 18th International
Conference on Automated Planning and Scheduling,
ICAPS’2008.
Cooper M.C., Maris F., Régnier P. (2010) Solving temporally
cyclic planning problems, International Symposium on Temporal
Representation and Reasoning (TIME), p. 113-120.
Cushing W., Kambhampati S., Mausam, Weld D.S. (2007) When
is Temporal Planning Really Temporal? Proceedings of 20th
International Joint Conference on Artificial Intelligence,
IJCAI’2007, pp. 1852-1859.
McDermott D. (1998) PDDL, The Planning Domain Definition
Language. Technical Report, http://cs-www.cs.yale.edu/
homes/dvm/.
Domshlak C., Dinitz Y. (2001) Multi-agent off-line coordination:
Structure and complexity. Proceedings of 6th European
Conference on Planning, ECP’2001.
Erol K., Nau D.S., Subrahmanian V.S. (1995) Complexity,
decidability and undecidability results for domain-independent
planning. Artificial Intelligence, 76(1-2), pp.75-88.
Fox M., Long D. (2003) PDDL2.1: An Extension to PDDL for
Expressing Temporal Planning Domains, Journal of Artificial
Intelligence Research 20, pp. 61-124.
Gerevini A., Cristani M. (1997) On Finding a Solution in
Temporal Constraint Satisfaction Problems. Proceedings of 15th
International Joint Conference on Artificial Intelligence,
IJCAI’1997, pp. 1460-1465.
Ghallab M., Nau D.S., Traverso P. (2004) Automated Planning:
Theory and Practice, Morgan Kaufmann.
O. Giménez, A. Jonsson (2008) The complexity of planning
problems with simple causal graphs. Journal of AI Research 31,
pp. 319-351.
Haslum P. (2007) Reducing Accidental Complexity in Planning
Problems. Proceedings of IJCAI’07, pp. 1898-1903.
Haslum P. (2008) A New Approach To Tractable Planning.
Proceedings of ICAPS’2008.
Helmert M. (2003) Complexity results for standard benchmark
domains in planning. Artificial Intelligence 143 (2), pp. 219-262.
Helmert M. (2006) New Complexity Results for Classical
Planning Benchmarks. Proceedings of the Sixteenth International
Conference on Automated Planning and Scheduling,
ICAPS’2006, pp. 52-61.

Hoffmann J. (2005) Where Ignoring Delete Lists Works, Local
Search Topology in Planning Benchmarks. Journal of Artificial
Intelligence Research 24, pp. 685-758.
Jeavons P., Cooper M.C. (1995) Tractable constraints on ordered
domains, Artificial Intelligence 79, pp. 327-339.
Jonsson A. (2007) The Role of Macros in Tractable Planning
Over Causal Graphs. Proceedings of the 20th International Joint
Conference on Artificial Intelligence, IJCAI’2007, pp. 1936-
1941.
Jonsson P., Bäckström C. (1994) Tractable planning with state
variables by exploiting structural restrictions. Proceedings of
AAAI’1994, pp. 998-1003.
Jonsson P., Bäckström C. (1995) Incremental Planning. In New
Directions in AI Planning: 3rd European Workshop on Planning,
EWSP’1995, pp. 79-90.
Jonsson P., Bäckström C. (1998) State-variable planning under
structural restrictions: Algorithms and complexity. Artificial
Intelligence, 100(1-2), pp. 125- 176.
Katz M., Domshlak C. (2008) New Islands of Tractability of
Cost-Optimal Planning. Journal of Artificial Intelligence
Research, 32, pp. 203-288.
Knoblock C.A. (1994) Automatically Generating Abstractions for
Planning. Artificial Intelligence, 68(2), pp. 243-302.
Koubarakis M. (1992) Dense Time and Temporal Constraints
with ≠. Proceedings of 3rd International Conference on Principles
of Knowledge Representation and Reasoning, KR’1992, pp. 24-
35.
Rintanen J. (2007) Complexity of concurrent temporal planning.
Proceedings of the 17th International Conference on Automated
Planning and Scheduling, ICAPS, pp. 280-287.
Slaney J., Thiébaux S. (2001) Blocks World revisited. Artificial
Intelligence 125, pp. 119-153.
Vidal V., Geffner H. (2005) Solving Simple Planning Problems
with More Inference and No Search. Proceedings of the 11th
International Conference on Principles and Practice of Constraint
Programming, CP'05, p. 682-696.
Williams B.C., Nayak P. (1997) A reactive planner for a model-
based executive. Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, pp. 1178-1185.

28

