
Making Hybrid Plans More Clear to Human Users —
A Formal Approach for Generating Sound Explanations

Bastian Seegebarth and Felix Müller and Bernd Schattenberg and Susanne Biundo

Institute of Artificial Intelligence,
Ulm University, D-89069 Ulm, Germany,

email: forename.surname@uni-ulm.de

Abstract

Human users who execute an automatically generated plan
want to understand the rationale behind it. Knowledge-rich
plans are particularly suitable for this purpose, because they
provide the means to give reason for causal, temporal, and hi-
erarchical relationships between actions. Based on this infor-
mation, focused arguments can be generated that constitute
explanations on an appropriate level of abstraction. In this pa-
per, we present a formal approach to plan explanation. Infor-
mation about plans is represented as first-order logic formu-
lae and explanations are constructed as proofs in the resulting
axiomatic system. With that, plan explanations are provably
correct w.r.t. the planning system that produced the plan. A
prototype plan explanation system implements our approach
and first experiments give evidence that finding plan explana-
tions is feasible in real-time.

Introduction
In many real-world application areas, AI planning tech-
niques are deployed to support human users in their deci-
sion making. Prominent such areas are emergency plan-
ning, where disaster missions such as fire brigade operations
and evacuation measures are planned (de la Asunción et al.
2005; Muñoz-Avila et al. 1999), and the system-supported
assistance of (cognitively impaired and elderly) people in
their daily activities (Cesta et al. 2011; Pollack 2002;
Biundo et al. 2011). In these user-centered planning set-
tings, plans are made for human users, i.e. the systems pro-
vide recommendations when and how to act to subjects who
are competent themselves and might scrutinize the systems’
suggestions. Therefore, it is essential that a system is able
to make its decisions transparent, to give good reasons for
them, and to present these reasons in a comprehensible man-
ner. Otherwise, mistrust in the system’s competence might
be provoked, and this might even lead to its disregard, in
particular if the situation is critical. However, the issue
of explaining the results produced by planning systems has
only rarely been addressed so far, as was also recently dis-
cussed (Smith 2010).

In this paper, we introduce a formal approach to plan ex-
planation. It relies on so-called knowledge-rich plans as
they are generated by hybrid planning systems – systems

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that combine the paradigms of both partial-order-causal-link
planning and hierarchical planning. The plans comprise a
set of actions to be executed, a partial order on them, and so-
called causal links, which explicitly state the causal relation-
ships that exist between the actions. In addition, information
about hierarchical dependencies between actions is available
from the underlying planning process. In order to explain
certain properties of a plan, like the existence of a partic-
ular action in this plan or the particular ordering between
some of the actions, our plan explanation approach uses a
first-order logic axiomatic system that formalizes basic ar-
guments about a plan and the logical consequences that can
be derived from them. The axiomatic system is generated
from the plan to be explained and from information about
the planning process that led to it. In this framework, expla-
nation consists of two steps. First, a proof, which we call
a raw explanation, of the plan properties in question is con-
structed. With that, plan explanations are provably correct
w.r.t. to the underlying planner. This means, if the planner
is sound, the explanation system always produces valid ex-
planations. Hence, a user can always feel certain about the
explanations she is given, which in turn helps to establish
her trust in the planning system. Second, an actual expla-
nation is constructed by transforming the raw explanation to
text, speech, or a graphical representation. In this paper we
address the first of these steps.

We have implemented a prototype system for the genera-
tion of raw explanations based on our framework. First re-
sults show that they can be generated within a few seconds.
This gives evidence that it is feasible to find plan explana-
tions in real-time, a fact that is of particular importance in
user-centered planning.

The general question of how automated systems should
present their results has already been addressed in the
past (Moore and Swartout 1989). Here, the presentation of
results is seen as an interactive process, where the user may
ask questions, receive answers, and pose follow-up ques-
tions. In automated reasoning, one way to create explana-
tions for the results a system produces is to extract them
from the steps performed to solve the reasoning task. This
method has been used to generate explanations for subsump-
tion in description logics (McGuinness and Borgida 1995)
and for proofs found by an automated theorem prover (Ho-
racek 2007). In the context of planning, an approach for

225

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling



explaining the causes of discrepancies between the expected
and the observed world state during the execution of a plan
is presented by Molineaux, Kuter, and Klenk (2011). Here,
an explanation is a partially ordered set of actions, observa-
tions, and unobservable exogenous events that would gen-
erate the observed world state. In domains with uncertain
action effects that can be represented as Markov Decision
Processes (Puterman 1994), the reasons for executing an ac-
tion can be explained based on the frequency with which
they help reaching a state with a high reward (Khan, Poupart,
and Black 2009). The challenge of explaining why a plan-
ning system failed to produce a plan for a given planning
task is discussed by Göbelbecker et al. (2010): the prob-
lem is solved by making targeted modifications to the task
and solving the new task using optimal planning. Another
related line of work concerns the ICEE explanation sys-
tem, which adds task explanation functionality to the per-
sonal software assistant CALO (McGuinness et al. 2007;
2005). The ICEE system allows a user among other things
to ask the assistant why it is executing certain tasks and why
tasks are executed in a certain order.

The rest of the paper is organized as follows. After a
brief introduction to hybrid planning we present our formal
framework for plan explanation. It includes the explanation
of plan steps and ordering constraints, based on causal and
decomposition relationships. We then present our prototype
plan explanation system and some first experimental results.
The paper concludes with a short discussion of prospective
issues.

Hybrid Planning
The hybrid planning framework is a combination of POCL
and HTN planning (Estlin, Chien, and Wang 1997; Kamb-
hampati, Mali, and Srivastava 1998; Biundo and Schatten-
berg 2001; Gerevini et al. 2008).

A POCL planning problem (McAllester and Rosenblitt
1991) is a triple Π = (O, sinit, g). Operators are supplied
in the setO. Each operator is a triple (o(v), pre, eff ), where
o is an operator symbol, v = v1, . . . , vn a list of variables,
and pre and eff the preconditions and effects of the oper-
ator given as conjunctions of literals over the variables v.
The initial state sinit and the goal description g are given as
conjunctions of ground literals.

A partial plan is a 4-tuple (PS,≺, V, C). PS is a set of
plan steps, where each plan step s:o consists of a unique
label s and a (partially) instantiated operator o. We will usu-
ally refer to a plan step by its label. The relation ≺ defines
a partial order on the plan steps in PS. The set V contains
constraints on variables, appearing in partially instantiated
plan steps in the plan. C is a set of causal links; a causal link
(s →p s ′) indicates that the literal p from the preconditions
of the operator o′ from the plan step s ′ is established by the
effects of the operator o from the plan step s . We also call s
the producer and s′ the consumer of the causal link.

Given a POCL planning problem Π, a solution is a partial
plan P = (PS,≺, V, C) satisfying the following criteria:

• PS contains a plan step init that has the initial state sinit
as effects and a plan step goal that has the goal state de-

scription g as preconditions,

• for every precondition p of a plan step s ′ there is a causal
link (s →p s ′) such that s has p as an effect and s is
ordered before s ′ by the ordering constraints,

• no causal links are threatened, i.e., for each causal link
(s →p s ′) ∈ C the ordering constraints ensure that no
plan step s ′′ with a literal ¬p in the effects can be ordered
between s and s ′.

These solution criteria ensure that every linearization of a
solution to a POCL planning problem must be executable
in the initial state and generates a state satisfying the goal
description.

HTN planning (Yang 1990; Erol, Hendler, and Nau 1994)
is based on the concepts of primitive and abstract tasks.
Primitive tasks correspond to operators from POCL plan-
ning. Abstract tasks represent high-level activities, such as
composing a message on a smart phone. Tasks are arranged
in task networks, which contain a set of tasks and a partial
order on them. For each abstract task the domain provides
a number of task networks as predefined solutions, called
methods. To solve an abstract task it is replaced by the task
network from one of its corresponding methods. This pro-
cess is called task decomposition. A planning problem is
then specified as an initial task network. It is solved by re-
peatedly decomposing abstract tasks from the task network
until it contains only primitive tasks and is consistent w. r. t.
their ordering and causal structure.

Hybrid planning combines POCL and HTN planning as
follows. Firstly, we adopt the concepts of primitive and
abstract tasks and the decomposition of abstract tasks via
methods from HTN planning. These tasks may, however,
be inserted into plans at any point without being introduced
via decomposition. Secondly, abstract tasks now carry pre-
conditions and effects as in POCL planning. These may be
expressed on an abstract level by using abstract state features
provided by the hybrid planning problem. Lastly, in addition
to the initial task network from HTN planning, we also allow
problems to contain a goal description as in POCL planning.

In hybrid planning, a partial plan is a 4-tuple P = (PS,≺
, V, C). The difference to partial plans from POCL planning
is that plan steps now contain (partially) instantiated tasks
instead of operators. We will call a plan step primitive or
abstract if its task is primitive or abstract.

A hybrid planning problem is given as a 6-tuple Π =
(T ,M,∆, sinit, Pinit, g). The set of available task schemata
is given by T . Task schemata are defined analogously to
operators as a triple (t(v), pre, eff ) with the same mean-
ing. Methods for abstract tasks are contained in M. A
method m = (t, P ) provides a predefined solution for an
abstract task t, given as a partial plan P . The set ∆ con-
tains decomposition axioms. A decomposition axiom is a
formula of the form ∀x.[φ(x) ⇔ ψ1(x) ∨ · · · ∨ ψn(x)]
where x = x1, . . . , xn is a list of variables, φ(x), called
abstraction, is an atomic formula over the variables from x,
and each ψi(x), called formula decomposition, is an exis-
tentially quantified conjunction of literals. Abstract literals
may only be used in the preconditions and effects of abstract
tasks. As in POCL planning, the initial state and goal state

226



description are given by sinit and g. Finally, Pinit specifies
the initial partial plan for the planning problem.

Given a hybrid planning problem Π, a solution is a partial
plan P = (PS,≺, V, C) if it satisfies the above solution
criteria for plans in POCL planning and one more criterion:

• P contains no abstract plan steps and can be obtained
from Pinit by repeated decomposition of plan steps and
insertion of plan steps, causal links, ordering, and vari-
able constraints.

Formal Framework
In order to clarify, why the plan data structure at hand actu-
ally is a solution to the proposed problem, we rely on formal
proofs as a means for establishing coherent sequences of ar-
guments. To this end, we developed an axiomatic system of
first-order logic formulae, which formalize basic arguments
about a plan and their logical consequences. In this setting,
constructing an explanation for any element of a plan (the
plan steps, their causal structure, etc.) means to find a se-
quence of “applications” of the axioms that entails the re-
quested aspect and that is supported by the problem specifi-
cation – the most fundamental, unquestionable raison d’être
for any plan. The axioms are thereby derived from the solu-
tion criteria above, stating explicitly every possible rationale
for generating plans the way they are.

Explanation of Plan Steps
We will begin with explaining why a given plan step s is
present in a given plan P , viz., why s is “necessary” for P
to constitute a solution. According to the solution criteria
for hybrid plans, one of the following may be the reason:
First, s is trivially either init , goal , or any plan step from the
problem specification. Second, s establishes a precondition
of some other plan step s′. Third, s has been introduced by
decomposing an abstract plan step s′ during the construction
of P . The latter two reasons recursively imply follow-up
explanations for s′.

The following sections define an axiomatic system Σ that
captures all relevant facts and axioms for deriving explana-
tions as proofs. Its most basic elements are defined by the
causal structure of a plan P = (PS,≺, V, C), i.e., its set of
causal links: for every causal link (s →p s ′) ∈ C, Σ con-
tains an atom CR(s, p, s ′), representing the causal relation
between s and s′. This also includes causal relations of the
form CR(s, p, goal), denoting the goal description.

We also make use of the decomposition structure behind
P , i.e., the substitution of abstract plan steps by their im-
plementations during P ’s generation out of Pinit. This in-
formation is, however, not represented explicitly in the solu-
tion plan and has to be (re-)constructed from the knowledge
about the plan generation process: for each decomposition
of an abstract plan step s′ via a method m, performed dur-
ing the construction of P from Pinit, Σ contains an atom
DR(s,m, s ′) for each plan step s introduced by m, repre-
senting the decomposition relation between s and s′. On a
technical note, we treat plan steps in the initial plan as results
from decomposing a virtual top-level step top via a special

enterAlbum

selectPic

pressSendByEMail

chooseRecipient

pressSend

goal

displayPic

sendPic

top

InAlbumMode

PicSelected

PicAttached

RecipientSet

EMailSent

dPViaAlbum

sendPicByEMail

mtop

Figure 1: The causal and decomposition structure of an ex-
ample plan. Primitive plan steps are shown on the left hand
side, abstract plan steps on the right. Selected causal re-
lations are depicted as arrows, decomposition relations as
arrows with diamond tips.

method mtop ; we therefore add DR(s,mtop , top) to Σ for
each step s in the initial plan.

In order to illustrate the contents of Σ, we introduce an
example plan in a simplified version of a domain describ-
ing various user assistance task (Biundo et al. 2011). It
addresses the task of selecting a picture from the photo al-
bum of a smart phone and sending it to some other per-
son, i.e., the goal of the plan is to have the picture trans-
ferred to that person in some way. Fig. 1 visualizes its
causal and decomposition structure. In this example, Σ
contains CR(enterAlbum, InAlbumMode, selectPic), be-
cause plan step enterAlbum establishes the precondition
InAlbumMode of its successor selectPic. Also, in the
decomposition of the abstract plan step displayPic the
method dPViaAlbum was used and steps enterAlbum and
selectPic were added to the plan; Σ therefore contains
both axioms DR(enterAlbum, dPViaAlbum, displayPic)
and DR(selectPic, dPViaAlbum, displayPic).

Basic Explanations for Plan Steps We use the literal
Nec(s) for representing that a step s is necessary for a given
plan P to constitute a solution. The reasons for why this is
the case are given by axioms of the form ∀s.[φ⇒ Nec(s)] to
Σ, where φ is a formula encoding an argument that supports
the presence of s in P . Because all of our axioms will have
this form, the only inference rule we need to derive proofs
from such specifications is modus ponens.

Let us begin with axioms that give reason to plan steps
based on the plan’s causal structure:

(1) ∀s.[[∃g.CR(s, g , goal)]⇒ Nec(s)]

(2) ∀s.[[∃s′, p.[CR(s, p, s ′) ∧Nec(s ′)]]⇒ Nec(s)]

Axiom 1 is the base case of causality-related arguments: it
encodes that plan step s can be explained if it is found estab-
lishing g, one of the goals. Axiom 2 takes into account the

227



transitive closure of causal arguments; the reason for a plan
step s is to establish a precondition of some other plan step
s ′, given that there is a reason for s ′. The second condition
is required because if it turned out that s ′ is not necessary
for the plan then arguing for s based on the establishment of
a precondition for s ′ would be rendered irrelevant.

The next axioms deal with the decomposition of abstract
tasks:

(3) ∀s.[DR(s,mtop , top)⇒ Nec(s)]

(4) ∀s.[[∃s′,m.[DR(s,m, s ′) ∧Nec(s ′)]]⇒ Nec(s)]

Axiom 3 states that the reason for every (possibly abstract)
plan step in the initial plan Pinit is given by the problem
specification per se. In a similar fashion to the transitive clo-
sure of causality above, Axiom 4 encodes that decomposing
a plan step s ′ gives reason to all steps s introduced in its
decomposition, given that there is some reason for s ′.

We can now generate an explanation for a given plan
step s by proving that the formula Nec(s) is true for a
given Σ. A verbalization of the explanation can then be
extracted from the proof. The following example shows a
proof for Nec(enterAlbum), an explanation for plan step
enterAlbum in Fig. 1; referenced axioms and proof steps
are annotated.

(5) Nec(enterAlbum) [2,6,7]

(6) CR(enterAlbum, InAlbumMode, selectPic)

(7) Nec(selectPic) [2,8,9]
(8) CR(selectPic,PicSelected , pressSendByEMail)

(9) Nec(pressSendByEMail) [4,10,11]
(10) DR(pressSendByEMail , sendPicByEMail , sendPic)

(11) Nec(sendPic) [3,12]
(12) DR(sendPic,mtop , top)

Steps 6, 8, 10, and 12 are elements of the basic causal
and decomposition structure; they are given explicitly in
Fig. 1. In step 5, we use the atoms 6 and 7 and instantiate
Axiom 2 to [CR(enterAlbum, InAlbumMode, selectPic)∧
Nec(selectPic)] ⇒ Nec(enterAlbum). From that we de-
rive Nec(enterAlbum) by applying modus ponens. Anal-
ogously, we construct the reasons for selectPic and
pressSendByEMail via causal and decomposition relations,
respectively. Finally, steps 11 and 12 finish the proof by stat-
ing that the reason for sendPic is given by the initial plan,
i.e., by using Axiom 3.

Causal Relations for Abstract Plan Steps A solution to
a planning problem does not contain abstract plan steps and
its causal structure is hence given exclusively in terms of
primitive actions. Any explanations for an abstract plan step
would therefore consist of pure decomposition-based rea-
sons. This would be inadequate for two reasons.

First, assume that an abstract plan step is identified as the
reason for some plan step by decomposition. In hybrid plan-
ning, such an abstract plan step can be inserted in a POCL-
like fashion for establishing preconditions of some other
step. It hence does not occur as first argument in any de-
composition relation and cannot be explained by Axioms 3

and 4. As no causal relation for the abstract step is given in
the plan either, the current explanation cannot be completed.

Second, the decomposition structure of a plan is typically
only a few layers deep and explanations that exclusively rely
on decomposition relations would be very short. Although
briefness is on the one hand a desired quality of explana-
tions, it also implies the risk of producing overly short and
uninformative explanations.

These considerations motivate to support inference of
causal relations on any level of abstraction, thereby allowing
to flexibly interleave decompositional and causal arguments.
To this end, we adopt the notion of the legality of meth-
ods and consequently interpret abstract plan steps with their
preconditions and effects as specifications for their imple-
menting decompositions (Biundo and Schattenberg 2001).
Informally, this means that an abstract plan step s “inherits”
the causal relations from the actions in its decomposition.
For example, the primitive plan step pressSendByEMail in
Fig. 1 has the precondition PicSelected and pressSend has
the effect EMailSent . Thus, the abstract plan step sendPic
is associated with the precondition PicSelected and the ef-
fect EMailSent . However, pressSend also has the precon-
dition RecipientSet . This is not considered a precondition
of sendPic because it is established by chooseRecipient ,
which is from within the decomposition of sendPic. Analo-
gously, causal relations for abstract plan steps can be derived
from the causal relations that are produced or consumed by
the steps in their decomposition. We call this process propa-
gation of causal relations and represent it with the following
axioms:

(13) ∀s, p, s′.[[∃m, s′′.[DR(s ′′,m, s ′) ∧ CR(s, p, s ′′)]]

⇒ CR(s, p, s ′)]

(14) ∀s, p, s′.[∃m, s′′.[DR(s ′′,m, s) ∧ CR(s ′′, p, s ′)]]

⇒ CR(s, p, s ′)]

From Axiom 13 we can derive a causal relation between two
plan steps s and s ′ over a precondition p of s ′ if there is a
plan step s ′′ such that s ′′ occurs in the decomposition of
s ′ and s establishes p for s ′′. Analogously, Axiom 14 al-
lows us to derive causal relations where an abstract plan
step establishes a precondition of another plan step. With
these axioms, we can lift any causal relation to the abstract
plan step level. For example, we can derive the causal re-
lation CR(displayPic,PicSelected , sendPic), which is de-
fined between two abstract plan steps (see Fig. 1), as follows:
(15) CR(displayPic,PicSelected , sendPic) [13,16,17]
(16) DR(pressSendByEMail , sendPicByEMail , sendPic)

(17) CR(displayPic,PicSelected , pressSendByEMail)
[14,18,19]

(18) DR(selectPic, dPViaAlbum, displayPic)

(19) CR(selectPic,PicSelected , pressSendByEMail)

Proof step 17 uses effect propagation, Axiom 14, to lift the
causal relation handled in step 19; with this argument, the
abstract plan step displayPic is regarded as the effect pro-
ducer. The causal relation is lifted again in proof step 15,
this time by using precondition propagation, Axiom 13.

228



Causal Relations over Abstract State Features When
explaining a plan to a human user, it is obviously impor-
tant that the explanation is presented on an adequate level of
abstraction: large plans may contain hundreds of plan steps,
and explaining one of them based on the most primitive level
may yield explanations that consist of dozens of causal re-
lations. The above introduced causal relation propagation
addresses this issue to some extent, since giving reasons on
a more abstract task level leads to more concise explana-
tions. However, this technique alone is not sufficient: in
order to explain sendPic (Fig. 1), we can use the propa-
gated causal relations CR(sendPic,EMailSent , goal) and
CR(sendPic,PicAttached , goal), that means, we either
explain that we need to send the picture because it is a goal
to send that e-mail or because it is a goal to attach the pic-
ture to the e-mail. Although sound, both explanations do not
seem reasonable. The reason for sending a picture to some-
one is not to have it attached to an e-mail and attaching the
picture is rather a part of the general –more abstract– goal
to have the picture transferred to someone. In particular the
latter may not be obvious to the human user who receives the
explanation. The following section will explore how we can
use causal relations expressed over abstract literals in order
to create a more plausible explanation in these situations.

As a first technical step, the following axiom introduces
combined causal relations that subsume multiple causal re-
lations by dealing with conjunctions of literals:

(20) ∀s, s′, p, p′.[[CR(s, p, s ′) ∧ CR(s, p′, s ′)]⇒
CR(s, p and p′, s ′)]

We can now introduce axioms for abstract literals in Σ,
that correspond to the decomposition axioms in the domain
model, for example:

(21) daPicTransf : PicTransferred ⇔
[PicAttached∧EMailSent ] ∨[PicPrinted∧FaxSent ] ∨

[PicAttached ∧MMSSent ]

The axiom specifies three more concrete interpretations for
satisfying the abstract goal PicTransferred ; it bears a la-
bel daPicTransf as it will be an argument in the later ex-
planation. Let us assume that one way of transferring the
picture is to attach it to an e-mail and sending that e-mail
to the recipient of the picture, implemented by a method
sendPicByEMail (Fig. 1). By propagation of causal re-
lations, sendPic establishes the goals PicAttached and
EMailSent , and according to the above decomposition ax-
iom it becomes clear that it also establishes the abstract goal
PicTransferred . These considerations lead to the definition
of the following axiom for lifting state features:

(22) ∀s, s′, a.[[∃da, d.[FDec(d , da) ∧AbsL(a, da)

∧ CR(s, d , s ′)]] ⇒ CR(s, a, s ′)]

The existentially quantified variable da denotes a decom-
position axiom and d a conjunction of literals. The
atom FDec(d , da) indicates that d is one of the for-
mula decompositions from da and AbsL(a, da) that a

is the abstract literal defined by da. Using the above
three axioms, we can finally infer the causal relation
CR(sendPic,PicTransferred , goal) as follows:

(23) CR(sendPic,PicTransferred , goal) [22,24,25,26]

(24) FDec(PicAttached and EMailSent , daPicTransf )

(25) AbsL(PicTransferred , daPicTransf )

(26) CR(sendPic,PicAttached and EMailSent , goal)
[20,27,28]

(27) CR(sendPic,PicAttached , goal)

(28) CR(sendPic,EMailSent , goal)

In step 26 we compose a conjunction of two literals from
causal relations (Axiom 20) in order to match the definition
of the respective decomposition axiom. Step 23 uses Ax-
iom 22 to derive a lifted causal relation over the abstraction
of the decomposition axiom. We can then use that relation to
finally give the plausible, albeit trivial reason to the sendPic
plan step, namely that we need to send the picture because it
is our goal to transfer the picture to someone.

Explanation of Ordering Constraints
This section introduces a set of axioms in Σ that is used
to explain why a given plan step is ordered before some
other plan step. Please note the subtle difference between
the semantics of primitive and abstract plan steps: the for-
mer are interpreted classically as atomic, instantaneous state
transitions, i.e., their start and end points in time coincide.
Abstract tasks are however specifications for the set of pre-
defined plans that are given in their decomposition methods,
and thus their occurrence in an explanation has to take into
account the reasons for all the implied primitive plan steps.
This has to be considered in the following formalizations.

Since plan steps under explanation can extend over an
interval, from one qualitative point in time to another, we
deploy a time-point algebra (Vilain, Kautz, and van Beek
1990). The starting point of a plan step s is denoted by s−

and its end point by s+. For two time points i and j we de-
fine the usual temporal relations i < j , i ≤ j , and i = j in
order to express that i is before, not after, or the same as j.
We can now axiomatize some basic temporal relationships
as follows:

(29) ∀i, j, k.[[i < j ∧ j < k ]⇒ i < k ]

(30) ∀s.[s− ≤ s+]

(31) ∀s.[Prim(s)⇒ s− = s+]

Furthermore, Σ contains an atom Prim(s) for every plan
step s that is primitive. Axiom 29 handles the transitivity of
the ’<’-relation. Axiom 30 specifies that the beginning of a
plan step cannot occur after its end, with those time points
coninciding for primitive plan steps.

Questions about the ordering of plan steps are formulated
in terms of temporal relations between the corresponding
points, e.g., if we want to explain why the execution of a
plan step s has to begin before the execution of a plan step
s ′, we have to explain the temporal relation s− < s ′

−. Anal-
ogously to the explanation of plan steps above, the possi-
bilities for explaining why a temporal relation between two

229



points is necessary are formalized as axioms ∀i, j.[φ⇒ iRj]
where R ∈ {<,≤,=} and φ encodes an argument that sup-
ports iRj to be necessary for the plan to constitute a solu-
tion.

Temporal Relations from Decomposition Relations The
first opportunity to derive temporal relations is given by the
decomposition structure of a plan: an abstract plan step s
spans from the beginning of the first to the last step of its de-
composition. In time-point algebra, this translates into the
starting and end point of s never occurring after any starting
point or before any end point in its decomposition, respec-
tively. The following two axioms express this relationship:

(32) ∀s, s′.[[∃m.DR(s ′,m, s)]⇒ s− ≤ s ′
−

]

(33) ∀s, s′.[[∃m.DR(s,m, s ′)]⇒ s+ ≤ s ′
+

]

Temporal Relations from Causal Relations The tempo-
ral relations that can be derived from causal relations depend
on whether the involved plan steps are primitive or abstract.
Given a causal relation CR(s, p, s ′) such that s and s ′ are
both referring to primitive plan steps, it directly follows that
s has to occur before s ′ in order for the effects of s to mani-
fest before they are required by s ′, i.e., we infer the temporal
relation s+ < s ′

−:

(34) ∀s, s′.[[Prim(s) ∧ Prim(s ′) ∧ ∃p.CR(s, p, s ′)]⇒

s+ < s ′
−

]

However, if we encounter an abstract plan step s ′ during ex-
planation generation, we cannot derive this temporal rela-
tion in the same way. The reason can be seen in Fig. 2: it
shows the causal and decomposition structure of a slightly
different plan in the example scenario (cf. Fig. 1). Here, af-
ter entering the album to select the picture it appears that
an appropriate picture is not available, so a new one has to
be taken in the camera mode before selecting it. The two
primitive plan steps to enter the camera mode and take the
picture were added through the decomposition of the ab-
stract plan step obtainPicture. Using the axioms for the
propagation of causal relations, we can derive the causal re-
lation CR(takePicture,HavePicture, displayPicture) be-
tween the primitive plan step takePicture and the ab-
stract plan step displayPicture. If displayPicture were
primitive, then Axiom 34 would allow us to derive
takePicture+ < displayPicture−. However, we can
also see in the figure that enterAlbum is executed before
takePicture, and since enterAlbum is part of the decompo-
sition of displayPicture, the execution of displayPicture
also begins before takePicture, i.e., the temporal rela-
tion takePicture+ < displayPicture− apparently does
not hold. On the other hand, the causal relation was
derived using the causal relation between takePicture
and selectPicture and the decomposition relation between
selectPicture and displayPicture. The former lets us de-
rive takePicture+ < selectPicture− and the latter, using
Axiom 33, selectPicture+ ≤ displayPicture+. Since the
relation selectPicture− = selectPicture+ trivially holds as
well, we can combine these three temporal relations in order

enterAlbum

enterCamera

takePicture

selectPicture

displayPicture

obtainPicture

InAlbumMode

InCameraMode

HavePicture

Figure 2: The causal and decomposition structure of a plan
in which the execution of implementations of abstract plan
steps interleave.

to obtain takePicture+ < displayPicture+. The same kind
of inference can be applied for any causal relation with an
abstract plan step as consumer. We represent this in Σ by the
following axiom:

(35) ∀s, s′.[[Prim(s) ∧ ∃p.CR(s, p, s ′)]⇒ s+ < s ′
+

]

Analogously, given the causal relation CR(s, p, s ′), we can
derive s− < s ′

− if only the consumer s ′ is primitive and
s− < s ′

+ if neither of the two involved plan steps is primi-
tive:

(36) ∀s, s′.[[Prim(s ′) ∧ ∃p.CR(s, p, s ′)]⇒ s− < s ′
−

]

(37) ∀s, s′.[[∃p.CR(s, p, s ′)]⇒ s− < s ′
+

]

The following proof illustrates the explanation of a tem-
poral relation enterAlbum+ < sendPic+: why does
enterAlbum end before sendPic does (Fig. 1)?

(38) enterAlbum+ < sendPic+ [29,39,43]

(39) enterAlbum+ < selectPic+ [29,40,42]

(40) enterAlbum+ < selectPic− [34,41]

(41) CR(enterAlbum, InAlbumMode, selectPic)

(42) selectPic− = selectPic+ [31]

(43) selectPic+ < sendPic+ [35,44]

(44) CR(selectPic,PicSelected , sendPic) [13,45,46]

(45) CR(selectPic,PicSelected , pressSendbyEMail)

(46) DR(pressSendbyEMail , sendPicByEMail , sendPic)

In proof steps 40 and 43 we use a causal relation to derive a
temporal relation, first between two primitive plan steps and
second with an abstract plan step as consumer of the causal
relation. In step 42 we derive the trivial temporal relation
that the start of selectPic is the same as its end. These three
temporal relations are then combined twice, using the tran-
sitivity of the ’<’-Relation defined by Axiom 29, to derive
the desired temporal relation enterAlbum+ < sendPic+.

230



Temporal Relations for Abstract Plan Steps With the
axioms presented so far, we cannot yet derive a temporal
relation s+ < s ′

− if the plan step s ′ is an abstract one.
For example, enterAlbum in Fig. 2 is ordered before any
of the steps from the decomposition of obtainPicture, so
enterAlbum+ < obtainPicture− must hold, which we
cannot support yet. But the example indicates how we can
solve this problem: any time point i, which may be the start
or end point of any plan step, is ordered before the start of
an abstract plan step if it is ordered before all start points of
the steps from the decomposition of that abstract plan step.
The following axiom formalizes this notion:

(47) ∀i, s.[[Abs(s) ∧ ∀s′,m.[DR(s ′,m, s)⇒ i < s ′
−

]]

⇒ i < s−]

The atom Abs(s) thereby denotes that s is an abstract plan
step. We treat the symmetric temporal situation analogously:

(48) ∀i, s.[[Abs(s) ∧ ∀s′,m.[DR(s ′,m, s)⇒ s ′
+
< i ]]

⇒ s+ < i ]

Temporal Relations by Threat Resolution Given a
causal link (s →p s ′) and a plan step s ′′ with an effect ¬p
we call s ′′ a threat to the causal link if s ′′ can be ordered
between s and s ′. In POCL or hybrid planning systems,
threats are usually resolved by adding an ordering constraint
s ′′ → s, called demotion, or s ′ → s′′, called promotion,
to the plan. This prevents s ′′ from being ordered between
s and s ′ and hence the causal conflict does not materialize.
Concerning plan explanation, this means that there may be
valid temporal relations that are not justified by the causal or
decomposition structure but only by taking into account the
threats that have been encountered during the plan genera-
tion process. In order to incorporate explanations for tem-
poral relations based on threat resolution we introduce the
post-hoc threat structure of a plan. The threat structure in-
dicates occurrences of ordering constraints that were only
added to the plan to resolve a threat. For each such order-
ing constraint we add an atom Dem(s ′′, s) or Pro(s ′′, s ′)
to our axiomatic system Σ in order to indicate that s ′′ has
been ordered before s or after s ′ to resolve a threat by s ′′

to a causal link between s and s ′. The symbols Dem and
Pro stand for demotion and promotion. As with the tempo-
ral relations derived from causal relations, given a demotion
or promotion between two plan steps, the temporal relations
that can be derived from it depend on whether the plan steps
are primitive or abstract. If both are primitive, the execution
of the predecessor has to be finished before the execution of
the successor can begin. Thus, we get the axiom:

(49) ∀s, s′.[[Prim(s) ∧ Prim(s ′) ∧

[Dem(s, s ′) ∨ Pro(s ′, s)]]⇒ s+ < s ′
−

]

Concerning threats between abstract plan steps, the situa-
tion is similar to that of causal relations: the solution criteria
for hybrid planning problems do not address threats between
abstract plan steps. We thus include axioms for the propa-
gation of demotions and promotions in the same way we did

with Axioms 13 and 14, based on which we then infer prop-
agated temporal relations like in Axioms 35, 36, and 37. We
have to omit these axioms due to lack of space.

Experimental System
We have implemented a prototype system that generates raw
explanations as specified by the formal framework. The sys-
tem consists of three main components: first, a reasoning
component to derive all possible causal relations, decompo-
sition relations, temporal relations, and so on, i.e., all the
building blocks for the construction of explanations. Sec-
ond, a management component that combines the building
blocks to explanations as specified by the axioms from the
previous sections. As there are usually several ways for ex-
plaining a plan step or temporal relation, the management
component effectively performs a search in the space of (in-
complete) explanations. Third, a strategy component guides
the search for explanations.

Generally speaking, finding an explanation is an easy task
because we can never reach a dead end while constructing
explanations, because in POCL or hybrid planning every
plan step was usually added through decomposition or as
producer of some causal link. Therefore, if we wanted to
explain a plan step we could just follow an arbitrary chain
of causal and decomposition relations to the goal or until we
reach a plan step from the initial plan without any backtrack-
ing. Some explanations may be considered better than others
though. Thus, finding an explanation that is well-suited for
a specific situation requires an appropriate search strategy.
Performing an exhaustive study in order to determine what
makes an explanation well-suited, however, is beyond the
scope of this paper.

For the time being, we let the system generate as many
different raw explanations as possible within a given time
limit. We did so on a plan generated in the example user-
assistance domain. The plan contains 26 primitive plan
steps, and 21 abstract plan steps were decomposed during
its construction. For each of these 47 plan steps, we gave
our system a time limit of two seconds, not including set-
up time but including any kind of preprocessing, on a nor-
mal desktop PC to generate as many explanations as possi-
ble and measured the number of generated explanations and
used time. Table 1 shows the results. The number of gener-
ated explanations for a plan step ranged between 1 and 8,147
with an average of 961. This variance is mostly due to the
position of the plan steps within the plan and the complexity
of the causal structure: a step which is near the beginning
of the plan can be explained through a long chain of causal
and decomposition relations. Because many plan steps pro-
duce several causal relations we often have several possible
ways to build the explanation argument, i.e., the number of
possible explanations can grow exponentially in the distance
of the plan step to the goal. For 37 of the 47 plan steps
the explanation system terminated within the two seconds
time limit, i.e., the system found all possible explanations,
and since the domain is rather complex with over 130 task
schemata and a deep hierarchical structure we consider it as
a valid benchmark for this task.

231



PS# #E t(ms)
1 21 218
2 42 202
3 2095 2013
4 6429 2004
5 3 156
6 10 156
7 5 156
8 150 202
9 466 296
10 379 2012
11 733 2043
12 22 172
13 1784 593
14 7325 1498
15 264 422
16 4 436
17 267 343
18 19 299
19 15 294
20 19 281
21 15 266
22 142 408
23 1 187
24 1 281

PS# #E t(ms)
25 1 289
26 1 187
27 1 328
28 2 296
29 16 242
30 58 218
31 8147 2012
32 1485 2013
33 2074 2012
34 2 203
35 106 203
36 286 202
37 793 2012
38 1047 2006
39 1168 2013
40 12 187
41 1163 624
42 3217 1545
43 5271 1232
44 3 281
45 15 296
46 100 265
47 1 203

Table 1: Number of explanations (#E) generated by our ex-
perimental system and time needed to generate the explana-
tions in milliseconds for 47 plan steps.

As it can be seen, a rather large number of explanations
can be found usually within only a few seconds. This sup-
ports our claim that the task of finding candidates for good
explanations within a reasonably short amount of time is fea-
sible. However, the number of explanations generated per
plan step will vary significantly in general, so developing
quality measures to select the best explanation among the
generated ones appears necessary.

Discussion
User-adaptive Plan Explanation While it is beyond the
scope of this paper to thoroughly investigate quality mea-
sures for selecting raw explanations, there are some general
aspects that influence the appropriateness of explanations:
the knowledge of the user about the planning domain and
problem, the available means for presenting an explanation
(graphics, speech (Bidot et al. 2010), or written text), etc.

Given such context information, various quality features
of explanations can be identified. For example, a basic fea-
ture is the length of the explanation. Generally speaking, the
longer an explanation, the more information it will contain
and provide a better explanation for the user. But overbur-
dening the user with too much information can be counter-
productive. Also, the length of an explanation may be lim-
ited by the available presentation means.

Another quality feature are the plan steps, literals, and
methods referenced by the explanation. For various reasons,
it might be advisable to avoid or encourage the use of some
of these elements. For example, using plan steps over tasks
that the user has never seen before in an explanation might

be confusing, but using plan steps that are well-understood
by the user could improve the quality of the explanation. A
related feature is the importance of plan steps for the plan:
some plan steps could be mission-critical while others are
of low importance. Finally, the level of abstraction of the
explanation can be adapted to the user. If he is experienced
in the application domain, an explanation on the most prim-
itive level might contain many unnecessary details, e.g., if
he has previously taken many pictures on his smart phone
we should not explain to him to first enter the camera mode,
configure the camera, press the right buttons, etc.; just telling
him to obtain a picture should be sufficient. All this informa-
tion can easily be annotated in the planning domain model.

Another possibility to improve the quality of an explana-
tion is to manipulate it to better fit the given context. For
example, steps of the explanation that should be avoided for
one of the reasons mentioned above can be bridged. Techni-
cally, the correctness of the explanation would be destroyed
by such a manipulation, but depending on the situation the
user might be able to fill the gap in the explanation, using
her knowledge on the application domain.

Formal Aspects Concerning “plan step necessity”, please
note that this merely refers to plan steps that cannot be re-
moved from the plan without spoiling executability. This
does not exclude the possibility that there is a different so-
lution that does not contain the plan step. In other words,
a necessary plan step does not have to be an action land-
mark (Vidal and Geffner 2006).

While the causal links are readily available in plans gen-
erated via hybrid planning, this is not the case for all plan-
ning paradigms. Planners that employ forward-search in the
state space, for example, usually do not explicitly represent
causal links in the plans they generate. Still, our explanation
framework can be used in conjunction with these planners as
causal links can be post-hoc calculated via causal link anal-
ysis (Karpas and Domshlak 2011).

Conclusion
We have presented a formal framework for constructing ex-
planations as proofs for the necessity of plan steps and order-
ings on plan steps in the plan at hand. To this end, we have
shown how to construct an axiomatic system that formally
describes the plan structures and their generation rationale.
Possible types of explanations are derived from the solution
criteria for hybrid plans. We have implemented a prototype
system that constructs raw explanations as specified by the
framework. First results suggest that finding good explana-
tions is a feasible task. Future research will be dedicated to
conducting user studies to determine adequate quality mea-
sures of explanations in a given application context and how
to transform raw explanations in an informative manner into
a human-readable format, e.g., speech, text, or graphics.

Acknowledgment
This work is done within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG).

232



References
Bidot, J.; Biundo, S.; Heinroth, T.; Minker, W.; Nothdurft,
F.; and Schattenberg, B. 2010. Verbal explanations for hy-
brid planning. In Proc. of the Conference ”Multikonferenz
Wirtschaftsinformatik” (MKWI 2010), Teilkonferenz ”Pla-
nen, Scheduling und Konfigurieren, Entwerfen” (PuK 2010),
2309–2320. Universitätsverlag Göttingen.
Biundo, S., and Schattenberg, B. 2001. From abstract crisis
to concrete relief (a preliminary report on combining state
abstraction and HTN planning). In Proc. of the Sixth Euro-
pean Conference on Planning (ECP 2001), 157–168.
Biundo, S.; Bercher, P.; Geier, T.; Müller, F.; and Schatten-
berg, B. 2011. Advanced user assistance based on AI plan-
ning. Cognitive Systems Research 12(3-4):219–236. Special
Issue on Complex Cognition.
Cesta, A.; Cortellessa, G.; Rasconi, R.; Pecora, F.; Scopel-
liti, M.; and Tiberio, L. 2011. Monitoring elderly peo-
ple with the robocare domestic environment: Interaction
synthesis and user evaluation. Computational Intelligence
27(1):60–82.
de la Asunción, M.; Castillo, L.; Fdez.-Olivares, J.; Garcı́a-
Pérez, O.; González, A.; and Palao, F. 2005. SIADEX: An
interactive knowledge-based planner for decision support in
forest fire fighting. AI Communications 18:257–268.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. UMCP: A
sound and complete procedure for hierarchical task-network
planning. In Proc. of the Second International Conference
on AI Planning Systems (AIPS 1994), 249–254.
Estlin, T. A.; Chien, S. A.; and Wang, X. 1997. An argument
for a hybrid HTN/operator-based approach to planning. In
Proc. of the Fourth European Conference on Planning (ECP
1997), 182–194.
Gerevini, A.; Kuter, U.; Nau, D. S.; Saetti, A.; and Wais-
brot, N. 2008. Combining domain-independent planning
and HTN planning: The duet planner. In Proc. of the 18th
European Conference on AI (ECAI 2008), 573–577.
Göbelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and
Nebel, B. 2010. Coming up with good excuses: What to
do when no plan can be found. In Proc. of the 20th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2010), 81–88.
Horacek, H. 2007. How to build explanations of automated
proofs: A methodology and requirements on domain repre-
sentations. In ExaCt Workshop on Explanation-aware Com-
puting, 34–41.
Kambhampati, S.; Mali, A.; and Srivastava, B. 1998. Hybrid
planning for partially hierarchical domains. In Proc. of the
15th National Conference on AI (AAAI 1998), 882–888.
Karpas, E., and Domshlak, C. 2011. Living on the edge:
Safe search with unsafe heuristics. In HDIP 2011 Third
Workshop on Heuristics for Domain-independent Planning,
53–58.
Khan, O.; Poupart, P.; and Black, J. 2009. Minimal suffi-
cient explanations for factored markov decision processes.
In Proc. of the 19th International Conference on Automated
Planning and Scheduling (ICAPS 2009), 194–200.

McAllester, D., and Rosenblitt, D. 1991. Systematic non-
linear planning. In Proc. of the Ninth National Conference
on Artificial Intelligence (AAAI 1991) - Volume 2, 634–639.
McGuinness, D. L., and Borgida, A. T. 1995. Explaining
subsumption in description logics. In Proc. of the 14th In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI 1995) - Volume 1, 816–821.
McGuinness, D.; da Silva, P.; Wolverton, M.; and Center, A.
2005. Plan for explaining task execution in CALO. Techni-
cal report, Stanford KSL Technical Report. KSL-05-11.
McGuinness, D.; Glass, A.; Wolverton, M.; and Da Silva, P.
2007. Explaining task processing in cognitive assistants that
learn. In Proc. of the 20th International FLAIRS Conference
(FLAIRS-20), 284–289.
Molineaux, M.; Kuter, U.; and Klenk, M. 2011. What just
happened? Explaining the past in planning and execution. In
ExaCt Workshop on Explanation-aware Computing, 31–40.
Moore, J. D., and Swartout, W. R. 1989. A reactive approach
to explanation. In Proc. of the 11th International Joint Con-
ference on Artificial Intelligence (IJCAI 1989), 1504–1510.
Muñoz-Avila, H.; Aha, D. W.; Breslow, L.; and Nau, D. S.
1999. HICAP: an interactive case-based planning architec-
ture and its application to noncombatant evacuation opera-
tions. In Proc. of the 11th Conference on Innovative Appli-
cations of Artificial Intelligence (IAAI-99), 870–875.
Pollack, M. E. 2002. Planning technology for intelligent
cognitive orthotics. In Proc. of the Sixth International Con-
ference on Artificial Intelligence Planning Systems (AIPS
02), 322–331.
Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. New York, NY,
USA: John Wiley & Sons, Inc.
Smith, D. E. 2010. Thinking outside the “box”. ICAPS-
2010 Panel on The Present and Future(s) of Planning.
Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. Artificial Intelligence 170:298–335.
Vilain, M.; Kautz, H.; and van Beek, P. 1990. Readings in
Qualitative Reasoning about Physical Systems. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc. chapter
Constraint propagation algorithms for temporal reasoning: a
revised report, 373–381.
Yang, Q. 1990. Formalizing planning knowledge for hierar-
chical planning. Computational Intelligence 6(1):12–24.

233




