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Abstract

This work describes an approach that automatically ex-
tracts standard metadata information from e-learning
contents, combines it with the student preferences/goals
and creates PDDL planning domains+problems. These
PDDL problems can be solved by current planners, al-
though we motivate the use and benefits of case-based
planning techniques, to obtain fully tailored learning
routes that significantly enhance the learning process.
During the execution of a given route, a monitoring
phase is used to detect discrepancies, i.e. flaws that pre-
vent the student from continuing with the original plan.
In such a situation, an adaptation mechanism becomes
necessary to fix the flaws, while also trying to minimise
the differences between the original and the new route.
We have integrated this approach on top of Moodle and
experimented with 100 benchmark problems to evaluate
the quality, scalability and viability of the system.

Most everyday, real-world activities imply some planning to
determine a series of tasks to reach certain goals under def-
inite constraints. A good proof of this is reflected in the last
ICAPS International Planning Competitions, which put spe-
cial emphasis on domains that are (desirably) related to real
applications. The last objective pursued in planning technol-
ogy is not simply to solve problems efficiently, but also to
bridge the gap between its techniques/algorithms and the AI-
illiterate final users, who do not usually possess great skills
in PDDL planning and computer knowledge.

This work describes an approach, named myPTutor,
which takes as an input an e-learning model described in
a standard e-learning language and produces a solver-ready
PDDL model as an output. In particular, it applies stan-
dard AI planning and Case-Based Planning (CBP) tech-
niques to the generation of fully tailored e-learning routes.
This approach contributes with a full vision, which includes:
i) the extraction of metadata information from Learning
Objects (LOs) encoded in e-learning standards; ii) the au-
tomated compilation of standard PDDL domain+problem
files, which represents a knowledge engineering stage; iii)
the generation of a learning route, i.e. plan, by a case-based
planner or other planner; iv) the execution and monitoring of
such a route within Moodle, a well-known Learning Man-
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agement System (LMS); v) the adaptation of the learning
route where a discrepancy between the real and the expected
state appears, i.e. a repair method to fit the new scenario; and
vi) all of this in a transparent-to-the-user way, who does not
need to worry about the technical e-learning or planning in-
sights.

Problem Description
The Web is full of interoperable digital resources, known as
LOs, implemented in XML standards such as SCORM, IMS
or LOM (LOM 2002; SCORM 2004). But LOs in them-
selves are insufficient to accommodate the different study-
ing styles and preferences of the students in large courses.
The right selection and combination of LOs within these
courses is the basis for e-learning, a multi-disciplinary field
to facilitate and enhance learning. For instance, according
to pedagogical issues, a lecture is very recommendable for
verbal students but not for visual ones, and just the opposite
holds for a diagram. Consequently, e-learning must provide
a student-centered solution by offering a learning process
where courses are tailored to the specific needs, learning
styles, background and, in general, profile of each student.

After generating a tailored learning route, it needs to be
executed in a real LMS. This means to assist students in nav-
igating the route, monitoring it, checking its current progress
and acting when discrepancies, that is differences w.r.t. the
expected state, appear. If this happens, a flexible process to
make the remaining learning route executable (by adding or
removing LOs) becomes essential. And it is expected that
this process will not ignore the original students’ interests,
but try to reuse the original route as much as possible.

Related Work. Motivation for Using Planning
Many techniques have been traditionally applied to gener-
ate individualised courses in e-learning, such as adjacency
matrices, integer and constraint programming models, neu-
ral networks and soft computing methods (Brusilovsky and
Vassileva 2003; Garrido, Onaindia, and Sapena 2008; Idris,
Yusof, and Saad 2009; Martinez et al. 2004). They simulate
human decision-making, which has a disadvantage because
the flow of LOs is somewhat predefined and, consequently,
too teacher-oriented. AI planning related works have been
used to provide students with learning routes based on their
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preferences (Castillo et al. 2010; Kontopoulos et al. 2008;
Limongelli et al. 2009; Ullrich and Melis 2009), but their
main limitations are: i) they do not fully use e-learning stan-
dards, ii) they are not displayed and integrated in widely
used LMSs, and iii) they are usually limited to a specifi-
cally designed ontology and/or planning paradigm. On the
contrary, our approach lets any type of planner to find the
best flow of LOs according to pedagogical theories, with the
idea of bringing the right content to the right student, and
also deals with standard e-learning metadata, which is auto-
matically extracted and compiled as a PDDL model. Addi-
tionally, it allows teachers to define compulsory or optional
goals, an extra feature in many LMSs.

Metaphorically speaking, generating a learning route re-
sembles planning closely. In e-learning the main elements
are: i) the students’ background/preferences, ii) the learning
goals to be attained, iii) the profile-adapted LOs with their
prerequisites and learning outcomes, iv) the ordering rela-
tions, and v) the tailored learning route. We map these el-
ements into planning terms, respectively, as: i) initial state,
ii) top level goals, iii) actions with preconditions and effects,
iv) causal link relations, and v) the solution plan. Planning
also deals with multi-criteria optimisation, very appealing
for e-learning: students (and teachers) prefer a good learn-
ing route, in terms of time, competence, resources or cost,
and not simply yet another route.

Focusing on planning algorithms, CBP takes advantage
of former problem-solving experiences by storing in a plan
library previously generated solutions that can be reused to
solve similar problems in the future (Serina 2010). This is
essential in e-learning. First, teachers want to include didac-
tic issues that cannot be represented in terms of precondi-
tions, effects and causal links. Although PDDL3 plan trajec-
tory constraints and preferences may be used here, in most
cases teachers cannot formally express why a route or a LO
is better than other. And when they can, they are reluctant
to use complex and tedious constructs that are unfamiliar
to them. Second, if the execution of a learning route fails it
needs to be fixed. Although a new route starting from scratch
can be replanned, it does not seem to be sensible; a route
adaptation that minimises the differences between the origi-
nal and the recalculated route seems more reasonable. Infor-
mally, students and teachers prefer a kind of inertia in the
learning routes, which enhances the continuity in the learn-
ing process. CBP techniques are very valuable in this sce-
nario for the definition, memorization (of alternatives which
are motivated by reasons beyond causal links and orderings),
retrieval and adaptation of learning routes, i.e. plans.

Our approach: myPTutor
Architecture and Workflow
myPTutor has a mixed-initiative architecture for both teach-
ers and students, as depicted in Figure 1. Initially, teach-
ers (in the role of course designers) define the course by
creating the LOs or reusing them from available reposito-
ries. After modelling the student’s profile (e-portfolio with
the background, learning styles and interests), an automatic
translator compiles all this information as a PDDL do-

Figure 1: Architecture of myPTutor for using
planning in an e-learning setting. More info in
http://servergrps.dsic.upv.es/myptutor.

main+planning problem. When the planner generates a plan
(i.e. learning route), it can be validated by a teacher and
stored in the CBP library. This tailored route is uploaded
to the LMS as a plan manifest that allows a student to nav-
igate through it. The LMS also monitors the execution of
each route and if any discrepancy is found between the real
and expected state, a new planning iteration is launched to
adapt the learning route. We now detail this architecture.

Definition of the Course
According to (Polsani 2003), “as individual words can-
not independently produce meaning, the LOs in themselves
are insufficient to generate significant instruction [. . .] How
many LOs, how they are related, and for what purposes
will be determined by the instructor’s objectives, peda-
gogical methodology and instructional design theories.”
This summarises the necessity to define a course by re-
lating LOs, which can be done by using existing editors
that provide textual templates to fill in the contents, such
as RELOAD (http://www.reload.ac.uk) or eXe-
Learning (http://exelearning.org). In addition to
these, we have implemented a graphical tool that simplifies
the course definition; it allows drag&drop of visual com-
ponents (LOs, their relationships and profile adaptation) in
an intuitive way, analogously to a concept map, as shown
in Figure 2. This tool is also planning oriented, represent-
ing the preconditions/effects (circled elements) for each ac-
tion (squared elements), which facilitates the definition of
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Figure 2: Graphical definition of a short course on Bi-
ology that includes: LO1 (Nutrition1), LO2 (Nutrition2),
LO3 (Circulation), LO4 (Respiration) and LO5 (Breathing).
Three profiles (verbal, visual and active) are also modelled.

the course and, indirectly, the planning domain that is sub-
sequently generated. The objective is therefore twofold. For
average users, to offer a very simple way to reuse (or define)
classical LOs within a course. For advanced users, to provide
richer possibilities to extend these LOs with more complex
capabilities, such as conjunctive/disjunctive/recommended
requirements, minimal/maximal duration allowed per LO,
number of students needed for collaborative work, resources
to be used and their cost, metric to be optimised, etc.

Compilation of the PDDL Model
We use a knowledge engineering method, based on (Gar-
rido et al. 2009; 2012), to extract the metadata information
and compile the set of LOs as the PDDL domain. The LOM
specification for metadata has many pedagogical entries, but
just three of them are essential to support planning:

• Relations and their kind, which represent the content de-
pendencies among LOs; e.g. Requires, IsBasedOn and
References constructs, which mean conjunctive, disjunc-
tive and soft/recommended relations, respectively.

• Educational information and LO’s type, e.g. a lecture, nar-
rative text, diagram, etc., which gives us an idea of the
difficulty and duration of the LO. According to education
experts, the type of the LO has a positive or negative in-
teraction with the student’s profile.

• Technical requirements, which represent the particular re-
sources needed by the LO; e.g. a multimedia device or
specific operating system. This entry tends to be rather
vague and it does not always represent a resource as clas-
sically defined in planning terminology. In such a case,
which is up to the LO designer, this entry is just ignored.

The compilation of the PDDL domain is an automated
polynomial process that iterates all over the LOs and gener-
ates one planning operator per LO. This generation relies on
both a sound definition of the metadata and a closed world
assumption. First, if the LO designer fails in the metadata
labelling (e.g. “LO1 Requires LO2” and “LO2 Requires
LO1”), which surprisingly is not uncommon, the domain
will be incorrect, though this can be easily detected by do-
main analysis tools. Second, if the LO changes, its corre-
sponding operator must be recompiled (but others operators
do not need to change). In short, each operator consists of:

• A unique name taken from the LO name/identifier.

• One parameter, the student, to support the personalisation.

• The duration, as the LO learning time. Note that this item
can be ignored if we do not use temporal domains.

• The preconditions, to filter the students’ profile and to
support the dependency relations. Other elements, such as
the students’ role, technical or educational requirements
can be also modelled as preconditions.

• The effects, to represent the LO outcome. Other elements,
such as optional expressions on rewards w.r.t. the stu-
dent’s profile, resource costs or additional metric values
can be easily included.

According to this description, the PDDL durative action
for LO3 of Figure 2 is:

(:durative-action LO3 ;Circulation (Test)

:parameters (?s - student)

:duration (= ?duration 2) ;LO typicalLearningTime

:condition (and

(at start (not (LO3 ?s done))) ;avoids repetitions

(over all (profile ?s active)) ;profile dependency

(at start (LO1 ?s done)) ;Requires LO1, Nutrition1

(at start (LO2 ?s done))) ;Requires LO2, Nutrition2

:effect (and

(at end (LO3 ?s done)) ;competence achieved

(at end (increase (reward ?s (profile-active))))))

The compilation of the PDDL problem models the ini-
tial state, the goals and, when necessary, the metric to op-
timise, all directly extracted from the students’ e-portfolio.
The initial state represents the students’ profile and back-
ground (e.g. learning style, initial background on nutrition,
etc.), the preferred language of the course, and some other
information (e.g. special equipment or resource availability).
The goal is to pass the entire course or a part of it, usually in
terms of some LOs (e.g. (LO5 student1 done)).

Solving the Planning Problem via CBP
Similarly to other Case-Based Reasoning (CBR) systems,
CBP is based on two assumptions on the nature of the world
(Leake 1996). First, the world is regular: similar problems
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Algorithm UPDATELIBRARY
Input: A solution plan π for Π = (I,G) and a set of facts F ;
Output: Update the plan library inserting new elements obtained
considering subplans of π;
1. compute the set of causal links Cπ in π;
2. S = G ∪ F ∪ {Gj ⊆ G |

⋂
gj∈Gj

πgj 6= ∅};
3. forall Gi ∈ S do
3.1 CHECK&INSERT(ΠGi , πGi);

Figure 3: Algorithm for updating the plan library inserting sub-
plans of a given input plan π.

have similar solutions. Second, the types of problems an
agent encounters tend to recur; hence future problems are
likely to be similar to current problems.

To the end of applying the reuse technique, it is necessary
to provide a plan library from which “sufficiently similar”
reuse candidates can be chosen. In this case, “sufficiently
similar” means that reuse candidates have a large number
of initial and goal facts in common with the new instance.
However, one may also want to consider the reuse candi-
dates that are similar to the new instance after their objects
have been systematically renamed. This corresponds to iden-
tifying a mapping between the objects of the reuse candidate
and the objects of the new instance, such that the number of
common goal facts is maximised and the additional plan-
ning effort to achieve the initial state of the plan library is
minimised. This is extremely important in e-learning, where
teachers could decide to reuse a course, or a part of it, that
has been previously adopted by their colleagues or by them-
selves. Obviously, the students will not be the same, but if
their profile, their goals and the resources available are sim-
ilar to the corresponding ones in the case base, our system
will be able to propose a new high quality plan with a limited
number of changes w.r.t. the one stored in the library.

Our CBP approach is built on top of the OAKPLAN sys-
tem (Serina 2010), which uses an approximate evaluation
based on kernel functions to compute an appropriate map-
ping between the students and the objects of the reuse can-
didate and the corresponding ones of the current instance,
which can be computed in polynomial time. In order to im-
prove the efficiency of the system and reuse as many possi-
ble parts of previously executed plans we have adopted plan
merging techniques (Yang, Nau, and Hendler 1992). These
plans can be generated by teachers, or by a planner (and then
validated by teachers). In particular, we decompose the solu-
tion plans into subparts that allow us to satisfy every single
goal, or a set of interrelated goals, and then we store these
subparts in the case base, if they are not already present.1

Figure 3 describes the algorithm for updating the plan
library with parts of an input plan π. In short, UP-
DATELIBRARY identifies the subplans of π that can be in-
serted in the plan library to increase the competence of the
library in itself (Smyth and McKenna 2001; Tonidandel and
Rillo 2002). Here πg represents the subplan of π that satis-
fies g starting from I . Note that it can be easily identified
considering the set of causal links Cπ of π computed at step

1See (Roubickova and Serina 2012) for a detailed description
of this approach.

1. In a similar way, it is possible to compute the set of facts
Ig that are necessary to apply the actions of πg .

At step 2 we identify the set of facts that will be examined
for the insertion in the library. In particular we consider all
the goals G, the elements of F and the subsets of interact-
ing goals Gi. The F set represents a set of facts, different by
the input goals, that could be useful for the following merg-
ing phase such as unsupported facts of a previous adaptation
phase. Moreover, the sets of interacting goals Gi can be eas-
ily computed considering the actions in the subplans πgj that
are in common to the different goals.

The CHECK&INSERT((IGi
, Gi), π) function (step 3.1)

searches if there not exists a case-base element (Πj , πj)
whose goals and initial state perfectly match with the cur-
rent goals and initial state, respectively. In this case, we
insert the current planning problem ΠGi = (IGi , Gi) and
its solution plan πGi in the library. Otherwise, we have to
decide whether to insert (ΠGi , πGi) and remove (Πj , πj),
or simply skip the insertion of (ΠGi , πGi). In our tests we
have used an update policy that maintains the plan with the
lowest number of actions, but other policies could be used
as well considering, for example, the plan qualities, their
makespan, or the robustness to exogenous events. Moreover,
CHECK&INSERT ignores too small and too big plans π; in
fact, a small plan π could determine the inclusion in the li-
brary of a high number of very small plan fragments that
have to be considered in the merging phase, while a big plan
π could determine the insertion in the library of very big
subplans that are difficult to merge.2

When a new e-learning planning problem must be solved,
we search in the case base if a plan that already solves all
goals exists. If such a plan does not exist we apply plan
merging techniques that progressively identify (sub)plans in
the case base that can satisfy the goals. This phase consists in
reusing parts of the retrieved plans to complete a new one.
Figure 4 describes the process for merging plans of the li-
brary in order to find a plan π that solves the current plan-
ning problem Π or that represents a quasi-solution (Gerevini
and Serina 1999) for it. At step 1 we search in the library
the plan that satisfies all the goals with the lowest heuristic
adaptation cost, where the function EvPlan(I, π,G) deter-
mines the adaptation effort by estimating the number of ac-
tions that are necessary to transform π into a solution of the
problem Π(I,G).3 This step corresponds to the extraction
of the best plan of the library (if it exists) as proposed by the
standard OAKPLAN system (Serina 2010). At steps 3.x, we
progressively analyse the unsatisfied goals and the unsatis-
fied preconditions of the current plan π, trying to identify in
the library a subplan πf that can be merged with π in order to
satisfy f (and other unsatisfied facts if possible) and reduce,
at the same time, the global heuristic adaptation cost, where
merge identifies the best part of π where the actions of πf
can be inserted in producing a new global plan.4 If such a

2In our tests we have used 5 ≤ |π| ≤ 200.
3See EVALUATEPLAN in (Serina 2010) for a more detailed de-

scription.
4In our tests we have considered the earliest and the latest part

of π where f can be satisfied.
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Algorithm MERGESUBPLANS
Input: A planning problem Π(I,G), a plan library L = (Πi, π);
Output: A (quasi) solution plan π for Π;
1. π = argminπi∈L∪∅EvP lan(I, πi, G);
2. repeat
3. forall unsatisfied facts f ∈ {G ∪ prec(π)} do
3.1 Let πf ∈ L be the best plan that satisfies f s.t.

EvP lan(I,merge(π, πf ), G) < EvPlan(I, π,G);
3.2 if πf 6= ∅ then
3.3 π = merge(π, πf ); break;
4. until πf 6= ∅;
5. return π;

Figure 4: Algorithm for merging the elements in the library in
order to solve a planning problem Π.

plan exists, we merge it with π at step 3.3 and we restart
from step 3 reconsidering all the unsatisfied facts. The repeat
loop halts when all the goals and preconditions are satisfied,
i.e. when we have found a solution plan, or when there is
not a suitable plan that can be extracted from the library that
satisfies the remaining unsupported facts. In this case, the
plan π does not represent a solution plan. However, it can be
used as a starting point for a local search process to find a
solution plan for the current planning problem.

This way of proceeding allows teachers to easily validate
the proposed learning route. They can simply check the parts
of the route that differ from the elements stored in the case
base and that have been introduced to satisfy, for example,
new students’ goals or prerequisites, instead of reconsider-
ing the whole learning route. Note that different criteria can
guide the definition of a learning route. In our approach we
do not only try to find good quality plans that best fit the stu-
dents’ requirements, but also to minimise the number of LOs
that have been introduced or removed w.r.t. the case base el-
ements. The relative importance of plan quality w.r.t. plan
stability (Fox et al. 2006) can be chosen by the teacher when
the case-based planner is executed. In our context, the learn-
ing route plan stability is measured considering the distance,
expressed in terms of number of different LOs, between the
source learning route and the target learning route.

Execution and Monitoring
Once the learning route has been generated, we embed its
sequence of LOs in a learning manifest, which can be exe-
cuted in any LMS that integrates a SCORM player. During
this execution many situations can happen. First, discrep-
ancies between the expected state (obtained by a flawless
execution of the proposed plan) and the real state (result-
ing from the current execution of the plan) may arise, such
as when the student does not pass a critical evaluation task,
or when a LO with dependencies takes more time than ini-
tially scheduled. Second, the students’ profile can change:
increment/decrement in their performance levels according
to previous evaluation tasks, improvement in their foreign
language levels, acquisition of new resources (e.g. multime-
dia equipment or software), etc. These situations, and others
that can be defined in the future, are automatically recov-
ered from the LMS database —which includes the student’s
e-portfolio—, as it is immediately updated after an evalua-
tion activity is finished and/or graded. Note that we do not

perform a continuous monitoring since it may become in-
viable in an e-learning scenario where each student logs in,
and off, frequently and works at his/her own pace, but only
after evaluation tasks, which are usually graded by a teacher.

Technically, in our implementation we create a new plan-
ning problem where the students’ initial state is the cur-
rent state and the learning goals remain the same (al-
though they can be changed if desired). The original do-
main, the new planning problem, and the remaining part
of the plan that is yet to be executed are provided to the
planning server, which uses a plan validator (VALidation
tool, http://planning.cis.strath.ac.uk/VAL)
to check whether that plan is still executable. If it contains
flaws, the CBP is invoked in order to find, or adapt, a new
plan for the given student under the current scenario. The en-
tire part of the plan is provided to the CBP, which increases
the possibilities to fix the flaws with minimal modifications.

Adapting the New Plan
The plan adaptation system consists in reusing and modify-
ing previously generated plans to solve a new problem and
overcome the limitations of planning from scratch. Similarly
to OAKPLAN, our work uses the LPG-ADAPT system (Fox
et al. 2006) given its good performance in many planning
domains, but other plan adaptation systems can be used as
well. LPG-ADAPT is a local-search-based planner that mod-
ifies plan candidates incrementally in a search for a flawless
candidate.

Any kind of planning system that works in dynamic en-
vironments has to take into account failures that may arise
during plan generation and execution. In this respect, CBP is
not an exception. This capability is called plan revision and
it is divided into two subtasks: evaluation and repair. The
evaluation step verifies the presence of failures that may oc-
cur during plan execution when the plan does not produce
the expected result. When a failure is discovered, the sys-
tem reacts by looking for a repair or aborting the plan. After
finding the plan in the library and repairing it with the plan
adaptation techniques, the solution plan can be inserted into
the library or discarded.

Putting all Together. Integration with Moodle
Our architecture has been designed to be flexible, thus being
compatible with any LMS, and to support any PDDL plan-
ner. In order to validate our approach, we have implemented
it on top of Moodle (http://moodle.org), maintaining
its original core code. Although the technical details are be-
yond the scope of this paper, we have implemented several
extensions to allow a mixed-initiative mechanism between
users (students and teachers) and the planning services.

First, we have defined new tables in the relational
database to support planning preconditions, the students’
background (i.e. the initial state), the goals that are compul-
sory for each course and those that can be optionally chosen
by each student. Second, new forms have been added to the
teacher’s GUI to define the course goals (compulsory and
optional) and the initial profile required for the students (see
Figure 5-1). Similar forms have been designed for students
to input their profile information and desired optional goals.
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Figure 5: 1): module that allows teachers to select the course,
its goals, background preconditions and adapt SCORMs to
different students’ profiles through planning services. 2):
monitoring during the student SCORM execution.

Once this information has been input into the system, it au-
tomatically invokes the planning Web service to calculate a
personalised learning route per student (Figure 5-2).

Finally, other forms are designed to execute and monitor
the state of the learning route. myPTutor also outputs the
learning route as a Gantt chart in Microsoft Project format
(see Figure 6). From the teacher’s point of view, (s)he can
observe this chart of expected LOs and manually compare
it with the “already done” sequence of LOs. From the stu-
dent’s point of view, this chart shows the schedule of the
next LOs to be executed. Again, if during the student exe-
cution of the learning route the system detects discrepancies
between the expected and real state, a message is displayed
to the student, as depicted in Figure 5-2. This message in-
dicates the remaining LOs that cannot be executed from the
current state, and the process stops until the system performs
an adaptation of the route. This process continues until the
learning route is completed and all goals are achieved.

Evaluation and Experimental Results
A thorough evaluation of this approach is not easy, as it in-
volves the strong collaboration of high numbers of educa-
tional researchers for a correct definition of the courses and
for a comprehensive testing with real students. Just to shed
some light on the validity of the approach, we present both
a qualitative and quantitative evaluation.

We address the qualitative evaluation by means of opin-
ion questionnaires answered by a group of 10 teachers and
10 students to assess the learning routes, their size/duration
and their adequacy, in terms of their LOs, to the particular
profiles. This is still ongoing work because not many teach-
ers are willing to participate in this type of personalised ap-

Figure 6: Gantt chart that shows the learning routes of three
students.

proach —they prefer continuing with their classical way of
teaching. Preliminary results show that the teachers agree
with the routes in terms of their form, size and adaptation
to the students. But teachers also recognise that it is hard
to evaluate a learning route to each profile (Garrido et al.
2012). As for students, the experience was highly positive.
They found the provided LOs a very helpful way to catch
up with the background required for the course, and an ideal
mechanism for self-assessment. Also they found the course
was specifically designed for them, and not “the same course
for everybody”.

The quantitative evaluation is slightly easier. The com-
pilation of a standard PDDL model facilitates the use of
any modern planner and, therefore, we can run many com-
putational experiments. In particular, we test the effective-
ness of our case-based approach with merging techniques,
implemented on top of OAKPLAN (Serina 2010), which
we have called OAKPLAN-merge, vs. plan generation tech-
niques when discrepancies appear while executing the learn-
ing routes. Particularly, we focus on: i) the scalability by
means of the CPU time required to obtain (retrieve&adapt
or replan) the routes, ii) the best quality solutions in terms
of higher reward plans, and iii) the best stability that can be
obtained in a given deadline.

We have experimented with several courses, but
here focus on a real, large-size Moodle course of
around 90 LOs on Natural Sciences inspired on
http://www.profesorenlinea.cl. We have
created nine initial configurations (with 10, 20. . . 90 ficti-
tious students, respectively), and defined 10 variants per
configuration (plus one additional variant for the 90-th
problem), thus considering 100 planning problems in total
(the 91 variants plus the 9 initial configurations). Each
variant artificially simulates the changes that may occur
during the route execution in an incremental way. That is,
in the first variant some equipment is no longer available.
The second variant maintains these changes and includes
restrictions on the students’ availability; and so on for the
other variants.

In addition to OAKPLAN and our case base planner
OAKPLAN-merge, we have used two state-of-the-art plan-
ners, SGPLAN6 and LPG.5 All tests were performed on an

5For a further description of these planners see
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Intel(R) Xeon(TM) CPU 2.40GHz with 2GB of RAM, and
censored after 10 minutes. In our tests, the solution plans
(i.e. the learning routes) inserted in the case base were ob-
tained by using the best quality plans generated by LPG
and SGPLAN6 on the initial-configuration planning prob-
lems used to create the corresponding variants.

Figure 7 depicts the results required by the different plan-
ners. On the left we compare OAKPLAN (with and without
merging techniques) vs. LPG and SGPLAN6 using a “com-
plete” case-base that contains all the base problems and the
corresponding solutions (the case-base for the merging vari-
ants contains also the selected subplans of the base prob-
lems). Here we can observe the general good behaviour of
the case-based techniques, which are comparable in terms
of CPU-time to SGPLAN6. The results show that the case-
based approach is at least as fast as replanning, and some-
times faster. Obviously, plan retrieval techniques show less
useful when the changes are significant and fixing the route
requires more effort than simply discarding it and rebuilding
a new one from scratch. But, as Table 1 shows, the benefits
for investing this effort pay off in terms of stability.

In Figure 7-right, we analyse the behaviour of OAKPLAN
and OAKPLAN-merge to study the impact of using a case
base considering: i) a case base created using only the small-
est base problem (with 10 students), ii) a case base where
the base problems are progressively inserted after the corre-
sponding variants have been evaluated (it initially contains
only the smallest base problem). In the first case, we primar-
ily want to evaluate the ability of the merging techniques
to reuse the solutions available in the case base at the in-
crease of the “differences” (in terms of number of students)
among the current situation and the elements stored in the
case base. In particular, we want to examine the scalability
in terms of number of students, which is extremely impor-
tant in our context since a teacher could decide to evaluate
the effectiveness of an e-learning course considering a lim-
ited number of students before using it for the whole class.

Considering the tests with the small case base, we can
observe the general good behaviour of OAKPLAN-merge,
while OAKPLAN without merging techniques is able to
solve only 50 variants. Regarding the tests with the in-
cremental case base, we want to analyse the behaviour of
OAKPLAN considering a case base that contains elements
which are structurally not too much different w.r.t. the cur-
rent situation. For example, considering the solution of the
variants with 50 students, the case base does not contain
the base problem with 50 students but it contains the base
problems with 10, 20, 30 and 40 students. Here we want
to examine the situation where a teacher has already used
a course in different classes and wants to reuse the stored
experiences in a new (slightly bigger) class. As expected,
the behaviour of OAKPLAN-merge does not change signifi-
cantly. On the contrary, the CPU-time of OAKPLAN without
merging techniques decreases significantly since it can re-
plan starting from a case base element with a slightly lower
number of students w.r.t. the current situation. Moreover, it
is now able to solve all the variants considered.

http://ipc.icaps-conference.org.

Planner Num Speed Quality Distance
OAKPLAN 100 16.31 (66.8) 72098 (99) 18.76 (12)
small CB 50 13.79 (30.6) 38973 (47.4) 139 (0.63)
incr. small CB 100 13.5 (94) 71048 (97.3) 233 (0.91)
OAKPLAN-merge 100 30.66 (41.7) 70444 (95.9) 2.06 (80.8)
small CB 100 40.3 (32) 68709 (93.5) 2.18 (86.4)
incr. small CB 100 35.8 (37.6) 69607 (94.5) 2.21 (85.7)
SGPLAN6 100 15.73 (84.8) 69883 (95.4) 231.5 (0.76)
LPG 66 67.46 (9.3) 48315 (63.2) 163 (0.87)

Table 1: Number of problems solved, average CPU-
time (seconds), average Quality and average Distance of
OAKPLAN, OAKPLAN-merge, SGPLAN6 and LPG. The
corresponding IPC scores are reported in the round brack-
ets.

Table 1 summarises the experimental results for the dif-
ferent planners considered in terms of number of solved
problems, average total CPU-time in seconds, plan quality
and plan distance. Note that we want to maximise the to-
tal reward of the students and so the higher the quality, the
better the plan is. Here we can observe the general good
behaviour of the case-based techniques, which is particu-
larly evident considering the IPC scores reported in brack-
ets. Briefly, each planner receives a score between 0 and
1 for each problem solved. The score is the ratio between
the time/quality/distance value of the solution found and the
time/quality/distance value of the best solution found by any
other planner. The score is summed across all problems for a
given planner; the higher the score, the better the planner is.
In particular, OAKPLAN-small with incremental case-base
is the fastest, followed by SGPLAN6. Standard OAKPLAN
produces the best quality plans, and OAKPLAN-merge and
SGPLAN6 perform extremely well. Regarding the plan dis-
tance, we can observe the good behaviour of OAKPLAN-
merge with values extremely different w.r.t. the other plan-
ners. Note that the retrieval and adaptation process some-
times comes at a price in terms of quality, as the route is
adapted to fit a new configuration rather than constructed ex-
pressly for it. But our experiments show that the quality for
the case-based approach can be better than for replanning,
particularly in the most complex problems.

The best values for plan distance are achieved in
OAKPLAN-merge. While replanning generates routes that
are consistently very different from the original ones, the
differences between the retrieved plan and the solution plans
are very small. This is not particularly surprising since LPG
and SGPLAN6 do not know the target plans used for this
comparison. These distance values are interesting since they
are a clear indicator of the good behaviour of case-based
techniques and show that the generative approach is not fea-
sible when we want to preserve the stability of the plans pro-
duced. We can also observe the extremely good behaviour
of OAKPLAN-merge. Its distance values are obtained con-
sidering the number of different actions w.r.t. the matching
plan provided by the retrieval phase, which is not necessarily
obtained directly by a single solution plan stored in the case
base (as in OAKPLAN), but also using the different subplans
(highlighted to the teachers) obtained by the analysis of the
case-based elements that best fit the current goals and initial
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Figure 7: CPU time in seconds (on a logarithmic scale) required by the different planners in order to solve our benchmark
domains. In the plot on the left we compare the case-based approaches (OAKPLAN and OAKPLAN-merge) vs. replanning
(LPG and SGPLAN6). On the right we compare the case-based approaches considering different input case bases.

state. This indicator is very appealing in an e-learning setting
as the students/teachers do not want to deal with an entirely
new learning route after a little change happens during ex-
ecution. Quite the contrary, students and teachers prefer a
kind of inertia in the (already known) learning routes.

Regarding the plan differences produced by OAKPLAN
without merging techniques w.r.t. the solution of the base
problems we can observe values which are similar to the
ones obtained for replanning. This is not surprising since
the elements stored in the small and in the incremental case
bases are very different w.r.t. the new planning problems. On
the contrary, the performance of OAKPLAN-merge is ex-
tremely good, both in the small and incremental case bases.
However, it is important to point out that in this case the
comparison in terms of plan distances are performed con-
sidering directly the plan provided by the retrieval phase. It
is up to the teacher to decide if (s)he wants to validate el-
ements that only deal with previously executed courses or
also subparts of them.

Globally, we can observe that the use of plan merging
techniques is potentially very effective in our context, allow-
ing us to obtain efficiently new e-learning routes which are
very similar to the combination of previously executed ones
(or subparts of them). This is extremely important since it al-
lows to highlight the teachers the changes w.r.t. already exe-
cuted learning routes, facilitating the validation process. Fur-
thermore, the stored plans can also contain some notes, re-
garding for example the pedagogical motivations associated
to the selection or combination of specific LOs, annotated by
the teacher during the creation of the original learning route,
or during previous executions of the learning route. In this
case, these notes can be easily reexamined by the teachers
facilitating the learning route validation process.

Conclusions and Lessons Learnt
We have described a flexible approach for personalisation
of e-learning routes that integrates techniques from different
fields, such as educational theories, profile identification and

modelling, knowledge representation, planning algorithms
and optimisation procedures.

The key lesson learnt is that planning technology must be
introduced transparently to the user. Final users, in our case
teachers and students, do not want to deal with PDDL con-
structs. On the contrary, they want to continue using their
courses, LOs and LMSs with a minimal effort. And here
an automated knowledge engineering compilation based on
LOs’ metadata demonstrates very useful. But this metadata
definition is sometimes tricky, as it is not always fully spec-
ified. Consequently, this is still a challenging issue: to find
LO repositories designed to be interoperable, thus reducing
the effort necessary to establish relations with other LOs and
create big courses. A visual tool for doing this shows also
helpful, as it allows teachers to define courses easy and vi-
sually. Since our compilation creates standard PDDL files,
we can use any planner that is currently available, which is
clearly an important advantage. But our experiments have
proved that CBP techniques are more interesting for adapta-
tion when problems appear during execution, finding better
quality and stabler solutions than traditional techniques.

Based on our experience, students seem more enthusias-
tic about personalisation in e-learning than teachers. Adopt-
ing this and other types of personalisation still raise further
challenges and its horizon is not fully clear. The possibility
of directly encoding in the e-learning standards all the in-
formation related to temporal, collaboration and resources
constraints is still open, and it would increase the effective
applicability of planning. And not only for planning applica-
tion, but also for other approaches that address these issues.
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