
Schedule-Driven Coordination for Real-Time Traffic Network Control

Xiao-Feng Xie, Stephen F. Smith and Gregory J. Barlow
The Robotics Institute, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213
{xfxie, sfs, gjb}@cs.cmu.edu

Abstract

Real-time optimization of the dynamic flow of vehicle traf-
fic through a network of signalized intersections is an im-
portant practical problem. In this paper, we take a decentral-
ized, schedule-driven coordination approach to address the
challenge of achieving scalable network-wide optimization.
To be locally effective, each intersection is controlled inde-
pendently by an on-line scheduling agent. At each decision
point, an agent constructs a schedule that optimizes move-
ment of the observable traffic through the intersection, and
uses this schedule to determine the best control action to take
over the current look-ahead horizon. Decentralized coordina-
tion mechanisms, limited to interaction among direct neigh-
bors to ensure scalability, are then layered on top of these
asynchronously operating scheduling agents to promote over-
all performance. As a basic protocol, each agent queries for
newly planned output flows from its upstream neighbors to
obtain an optimistic projection of future demand. This projec-
tion may incorporate non-local influence from indirect neigh-
bors depending on horizon length. Two additional mecha-
nisms are then introduced to dampen “nervousness” and dy-
namic instability in the network, by adjusting locally deter-
mined schedules to better align with those of neighbors. We
present simulation results on two traffic networks of tightly-
coupled intersections that demonstrate the ability of our ap-
proach to establish traffic flows with lower average vehicle
wait times than both a simple isolated control strategy and
other contemporary coordinated control strategies that use
moving average forecast or traditional offset calculation.

Introduction
Traffic congestion is a practical problem resulting in sub-
stantial delays and extra fuel costs for drivers. It is generally
recognized that improvements to traffic signal control pro-
vide the biggest payoff for reducing congestion on surface
streets, and that adaptive control strategies capable of re-
sponding to traffic conditions in real-time hold the most po-
tential for improvement. However, how to achieve scalable
network-wide optimization remains a challenging problem.

For a single intersection, the basic challenge is to uti-
lize high-resolution (e.g., second-by-second) flow data ob-
tained from on-line surveillance techniques (Sharma, Bul-
lock, and Bonneson 2007) and to take advantage of rapid

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

revisions (e.g., every 0.5 seconds) to the intersection’s exe-
cuting signal plan (Cai, Wong, and Heydecker 2009). Off-
line optimization techniques, e.g., SYNCHRO (Husch and
Albeck 2006), in contrast, generate signal plans that re-
flect low-resolution average flows. Reinforcement learning
methods have been applied to try to find policies for map-
ping local observations in a prediction horizon to signal
actions for intersections (Richter, Aberdeen, and Yu 2006;
Cai, Wong, and Heydecker 2009). However, these methods
are often slow to converge and difficult to apply in real time
if traffic flows are changing frequently. Other work has fo-
cused on online planning algorithms, e.g., COP (Sen and
Head 1997), ALLONE-S (Porche and Lafortune 1999), and
OPAC (Gartner, Pooran, and Andrews 2002), which proceed
according to a rolling horizon and attempt to find a good sig-
nal sequence in a planning horizon for the current observa-
tion at each decision point (Ross et al. 2008). Unfortunately,
most existing algorithms for the traffic control problem are
not real-time feasible for realistic planning horizons (Papa-
georgiou et al. 2003) and are often forced to plan at coarse
time resolutions (e.g., 5 seconds), due to the inefficiency of
searching in an exponential planning search space.

At the network level, the major challenge is that some in-
tersections are tightly-coupled, even if they are indirectly
connected, since travel times between them can be short
and the demands can be high. Congestion that starts from
these intersections can spread to neighboring intersections
and eventually lead to “gridlock” (Cervero 1986) in the over-
all network. To address this challenge, coordination mech-
anisms for managing non-local influence among intersec-
tions have also received considerable attention. Centralized
(or hierchachical) coordination mechanisms have been pro-
posed for dynamically adjusting offsets (Heung, Ho, and
Fung 2005; Gettman et al. 2007) or for imposing constraints
on local controllers to match changing traffic patterns, as
in RHODES (Mirchandani and Head 2001). However, these
mechanisms are inherently susceptible to scalability issues.
For example, the network offset adjustment in ACS-Lite
(Gettman et al. 2007) has been found to be intractable in
real time for only 12 intersections, and existing decentral-
ized constrained optimization methods have issues related
to large message sizes and long running times (Junges and
Bazzan 2008).

Other approaches have adopted a more decentralized view

323

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling

of coordination, emphasizing mechanisms that use or ex-
change information to extend the myopic views of individual
intersection control methods as they conduct best-response
behavior (Jonsson and Rovatsos 2011). One basic way has
been to use a forecast of demand beyond the local prediction
horizon (Blackburn, Kropp, and Millen 1986). In OPAC, a
moving average of historical arrivals from neighbors is used
to extend local prediction on each entry road. Communica-
tion with more accurate information (Wu, Zilberstein, and
Chen 2009) can help for multiagent online planning. In COP,
input flows of direct upstream neighbors are used directly
for predicting future arrivals to provide greater sensitivity to
actual traffic conditions. These predictions, however, do not
include the non-local influences of indirect neighbors.

Starting from this decentralized view of traffic network
control and following the perspective of recent work in
multi-agent coordination (Lesser, Decker, and Wagner 2004;
Smith et al. 2007), this paper proposes a decentralized,
schedule-driven coordination approach to the real-time traf-
fic network control problem. At the core of our approach
is a recently developed SCHedule-driven approach to Inter-
section Control (SchIC) (Xie et al. 2011). Equipped with
compatible interfaces to the inputs and outputs assumed by
traditional online planning approaches to intersection con-
trol, SchIC defines an abstract scheduling search space that
enables efficient computation of near-optimal solutions in
polynomial time, and it has been shown to outperform other
state-of-the-art online planning approaches (e.g., COP). To
define a basic intersection scheduling agent, SchIC is first
generalized for operation in a traffic network, and then com-
bined with network level protocols for exchanging and us-
ing non-local schedule information. To ensure scalability,
interaction is limited to direct neighbors. In operation, each
scheduling agent operates asynchronously and at each deci-
sion point requests a projection of scheduled output flows
from its direct upstream neighbors. Since this projection es-
sentially increases an agent’s look-ahead horizon, it is capa-
ble of incorporating non-local impacts from indirect neigh-
bors. This basic protocol is designed to yield coordinated
behavior in “perfect” situations where no agents make sig-
nificant changes to previously computed schedules. Addi-
tional mechanisms are then introduced to dampen “nervous-
ness”(Blackburn, Kropp, and Millen 1986) and dynamic in-
stability (Daganzo 1998; Kumar and Meyn 1995) in the
traffic network in less than perfect situations. When ap-
plied, these coordination mechanisms adjust an agent’s local
schedule to achieve a better network-level effect.

Problem Definition
We focus on a road network with a traffic light at each in-
tersection. For each intersection with a set of entry and exit
roads, the traffic light cycles through a fixed sequence of
phases I , and each phase i ∈ I governs the right of way for
a set of compatible movements from entry to exit roads. The
next phase of i is next(i) = (i + 1) mod |I|. For traffic sig-
nal control, a signal sequence (SS) contains a sequence of
phases and associated durations. For the switching process,
there are some timing constraints for safety and fairness: the
yellow light after each phase i runs for a fixed duration (Yi),

while each phase i has a variable duration (gi) that can range
between a minimum (Gmin

i) and maximum (Gmax
i).

We assume that each agent holds a private signal sequence
SSTL that controls an intersection for a finite future time,
which is periodically updated according to a rolling hori-
zon: When the time reaches the end of SSTL (at the next
decision point), the agent computes a new sequence SSext

to extend SSTL. The objective of the agents is to minimize
the total cumulative delay of vehicles traveling through the
road network over a time period.

Basic traffic models are also assumed. On each road, spa-
tial distances are transformed into temporal values by divid-
ing the average free-flow speed, and a queue of vehicles is
discharged in a green phase at the saturation flow rate (sfr)
after the start-up lost time (slt) (Sharma, Bullock, and Bon-
neson 2007). As in RHODES, we assume turning propor-
tions at each intersection are available. In practice, quite ac-
curate parameters can be estimated by using measured data.

We assume that all temporal values have been rounded
into numbers of time steps of a discrete time resolution (∆).

Schedule-Driven Intersection Control (SchIC)
At each decision time, the online planning problem faced by
a given intersection agent is to produce a signal sequence
SSext for the next period. This is accomplished by first gen-
erating a control flow in a scheduling search space that mini-
mizes local cumulative delay given the current observation o
of incoming traffic flows, and then applying the timing con-
straints to obtain feasible SSext. We first define inputs and
outputs, and then describe the core scheduling procedure.

Road Flows, Inflows and Control Flow
Sensed vehicles in a given traffic flow are characterized
as a cluster sequence C = (c1, · · · , c|C|), where |C| is
the number of clusters in C. Each cluster c is defined as
(|c|, arr, dep), where |c| is the number of vehicles in c, and
arr (dep) gives the expected arrival (departure) time at the
intersection respectively for the first (last) vehicle in c. The
clusters in C are ordered by increasing arr values.

The road flows entering an intersection then consist of a
set of cluster sequences RF , where each CRF,m contains
the vehicles traveling toward the intersection on entry road
m. In practice, each CRF,m can be obtained using detectors
on both sides of m (Sharma, Bullock, and Bonneson 2007),
where the travel time on m defines a finite horizon (Hm),
and the prediction horizon H is the maximum over all roads.

Since it is possible for more than one entry road to
have the right of way in a given phase (e.g., a two-way
street), the actual traffic flows of interest in determining
a signal sequence are the inflows IF , which contain clus-
ter sequences that combine traffic flows that can proceed
concurrently through the intersection. Formally, IF =
(CIF,1, · · · , CIF,|I|), where CIF,i contains those vehicles
with the right of way during phase i. These intersection
movement patterns are generally known and assumed avail-
able by existing control methods (Sen and Head 1997).
Given turning proportions for these movement patterns, IF
can be obtained through a road-to-phase mapping, i.e., IF =

324

RtoP (RF), where flows on roads are extracted according to
turning proportions and assembled into phased-based flows.
The prediction horizon H remains the same after the trans-
formation. If each road is only serviced in one phase, as in
many real-world intersections, RtoP is trivial.

To reduce the scheduling search space faced by the in-
tersection scheduler, two aggregation techniques that ex-
ploit the non-uniform nature of traffic flows are applied on
each cluster sequence in IF to form the final observation o.
First, arriving vehicles that are within a threshold time gap
(thg ≥ 0) are merged into a single arriving cluster. Second,
vehicles that are expected to join a given queue before it is
able to clear the intersection are grouped into an anticipated
queue cluster (Lämmer and Helbing 2008).

The control flow CF for an intersection contains the re-
sults of applying a signal sequence that clears all clusters in
an observation o. Formally, CF can be represented as a tuple
(S,CCF), where S is represented as a sequence of phase in-
dices, i.e., (s1, · · · , s|S|), CCF contains a corresponding se-
quence of clusters (cCF,1, · · · , cCF,|S|) that are reorganized
from IF . For each k, all vehicles in cCF,k belong to CIF,sk .

As RtoP is applied, a road-ratio function rr(c,m) is
used to store the ratio of vehicles from the entry road m,
for each cluster c in IF , and hence for each cluster in CF as
well. This interface provides the necessary information for
coordinating with upstream/downstream neighbors.

Scheduling Strategy
We use a schedule-driven intersection control (SchIC) strat-
egy, by viewing each intersection as a single machine, and
each cluster in IF as a non-divisible job. The jobs in CIF,i

can only leave the intersection in phase i, and the jth clus-
ter can only leave after the (j − 1)th one has left. Since the
cumulative dalay is only associated with the jobs in IF , a
scheduling search space with an efficient state elimination
criterion can be formed from the current observation.

The current observation o is defined to contain the current
decision time cdt, the phase index cpi and duration cpd of
the currently active traffic light phase, and the inflows IF
computed for the current prediction horizon H .

In a control flow CF = (S,CCF), S can be seen as a
schedule with |S| =

∑|I|
i=1 |CIF,i| elements. For a partial

schedule Sk, i.e., the first k elements of S, its schedule sta-
tus is defined as X=(x1, · · · , x|I|), where xi ∈ [0, |CIF,i|]
counts the number of clusters that have been serviced for
phase i. The kth job in CCF comes from the xsk th cluster
in CIF,sk (although its actual start time might be shifted ac-
cording to a greedy realization in Algorithm 1, see below).

For each Sk, the corresponding state variables are defined
as a tuple, (X , s, pd, t, d)k, where s and pd are the index and
duration of the last phase, t is the finish time of the kth job,
and d is the cumulative delay for all k jobs.

The state variables of Sk can be updated from those of
Sk−1, where sk is known, Xk = (Xk−1 with xsk = xsk +1),
and (pd, t, d)k are calculated by Algorithm 1 using (s, pd,
t, d)k−1 and sk. Algorithm 1 is based on a greedy realiza-
tion of a planned signal sequence, where MinSwitch(s, i)
in Line 3 returns the minimum time required for switching

Algorithm 1 Calculate (pd, t, d) of Sk (and obtains cCF,k)
Require: 1) (s, pd, t, d) of Sk−1; 2) sk

1: i = sk; c = (the xith job in CIF,i)
2: if (s 6= i) and (pd < Gmin

s) then t = t + (Gmin
s − pd)

3: pst = t+MinSwitch(s, i) {Permitted start time of c}
4: ast = max(arr(c), pst) {Actual start time of c}
5: if (s 6= i) and (pst > arr(c)) then ast = ast + slti
6: t = ast+ dep(c)− arr(c) {Actual finish time of c}
7: if (s 6= i) or (arr(c)− pst > SwitchBack(s))
8: then pd = t− pst else pd = pd + (t− pst)
9: d = d+ |c| · (ast−arr(c)) {Total cumulative delay}

10: return (pd, t, d) of Sk {cCF,k = (|c|, ast, t)}

Figure 1: A schedule of jobs (clusters), the corresponding
CCF , and a planned signal sequence

from the phase index s to i, Line 2 ensures each phase s
is not shorter than the minimum Gmin

s , slti in Line 5 is
the start-up lost time for clearing the queue in the phase
i, and SwitchBack(i) in Line 7 is the minimum time re-
quired for that the traffic light returns to the phase index
i. Both MinSwitch and SwitchBack only include yel-
low and minimum green times during the switching process.
Compared to the corresponding cluster c in IF , the delay
time of the kth job in CCF is (astk − arr(c)) (Line 9).

Figure 1 shows a schedule, a planned signal sequence, and
CCF . Note that for a given observation, a control flow might
encapsulate different signal sequences due to the presence
of slack time in the schedule. For example, the phase that
services the cluster (2,1) might be prolonged a little without
changing the cumulative delay of the control flow. This slack
time can be useful for coping with uncertainty in traffic flow.

Based on the observation o, a forward recursion, dynamic
programming process is used to obtain a near optimal solu-
tion S∗ among possible schedules that minimizes the total
cumulative delay. To retain efficiency, the states are grouped
by using (X, s), only one state with the minimal d value is
stored and other states in the group (or other branches in
the context of a decision tree) are eliminated. The remain-
ing state variables of the state are stored as a value row
(pd, t, d, s

O
), where an additional value s

O
is used for track-

ing back to the previous s (as will be used in Algorithm 4).
Algorithm 2 recursively calculates the value rows in all

required state groups (X, s). Two unique X arrays, i.e.,
Xempty and Xfull, which have xi = 0 and xi = |CIF,i| for
∀i, correspond to the empty and full status, respectively. Ini-
tially, only the state group (Xempty, cpi) has the value row
(cpd, cdt, 0,−). For all other state groups (X, s), their value

325

Algorithm 2 Forward recursion process
1: (pd, t, d, s

O
) of (Xempty, cpi)= (cpd, cdt, 0,−)

2: for k = 1 to |S| do
3: Collect the set Xk = {X :

∑|I|
i=1 xi ≡ k}

4: for ∀X ∈ Xk, ∀s ∈ [1, |I|] do
5: if xs > 0 then Execute Algorithm 3 for (X, s)
6: end for
7: end for
8: return The solution S∗ by using Algorithm 4

Algorithm 3 Calculate (pd, t, d, s
O

) of (X, s)

1: X
O

= (X with xs = xs − 1), dmin =∞
2: for s

O
= 1 to |I| do

3: if (X
O
, s

O
) exists then

4: (pd
O
, t

O
, d

O
) = (pd, t, d) of (X

O
, s

O
)

5: (pd, t, d) = Alg. 1, given (s
O
, pd

O
, t

O
, d

O
) and s

6: if (d < dmin) then
7: Store (pd, t, d, s

O
) for (X, s); dmin = d

8: end if
9: end if

10: end for

rows are then calculated in Algorithm 2 and stored. Using
the set Xk in Line 3 is a naive way of ensuring that all input
state groups are available for Algorithm 3, which adds the
kth element s to possible Sk−1. The condition xs > 0 in
Line 5 is used for ensuring the kth job is available.

Algorithm 2 has at most |I|2 ·
∏|I|

i=1(|CIF,i| + 1) state
updates, where |CIF,i| ≤ H , and each state update in Lines
4-8 of Algorithm 3 can be executed in constant time. It is
polynomial in H since |I| is limited for each intersection
in real world. Note that |CIF,i| is normally much smaller
than H . The planning horizon is implicitly available as the
maximum finish time of all schedules, which might be much
larger than H in congested traffic conditions.

The solution S∗ is tracked back using Algorithm 4. The
corresponding C∗CF and PD∗ = (pd1, · · · , pd|S|) are ob-
tained from Algorithm 1. The tuple (S∗, C∗CF , PD∗) is
stored until it is replaced in the next scheduling iteration.

Commitment Process
The role of the commitment process is to determine what
initial portion of the just computed schedule (SSext) to ap-
pend to the signal sequence (SSTL) that is controlling the
intersection. There is a basic trade-off for deciding the dura-
tion of SSext. A shorter duration enables quicker response
to changes in flow information, whereas a longer duration
leads to a more stable control flow for downstream agents.

For simplicity, we only consider whether to extend the
current phase or move to the next phase. An extension pro-
posal is first made by using the first job in C∗CF , called c1,
if available. There are two extension choices: 1) ext = 0,
if |S∗| ≡ 0, or s∗1 6= cpi, or arr(c1) ≥ SwitchBack(cpi);
otherwise 2) ext = min(dep(c1)− cdt, thext), where thext

is the upper limit to favor a quick responsive capability.
Note that SSTL must satisfy all timing constraints. This

Algorithm 4 Retrieve the solution S∗

1: X = Xfull; s = arg mins (d of (X, s))
2: for k = |S| to 1 do
3: sk = s; s = s

O
of (X, s); xsk = xsk − 1

4: end for
5: return S∗ = (s1, · · · , s|S|)

requirement is ensured by applying a repair rule (Porche and
Lafortune 1999): If ext > 0, the current phase is extended to
cpd = min(cpd + ext,Gmax

cpi). If cpd ≡ Gmax
cpi or ext ≡ 0,

the current phase is terminated, and the next phase is added
for a minimum green time after the yellow time.

Neighbor Coordination Mechanisms
The local observations of an isolated agent only consider
vehicles that have arrived in the detection zones of the in-
tersection’s entry roads. If the entry roads are short, the pre-
diction horizon will be short and the agent is susceptible to
myopic decisions that look good locally but not globally. To
counteract this possibility we augment the above intersec-
tion control strategy with explicit coordination mechanisms.

Specifically, we focus on introducing decentralized co-
ordination mechanisms between direct neighbors. The low
overhead of this approach allows for coordination in real-
time. Following the insights of existing coordination frame-
works, each agent remains highly autonomous. In our case,
the intersection control strategy always runs at the base level
to tailor local action to local information. Although this set-
ting certainly restricts possible choices, simple coordination
mechanisms can still be introduced to improve the overall
performance significantly, as we will show below.

Our approach includes a basic protocol and two additional
coordination mechanisms. The basic protocol, similar to a
social law, is defined in the sense that the basic behavior of
agents will be coordinated in perfect situations. Additional
coordination mechanisms are then applied to handle two
nontrivial mis-coordinated situations in the network: “ner-
vousness” and dynamic instability.

Basic Operations

Some operations are used for simplifying the description.
The operation C ∩ [t1, t2] forms a new cluster sequence

that only contains (partial) clusters belonging to [t1, t2],
where a cluster is cut if it spans the boundary. If a cluster
c is cut into two parts, the number of vehicles in c is divided
according to the proportions of their respective durations.

The operation (S,C)∩[t1, t2] forms (S′, C ′), where C ′ =
C ∩ [t1, t2], S′ is a subsequence of S, where each element is
removed if the corresponding cluster in C is totally removed.

The Unschedule(t1, t2) operation removes the clusters in
[t1, t2] from (S∗, C∗CF), and releases all corresponding (par-
tial) clusters that are not in C∗CF to form a new IF .

The Shift(C, t) operation shifts the arr and dep values of
all clusters in the sequence C forward in time by t.

326

Algorithm 5 Obtain an optimistic non-local observation
1: for Each entry road m do
2: UpAgent = UpstreamAgent(m)
3: Request COF from UpAgent using (cdt,m,Hext)
4: Shift(COF , the free travel time on the road m)
5: Append COF into CRF,m

6: end for
7: IF = RtoP (RF) {road-to-phase mapping}

Algorithm 6 Return COF for a message (cdt, n,Hext)

1: (SOF , COF) = (S∗, C∗CF) ∩ [cdt, cdt + Hext]
2: for k = 1 to |COF | do
3: TurnRatio =

∑
m(rr(cOF,k,m) · tp(sOF,k,m, n))

4: |cOF,k| = |cOF,k| · TurnRatio
5: end for

Optimistic Non-Local Observation
For each agent, the basic protocol with its upstream agents
is achieved by using an optimistic non-local observation, as
shown in Algorithm 5. For each entry road m, the corre-
sponding upstream agent UpAgent is obtained. The agent
then sends each UpAgent a request message (cdt,m,Hext),
where Hext is the maximum horizon extension, in order to
obtain a planned outflow COF from UpAgent. Upon receipt
of COF , the downstream agent adds an offset time — the av-
erage travel time between the two agents — to all the jobs in
COF and appends the jobs to the end of CRF,m. Afterward,
the road-to-phase mapping is applied to obtain the inflows.

Each UpAgent executes Algorithm 6 to obtain the
planned outflow COF at the current time cdt, based the pre-
viously planned control flow (S∗, C∗CF). The entry road m
of the requesting agent is the exit road n of UpAgent. In
Line 1, (SOF , COF) is obtained as (S∗, C∗CF) ∩ [cdt, cdt +
Hext]. In Line 3, rr is the road-ratio function, the function
tp(i,m, n) is the proportion of traffic turning from the entry
road m onto the exit road n during phase i.

For simplicity, Algorithm 5 is described as though an
agent can immediately obtain each requesting result. If there
are communication delays between agents, Lines 4-5 can be
executed later by simply using the segment COF ∩ [cdt,∞],
i.e., the actual horizon extension is just shortened.

A basic property of this protocol is that non-local influ-
ences (Witwicki and Durfee 2010) from indirect neighbors
can be included if Hext is sufficiently long, since the con-
trol flow of direct neighbors contains flow information from
their upstream neighbors. A limited Hext is used nonethe-
less to balance computational cost against the increasing un-
certainty of predicted flow information over longer horizons.

The optimistic assumption that is made is that direct and
indirect neighbors are trying to follow their schedules. The
situation is “perfect” if all upstream neighbors produce out-
put flows precisely according to their schedules (e.g., as
when using fixed signal timing plans). Normally, the op-
timization capability of SchIC makes schedules quite sta-
ble, given the clusters in local observation and large clus-
ters (platoons) in non-local observation. However, even if

Algorithm 7 Obtain a fully feasible control flow (S∗, C∗CF)

1: S∗ = C∗CF = ∅
2: repeat
3: tvio =∞; (S,CCF , PD) = SchIC(o)
4: Append (S,CCF) into (S∗, C∗CF)
5: for k = 1 to |CCF | do
6: if pdk > Gmax

sk
then

7: tvio = dep(cCF,k)− (Gmax
sk
− pdk)

8: if tvio < arr(cCF,k) then tvio = dep(cCF,k−1)
9: Unschedule(tvio,∞) {also update IF}

10: tc = tvio + Ysk ; cpi = next(sk); cpd = 0
11: break {break the for-loop}
12: end if
13: end for
14: until < tvio ≡ ∞ >

some neighbors change their schedules at their next deci-
sion points, those minor changes might still be absorbed by
exploiting the temporal flexibility in their control flows.

“Nervousness” Prevention
The first situation of mis-coordination is “nervousness”

for a downstream agent due to the uncertainty and disruption
associated with the predictions of upstream agents that are
using on-line control strategies with finite horizons.

In SchIC, maximum green constraints are not included in
obtaining (S∗, C∗CF). This simplification does not present a
problem for an isolated intersection, since these constraints
can be incorporated by the repair rule when determining and
committing to SS. However, when operating within a net-
work, repairs can cause nervousness for a downstream agent
due to nontrivial changes between planned and actual out-
flows from upstream agents.

To avoid a potential disruption, all timing constraints must
be incorporated into each planned signal sequence, rather
than be repaired after the fact. However, this is difficult to
accomplish in SchIC since each cluster is treated as indi-
visible. Allowing clusters to be dynamically split during the
optimization process would require a more sophisticated ap-
proach with greater computational complexity.

Instead, a “nervousness” prevention mechanism, shown in
Algorithm 7, is added to the coordinated control strategy of
each agent. This mechanism iteratively splits clusters to en-
sure that all maximum green time constraints are satisfied.
Based on the current observation o, SchIC is executed (Line
3) to obtain a new solution (S,CCF , PD) for extending
(S∗, C∗CF) from the current time cdt (Line 4). Then max-
imum green time constraints are checked. For each stage
k = 1 to |CCF |, there is a violation if pdk > Gmax

sk
. The

violation time point tvio is obtained in Lines 7-8. In Line 9,
(S∗, C∗CF) ∩ [tvio,∞] are unscheduled, and IF is updated.
In Line 10, tc, cpi, and cpd in the observation o are updated.
The process is repeated until no violation is found.

The number of iterations is equal to the number of vi-
olation time points that are found in the schedule. A time
violation occurs only when a phase is scheduled to exceed
the maximum green time. Given a limited planning horizon,

327

Algorithm 8 Prevent spillover in the next phase
1: c1 = (c of mc1); c2 = (c of mc2); in = next(cpi)
2: SOCount = 0
3: for m ∈ EntryRoadsServicedinPhase(in) do
4: SOCount+ = max(0, |c2| · rr(c2,m)−(ac of m))
5: end for
6: if SOCount ≡ 0 return
7: tSO = min(SOCount/sfrin , DelayT ime of mc2)
8: told = dep(c1), tnew = max(0, told − tSO)
9: RQCount = |c1| · (told − tnew)/told

10: if SOCount ≥ RQCount then
11: Unschedule(tnew, told); Unschedule(dep(c2),∞)
12: Shift(C∗CF ∩ [arr(c2), dep(c2)], tnew − told)
13: end if

the number of iterations is thus bounded and small.

Spillover Prevention
The second mis-coordination situation is the spillover effect
(Daganzo 1998). Each road in a traffic network has its arrival
capacity (ac), i.e., ac = L/h, where L is the road length, and
h is the average headway distance between statically queue-
ing vehicles. The spillover due to insufficient capacity on an
entry road of a downstream intersection will not only block
traffic flow from upstream intersections, but might also lead
to dynamic instability (Kumar and Meyn 1995) in a network.

The spillover prevention mechanism is used by a down-
stream agent to prevent a spillover in the next phase by de-
ciding if the current phase should be terminated earlier than
planned. In this mechanism, the downstream agent sacrifices
its own interest for the sake of its upstream neighbors.

For the control flow (S∗, C∗CF), all adjacent clusters that
are of the same phase are merged into a macro cluster, i.e.,
mc = (c, PhaseIndex, SlackT ime,DelayT ime), where
c is the merged cluster, PhaseIndex is the phase index,
SlackT ime is the total slack time in mc, and DelayT ime
gives how long the first cluster in mc will be delayed.

Three conditions are required to trigger Algorithm 8: (1)
there is more than one macro cluster; (2) the PhaseIndex
of mc1 and mc2 are respectively cpi and next(cpi); and (3)
SlackT ime = 0 and DelayT ime > 0 for mc2.

If these conditions hold, Algorithm 8 is executed to pre-
vent spillover in the next phase. The basic idea is to ob-
tain an anticipated spillover count SOCount (Lines 2-5)
in the next phase, and use the time tSO (Line 7) required
for clearing SOCount to estimate the residue queue count
RQCount (Lines 8-9) to be sacrificed in the current phase.
If SOCount ≥ RQCount, the actual adjustment to the
control flow is performed in Lines 11-12 by shifting clus-
ters in mc2 ahead to avoid spillover. For simplicity, all un-
scheduled clusters are discarded, although in principle these
clusters might be re-scheduled using SchIC.

Performance Evaluation
To evaluate our approach, we simulate performance on two
road networks: (1) a synthetic 5X5 grid network designed

Figure 2: A 5X5 grid network of 25 intersections

to incorporate tightly-coupled intersections with short inter-
vening travel times, high congestion, and a fine time reso-
lution for optimization of ∆ = 0.5 seconds, and (2) a real-
world traffic network with 2-way traffic, multiple lanes, and
multi-directional outflows. The former presents a difficult
network optimization challenge in a controlled setting; the
latter presents a more complex practical application.

All simulation runs were performed using Simulation of
Urban Mobility (SUMO) (Behrisch et al. 2011), an open-
source micro traffic simulator. For each control strategy
tested, we measured performance as the average waiting
time of all vehicles, calculated as the mean over 100 runs.

5X5 Grid Network
Simulation Settings The 5X5 grid network is shown in
Figure 2. In this network, all roads have length L=75 meters,
except for the horizontal roads between 2 and 3, which have
L(2−3) = 25 meters, and horizontal entry roads between 0
and 1, which have L(0−1) = 150 meters. The length L(0−1)
is used for reducing boundary effects. We will assume that
heavier flows are traveling in the horizontal direction.

All roads in the network are one-way. To remove the un-
certainty in estimating movement proportions, no turning
movements are considered. For background traffic, each mi-
nor route generates a traffic flow of 1/20 of the total traffic.
There are two major flows on C and 3 (the bottleneck) that
generate 3/5 of the total traffic. The total simulation time
is one hour, and for each twenty minute period, the demand
ratios between C and 3 are 35:25, 40:20, and 45:15.

On each road, the flow speed is 10 meters per second,
the saturation flow rate sfr per lane is one vehicle per 2.5
seconds, and the start-up lost time is slt = 3.5 seconds. For
each intersection, Gmin and Gmax are respectively 5 and 55
seconds, and the yellow time is Y = 5 seconds.

These settings are fairly realistic. The default value of
L is similar to the lengths of east-west streets in Manhat-
tan (about 79 meters). Roads of around 25 meters appear
in some real-world urban road networks. The travel times
on each road (7.5 seconds for normal roads and 2.5 sec-
onds for horizontal roads between 2 and 3) are consistent

328

CoL2
CoL1
CoL0

CoMA
SchIC
BPU

Demand (vehicles/hour)

W
a
it
in
g
T
im

e
(s
ec
o
n
d
s)

150013001100900

400

300

200

100

0

Figure 3: Results of six control strategies

with those of real-world urban networks and provide a chal-
lenging setting for studying tightly-coupled intersections.
Because the minimal time for SwitchBack is 15 seconds
(Y +Gmin +Y), non-local impacts from indirect neighbors
can be nontrivial.

Five control strategies were configured using the core
SchIC intersection control strategy and evaluated: SchIC,
CoL0, CoL1, CoL2, and CoMA. SchIC is the isolated ap-
plication of SchIC with no coordination, which serves as
the baseline. CoL0 applies the first coordination mechanism,
optimistic non-local observation, to SchIC. CoL1 extends
CoL0 by including the second coordination mechanism, ner-
vousness prevention. CoL2 further extends CoL1 by adding
the third coordination mechanism, spillover prevention. We
also consider CoMA, which is the same as CoL0 except that
instead of using real-time data for the non-local horizon ex-
tension, we use a moving average of the historical demand
on each entry road. The moving average forecast of demand
approach is not only adopted by some contemporary online
planning approaches (e.g., OPAC), but is also used as a pop-
ular mechanism for collaborative planning in supply chain
networks (Xu, Dong, and Evers 2001). For SchIC, the pa-
rameter for aggregation is set as thg = 3 seconds, and the
upper limit for commitment is thext = 5 seconds. By de-
fault, the non-local horizon extension Hext is 15 seconds.

A real-time coordination algorithm called balanced phase
utilization (BPU) (Barlow 2011) is also included for com-
parison. BPU is representative of another class of adaptive
traffic signal control systems, including ACS-Lite. At the
end of each cycle, the algorithm adjusts the phase splits in
order to balance phase utilization, a measure of phase ef-
ficiency. The algorithm also coordinates an intersection by
calculating an offset from an adaptively selected neighbor.

Results Figure 3 shows the results of six strategies, i.e.,
BPU, SchIC, CoMA, CoL0, CoL1, and CoL2, for the de-
mands ∈ {900, 1100, 1300, 1500} vehicles per hour (vph).

Compared to SchIC, CoMA performed better since a ba-
sic degree of coordination is introduced by a moving average
forecast beyond the prediction horizon.

Due to the strong intersection optimization capability of
SchIC, both SchIC and CoMA performed better than BPU

Demand=1500
Demand=1300
Demand=1100
Demand=0900

Non-Local Horizon Extension Hext (seconds)

W
a
it
in
g
T
im

e
(s
ec
o
n
d
s)

302520151050

400

300

200

100

0

252015105

60

40

20

0

Figure 4: CoL2 with different horizon extensions

when the demand is low. However, as traffic demands in-
crease, non-local impacts cannot be sufficiently addressed
by implicit coordination alone. With its explicit coordina-
tion through offset calculation, BPU achieved much better
performance than SchIC and CoMA for higher demands.

As shown in Figure 3, CoL0 produced lower waiting
times than the above three strategies. Compared to SchIC,
the advance of CoL0 demonstrates the benefit from the
optimistic non-local observation coordination mechanism.
CoL0 does not have an explicit offset calculation like BPU;
the coordination between neighbors is instead established by
looking ahead to upstream outflows. The only difference be-
tween CoL0 and CoMA is that the former exploits the im-
portance of demand variability in real-time. Nevertheless,
if the communication fails between some neighbors, mov-
ing average forecast might be temporarily adopted for those
failed links where CoL* and BPU are not functional.

Compared to CoL0, the advance of CoL1 and CoL2
demonstrate the effectiveness of both nervousness and
spillover prevention mechanisms. For an upstream agent,
nervousness prevention has no local effects on its own per-
formance if there is no spillover from downstream intersec-
tions, although it does incur minor computational cost. How-
ever, by making the prediction of outflows more reliable,
nervousness prevention benefits downstream agents, leading
to less mis-coordination. The spillover prevention helps an
upstream agent use its green time effectively, though down-
stream agents may have to sacrifice their own local perfor-
mance. Our test shows that the sacrifice is worthwhile.

Figure 4 shows the results of CoL2 with different non-
local horizon extensions from 0 to 30 seconds at different
demands. The sharp increases near Hext = 0, especially for
high demands, demonstrate the performance advantage of
providing non-local information to agents with a myopic
view of the environment. At the high demand of 1500 vph,
the best result is Hext = 15 seconds, which has two non-
trivial implications. First, the horizon extension is approx-
imately equal to the travel time across two road segments,
which indicates the benefit of incorporating non-local im-
pacts from indirect neighbors. The advantage of optimistic
non-local observation is that it can consider those indirect

329

Figure 5: A real-world road network of 9 intersections

CoL2
SYNCHRO

Demand Ratio

W
a
it
in
g
T
im

e
(s
ec
o
n
d
s)

1.31.21.110.90.80.7

300

200

100

0

Figure 6: Results on the real-world road network

impacts by using predicted outflows from direct upstream
neighbors. Second, the fact that the performance of CoL2
becomes worse when Hext is increased might be due to in-
creased uncertainty in non-local observations. Thus, it might
be beneficial to implement a learning strategy to decide Hext

for each upstream direction of an agent.
For Hext = 30, the number of time steps in the predic-

tion horizon (Hext + L/speed)/∆ is 75, which presents a
substantial look-ahead horizon for existing online planning
algorithms. ALLONS-D, for example, becomes intractable
at prediction horizons significantly smaller than this.

Of all the instances shown in Figure 4, the instance with
Hext=30 seconds and a demand of 1300 vph was the most
computationally intensive. For this instance, the total CPU
time of CoL2 for each run took between [0.09, 0.41] seconds
with an average of 0.22 seconds. Each decision was made,
on average, in 1.4E-5 seconds (with the agents taking an av-
erage of 15971 decisions per run), which is much shorter
than the fine time resolution ∆. All computations were per-
formed using JRE 1.6 on a 3.4GHz AMD Phenom II. Thus,
there is still headroom to incorporate and benefit from more
sophisticated coordination mechanisms with greater compu-
tational requirements on schedule-driven intersections.

Real-World Road Network
Figure 5 shows a 9-intersection road network located in the
East Liberty area of Pittsburgh, PA. All roads between in-
tersections are two-way. The number of lanes on each road

ranges from 1 to 3, and road lengths range from 40.5 to
174.1 meters. On each road, the flow speed is 13 meters per
second. We consider one time-of-day scenario, i.e., an AM
peak hour, which has an average demand of 4891 vehicles
per hour. For these intersections, the fixed timing plans that
are currently used were generated by SYNCHRO, a com-
mercial package for offline traffic signal optimization based
on offset calculation, and were provided to us by the city of
Pittsburgh. For the head-to-head comparison, only the full
SchIC-based strategy (CoL2) is included. CoL2 is applied to
each intersection with Gmin and Gmax values of 10 and 90
seconds respectively, and all Y values are kept the same as
the current operational settings. For model parameters, sfr
per lane is one vehicle per 2 seconds, and slt is 2 seconds.

Figure 6 shows the results of CoL2 and the current, fixed
coordination strategy optimized by SYNCHRO. Different
demand ratios were considered to reflect possible changes
of average demands in different days. For all demand ra-
tios, CoL2 achieved significantly better results than the
SYNCHRO generated timing plan. Both control strategies
produced low waiting times and very low variations when
the demands were low. For high demands ratios, the non-
linearly increased waiting times indicate that in some runs
the network became congested. The variations of CoL2 was
large since the adaptive control strategy can sometimes, al-
though not always, avoid congestion.

Conclusions
In this paper, we described a schedule-driven coordination
approach for real-time traffic network control. This approach
solves the traffic control problem by scheduling aggregate
traffic flows in a networked distributed environment. In our
model, each intersection is controlled by a distinct agent that
uses look-ahead scheduling to operate with a limited predic-
tion of incoming traffic, and this basic control strategy is
augmented with three coordination mechanisms to improve
overall system performance. In the basic coordination mech-
anism, each agent uses the planned output flows of vehicles
from its upstream neighbors to generate an optimistic obser-
vation, which includes look-ahead information from direct
and indirect neighbors. In addition to optimistic non-local
observation, two other coordination mechanisms help to pre-
vent “nervousness” and dynamic instability in the network.

We compared our method to an isolated control strategy,
a coordination strategy that uses a moving average fore-
cast, and a coordination strategy that uses adaptive offset
calculation via simulation on a 5X5 grid network designed
to present a challenge for decentralized network-wide opti-
mization. The results obtained demonstrated the ability of
our method to establish traffic flow coordination with lower
average wait times than all competing methods. We also
evaluated our approach on a model of a real-world urban
road network, showing the ability to outperform the fixed co-
ordination strategy that is currently in use (which was gener-
ated offline using SYNCHRO). A pilot test of our approach
on this traffic network is planned for early 2012.

There are several aspects of the proposed method that
warrant further study. One issue concerns the development
of more effective coordination mechanisms. For example, in

330

the current spillover prevention mechanism, the downstream
agent sacrifices its own interest for the sake of an upstream
neighbor. However, such a one-sided sacrifice might be fu-
tile if the upstream agent changes its schedule at the next
decision point to service another phase. It could be inter-
esting to apply pricing mechanisms to dampen the changes
made by upstream agents in this context. Another possible
improvement might be to introduce negotiation mechanisms
(Dudek and Stadtler 2005), although these mechanisms may
require additional iterations to reach an equilibrium.

Acknowledgements. This research was supported in part by
the Traffic21 Initiative at Carnegie Mellon University, with
support from the Hillman Foundation and the Heinz Endow-
ments, and the CMU Robotics Institute.

References
Barlow, G. J. 2011. Improving Memory for Optimization
and Learning in Dynamic Environments. Ph.D. Dissertation,
Carnegie Mellon University, Pittsburgh, PA.
Behrisch, M.; Bieker, L.; Erdmann, J.; and Krajzewicz, D.
2011. SUMO - Simulation of Urban MObility: An overview.
In International Conference on Advances in System Simula-
tion, 63–68.
Blackburn, J.; Kropp, D.; and Millen, R. 1986. A compar-
ison of strategies to dampen nervousness in MRP systems.
Management Science 32(4):413–429.
Cai, C.; Wong, C.; and Heydecker, B. 2009. Adaptive
traffic signal control using approximate dynamic program-
ming. Transportation Research Part C: Emerging Technolo-
gies 17(5):456–474.
Cervero, R. 1986. Unlocking suburban gridlock. Journal of
the American Planning Association 52(4):389–406.
Daganzo, C. F. 1998. Queue spillovers in transportation net-
works with a route choice. Transportation Science 32(1):3–
11.
Dudek, G., and Stadtler, H. 2005. Negotiation-based collab-
orative planning between supply chains partners. European
Journal of Operational Research 163(3):668–687.
Gartner, N.; Pooran, F.; and Andrews, C. 2002. Opti-
mized policies for adaptive control strategy in real-time traf-
fic adaptive control systems - implementation and field test-
ing. Transportation Research Record 1811:148–156.
Gettman, D.; Shelby, S. G.; Head, L.; Bullock, D. M.; and
Soyke, N. 2007. Data-driven algorithms for real-time adap-
tive tuning of offsets in coordinated traffic signal systems.
Transportation Research Record 2035:1–9.
Heung, T. H.; Ho, T. K.; and Fung, Y. F. 2005. Coor-
dinated road-junction traffic control by dynamic program-
ming. IEEE Transactions on Intelligent Transportation Sys-
tems 6(3):341 – 350.
Husch, D., and Albeck, J. 2006. Synchro Studio 7 User
Guide. Trafficware Ltd., Sugar Land, TX.
Jonsson, A., and Rovatsos, M. 2011. Scaling up multiagent
planning: A best-response approach. In International Con-
ference on Automated Planning and Scheduling, 114–121.

Junges, R., and Bazzan, A. L. C. 2008. Evaluating the
performance of DCOP algorithms in a real world, dynamic
problem. In International Joint Conference on Autonomous
Agents and Multiagent Systems, 599–606.
Kumar, P., and Meyn, S. 1995. Stability of queueing net-
works and scheduling policies. IEEE Transactions on Auto-
matic Control 40(2):251–260.
Lämmer, S., and Helbing, D. 2008. Self-control of traffic
lights and vehicle flows in urban road networks. Journal of
Statistical Mechanics: Theory and Experiment P04019.
Lesser, V.; Decker, K.; and Wagner, T. 2004. Evo-
lution of the GPGP/TAEMS domain-independent coordi-
nation framework. Autonomous Agents and Multi-Agent
Sytems 9(1-2):87–143.
Mirchandani, P., and Head, L. 2001. A real-time traffic
signal control system: Architecture, algorithms, and analy-
sis. Transportation Research Part C: Emerging Technolo-
gies 9(6):415–432.
Papageorgiou, M.; Diakaki, C.; Dinopoulou, V.; Kotsialos,
A.; and Wang, Y. 2003. Review of road traffic control strate-
gies. Proceedings of the IEEE 91(12):2043–2067.
Porche, I., and Lafortune, S. 1999. Adaptive look-ahead
optimization of traffic signals. ITS Journal 4(3-4):209–254.
Richter, S.; Aberdeen, D.; and Yu, J. 2006. Natural actor-
critic for road traffic optimisation. In Advances in Neural
Information Processing Systems, 1169–1176.
Ross, S.; Pineau, J.; Paquet, S.; and Chaib-draa, B. 2008.
Online planning algorithms for POMDPs. Journal of Artifi-
cial Intelligence Research 32(1):663–704.
Sen, S., and Head, K. 1997. Controlled optimization of
phases at an intersection. Transportation Science 31(1):5–
17.
Sharma, A.; Bullock, D.; and Bonneson, J. 2007. Input-
output and hybrid techniques for real-time prediction of de-
lay and maximum queue length at signalized intersections.
Transportation Research Record 2035:69–80.
Smith, S. F.; Gallagher, A.; Zimmerman, T.; Barbulescu, L.;
and Rubinstein, Z. 2007. Distributed management of flex-
ible times schedules. In International Conference on Au-
tonomous Agents and Multiagent Systems, 484–491.
Witwicki, S. J., and Durfee, E. H. 2010. Influence-based pol-
icy abstraction for weakly-coupled Dec-POMDPs. In Inter-
national Conference on Automated Planning and Schedul-
ing, 29–36.
Wu, F.; Zilberstein, S.; and Chen, X. 2009. Multi-agent
online planning with communication. In International Con-
ference on Automated Planning and Scheduling, 321–328.
Xie, X.-F.; Smith, S. F.; Lu, L.; and Barlow, G. J. 2011.
Schedule-driven intersection control. Technical Report
CMU-RI-TR-11-34, The Robotics Institute, Carnegie Mel-
lon University, Pittsburgh, PA.
Xu, K.; Dong, Y.; and Evers, P. T. 2001. Towards better
coordination of the supply chain. Transportation Research
Part E: Logistics and Transportation Review 37(1):35–54.

331

