
Faster Bounded-Cost Search Using Inadmissible Estimates

Jordan T. Thayer
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

jtd7 at cs.unh.edu

Roni Stern and Ariel Felner
Information Systems Engineering

Ben Gurion University
Beer-Sheva, Israel 85104

roni.stern at gmail.com, felner at bgu.ac.il

Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

ruml at cs.unh.edu

Abstract

Many important problems are too difficult to solve optimally.
A traditional approach to such problems is bounded subop-
timal search, which guarantees solution costs within a user-
specified factor of optimal. Recently, a complementary ap-
proach has been proposed: bounded-cost search, where so-
lution cost is required to be below a user-specified absolute
bound. In this paper, we show how bounded-cost search can
incorporate inadmissible estimates of solution cost and so-
lution length. This information has previously been shown
to improve bounded suboptimal search and, in an empirical
evaluation over five benchmark domains, we find that our new
algorithms surpass the state-of-the-art in bounded-cost search
as well, particularly for domains where action costs differ.

Introduction

If time and memory permit, we can use algorithms like A*
(Pohl 1970) or IDA* (Korf 1985) to solve classical plan-
ning problems optimally. In many practical settings, finding
optimal solutions is impractically expensive. So we turn to
suboptimal solving techniques, which can quickly return so-
lutions whose cost may be greater than optimal.

There are a number of possible settings for suboptimal
search. Perhaps the best known is bounded suboptimal
search: given a user-supplied suboptimality bound w, find
a solution guaranteed to be no more than w times more ex-
pensive than optimal as quickly as possible. The most fa-
mous algorithm for this setting is weighted A* (Pohl 1970).
Relaxing the suboptimality bound w reduces the difficulty
of proving that a solution is cheap enough, usually reducing
the time required to solve the problem.

Recently, Stern, Puzis, and Felner (2011) introduced
a new setting for suboptimal search called bounded-cost
search: given a user-specified cost bound C, find a plan with
cost less than or equal to C as fast as possible. Bounded-cost
search corresponds to many realistic cost-constrained sce-
narios such as planning under a fixed budget for plan execu-
tion. Stern, Puzis, and Felner also introduced an algorithm
called Potential search (PTS) specifically designed for the
bounded-cost search. PTS is a best-first search on potential
— the probability that a given node will be part of a solu-

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tion whose cost is within the user-supplied budget C. Nodes
more likely to have a goal node beneath them are preferred.

In this paper, we note that PTS has a shortcoming. While
it considers how likely a node is to have a goal beneath it, it
ignores the effort of actually finding that goal. If we had both
of these estimates, we could optimize the goal of bounded-
cost search directly: find a solution within the cost bound C
as quickly as possible.

After presenting PTS in more detail, we show that it
can use inadmissible heuristics to improve search perfor-

mance. We call this variant P̂ TS. We then introduce a new
search algorithm, Bounded-Cost Explicit Estimation Search
(BEES), that considers an estimate of the search effort be-
neath a node. It does this by using a heuristic estimate of the
number of actions between a node and a goal, denoted by

d̂, which is used as a proxy for remaining search effort. We
also introduce a variant of BEES that considers both the po-

tential of a node and d̂. This is called Bounded-Cost Explicit
Estimation Potential Search (BEEPS). Experimental results
in five benchmark domains show that BEES and BEEPS per-
form nearly identically to the previous state-of-the-art PTS
algorithm when actions have unit cost and outperform the
previous state-of-the-art by up to four orders of magnitude
in domains where actions have differing costs. We also show
that algorithms designed for the bounded-cost setting out-
perform modified bounded suboptimal search algorithms as
well as simple baselines in the bounded-cost setting.

Taken together with the previous work on bounded sub-
optimal search, these results on bounded-cost search sug-
gest that inadmissible estimates of solution cost and solution
length are widely useful for fast suboptimal heuristic search.

The Bounded-Cost Search Problem

Stern, Puzis, and Felner (2011) define bounded-cost search
in the context of heuristic shortest-path graph search: Given
a description of a state space, a start state s, a goal test func-
tion and a constant C, find a path from s to a goal state with
cost less than or equal to C.

One might be tempted to view a bounded-cost search
problem as a constraint satisfaction problem (CSP), where
the desired cost bound is simply a constraint on the solu-
tion cost. However, we address the more general problem
of finding a path in a search space, where the search space

270

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling



can be defined implicitly by an initial state and an expand, or
successor, function. Such an implicitly defined search space
can be infinitely large. This prohibits solving bounded-cost
problems with CSP solvers, as they require that all decision
variables be defined up front. The algorithms we develop in
this paper belong to the best-first search framework, and are
suited to search in potentially infinite search spaces.

Bounded-cost search problems is related to resource-
constraint planning (Haslum and Geffner 2001; Nakhost,
Hoffmann, and Müller 2010). In resource-constraint plan-
ning there are limited resources, and actions may consume
these resources. The task to find a feasible plan (with respect
to the resources) with minimal make-span. This is similar to
bounded-cost search, in which there is only type resources
which is the cost of the plan. In contrast, in bounded-cost
search we do not want to minimize the plan make-span - any
plan under the cost bound is good enough. Thus, bounded-
cost algorithms are expected to outperform the more gen-
eral resource-constraint planner. Other related work limited
the applicable operators as a function of the cost (Phillips
and Likhachev 2011). This type of planning can be reduced
to a bounded-cost search problem, by adding a single goal-
achieving operator that can only be applied if the cost is be-
low the bound. However, in this setting too the task is to
optimize the plan length/cost, while in bounded-cost search
any solution under the bound is acceptable.

Potential Search

To our knowledge, PTS is the first best-first heuristic search
algorithm to address the bounded-cost search problem. PTS
is based on considering the potential of all nodes that have
been generated but not yet expanded (i.e. nodes on OPEN).
The potential of a node is the probability that a solution of
cost no more than C exists beneath that node. Let h∗(n) be
the true cost of a path from n to a goal. Then the potential
of node n is PTC(n) = Pr(g(n) + h∗(n) ≤ C).

PTS is simply a best-first search on PTC . Explicitly cal-
culating the potential of a node is challenging. However, for
some cases it is possible to order the nodes according to their
potential without calculating it exactly. This can be done if
one knows the relation between the real cost-to-go h∗(n)
and its lower-bound h(n). This relation between h and h∗

is called the heuristic error model. Several heuristic func-
tions have shown to exhibit an approximately linear-relative
heuristic error model, which means h∗(n) has a distribution
similar to h(n) times an i.i.d random variable α.

Stern, Puzis, and Felner (2011) proved that, for the case of
the linear-relative heuristic error, the node with the highest

potential is the node with minimum flnr(n) = h(n)
C−g(n) . In

this paper we assume the linear relative heuristic error model
holds, and therefore PTS is a best-first search using flnr .

Potential Search with Inadmissible Estimates

While not stated explicitly, PTS was always described in
the context of admissible heuristics. Admissible heuristics
are lower bounds on the cost-to-go. Inadmissible heuristics
may return estimates that are larger than the true cost-to-go,
but they tend to be more accurate than admissible heuristics.

Inadmissible heuristics can be hand-crafted, learned offline
from training data (Samadi, Felner, and Schaeffer 2008), or
learned during search (Thayer, Dionne, and Ruml 2011).

The first contribution of this paper is to point out that in-
deed inadmissible heuristics can be used in bounded-cost
search. Let ĥ(n) denote an inadmissible heuristic. If an

inadmissible heuristic function ĥ(n) has a linear-relative er-

ror model then PTS can be implemented using f̂lnr(n) =
ĥ(n)

C−g(n) . P̂ TS denotes PTS with inadmissible heuristics.

In practice, we implement P̂ TS as a best-first search on

f̂lnr(n) = ĥ(n)

1− g(n)
C

, where we have effectively divided the

potential score of all nodes by the cost bound C. This
does not affect node ordering. Restating the node order-
ing function this way does two things. First, it makes it

clear that for large values of C, PTS and P̂ TS will be-
have like a greedy search on cost-to-go estimates (some-
times called pure heuristic search). Secondly, it avoids pre-
cision issues caused by large C values. For large C, imple-

menting flnr(n) as
h(n)

C−g(n) will result in flnr(n) = 0 for all

nodes. For flnr(n) =
h(n)

1− g(n)
C

, we have flnr(n) = h(n).

If an admissible h(n) is available, P̂ TS can use it for

pruning. Every node generated by P̂ TS such that g(n) +
h(n) > C can immediately be pruned, as it can not lead to

a solution within the desired bound. P̂ TS is more informed
than PTS, as it uses both the admissible and the inadmissi-
ble heuristics when it searches.

Limitations of the Potential-Based Approach

Note that PTS and P̂ TS only consider the probability that
a node is on a path to a goal whose cost is within the cost
bound C. Search algorithms for the bounded-cost problem

can also consider additional information, for example d̂(n),
an estimate of the number of actions between a node and the
goal, when choosing which node to expand next. To see how
this might be helpful, consider the graph depicted in Figure
1. Assume that nodes A and B are in the open list and the
search algorithm needs to choose which node to expand first.
While node B has a higher potential (PTC(B) = 0.9 >
PTC(A) = 0.89), A is estimated to be much closer to the
goal than B (d∗(A) = 1 < d∗(B) = 10). Clearly, PTS
will expand B first, since it only considers the potential of a
node. Since the goal under A is estimated to be much closer
than the goal under B, expanding A is intuitively a better
option. Its potential is close to the potential of B, but it is
expected to return a solution much faster since it is closer
to a goal. This example demonstrates an oversight in the
approach taken by PTS. The task in a bounded-cost problem
is to find a path to a goal under the bound as fast as possible,
i.e. with minimal search effort. However, PTS considers
only the potential of a node, i.e. the probability of a node
being part of path to a goal under the bound. It does not
account for the time needed to find that solution.

271



Figure 1

Figure 2 Figure 3 Figure 4

Bounded-Cost Explicit Estimation Search

In best-first search, the running time of the search algorithm
is usually proportional to the number of nodes expanded un-
til the goal is found. It is difficult to directly estimate the
search effort that will be required to find a goal under a given
node. However, in many domains it is possible to obtain
an estimate of the number of actions between a node and a
goal. Lower bounds of actions-to-go will be denoted by d,

d̂ denotes estimates of actions-to-go that are not necessarily
lower bounds (i.e. inadmissible estimates).

Actions-to-go is no harder to estimate than cost-to go.
Heuristics are typically computed by solving some relaxed
problem. h(n) is the sum of the costs of the actions in the
solution to this relaxed problem. When action costs differ,
we can construct d(n) by counting the number of actions in
the solution to this relaxed problem.

The Explicit Estimation Search (EES) algorithm (Thayer
and Ruml 2011), proposed for the bounded-suboptimal

search setting, uses d̂ to solve problems quickly. The BEES
and BEEPS algorithms presented in this paper are based on
EES, and therefore we first discuss EES in detail.

Explicit Estimation Search

EES is designed for bounded suboptimal search in which the
goal is to find a solution whose cost is within a user-specified
factor of optimal as quickly as possible. EES attempts to es-
timate which nodes are likely to lead to solutions within the
bound. Of these, it prefers to expand next that node which
appears to be nearest to completion. EES must also take care
to only expand nodes that can be shown to lead to a solution
within the suboptimality bound, typically denoted w.

In addition to the standard admissible cost-to-go heuristic
h, EES makes use of an inadmissible estimate of cost-to-

go, ĥ, as well as d̂, the previously discussed actions-to-go
estimate. EES uses its heuristics to form a lower bound on
the total cost of a solution through a node, f(n) = g(n) +
h(n) as well as an unbiased inadmissible estimate of the cost

of a solution through a node, f̂(n) = g(n) + ĥ(n).
Inadmissible heuristics have many potential

sources (Samadi, Felner, and Schaeffer 2008;
Jabbari Arfaee, Zilles, and Holte 2011; Thayer, Dionne,

and Ruml 2011). We use the well-known FF heuris-

tic (Hoffmann and Nebel 2001) for ĥ and d̂ in domain
independently planning, and we use online corrections
proposed by Thayer, Dionne, and Ruml (2011) to construct
inadmissible heuristics in our other benchmarks. These
online corrections work by estimating the average error in
heuristics in a single expansion. We simply need to correct
for the measured error for every step we intend to take,

estimated by d̂.
Using the heuristic functions just described, EES keeps

track of three special nodes: bestf , which provides a lower
bound on the cost of an optimal solution, best

f̂
, which pro-

vides an estimate of the cost of an optimal solution to the
problem, and best

d̂
, the node estimated to be within the sub-

optimality bound w and have the smallest number of actions
remaining to reach a goal. Formally:

bestf = argmin
n∈open

f(n)

best
f̂

= argmin
n∈open

f̂(n)

best
d̂

= argmin
n∈open∧f̂(n)≤w·f̂(best

f̂
)

d̂(n)

At every expansion, EES chooses from among these three
nodes using the following rule:

1. if f̂(best
d̂
) ≤ w · f(bestf) then best

d̂

2. else if f̂(best
f̂
) ≤ w · f(bestf) then best

f̂

3. else bestf

The intuition behind EES is that it attempts to pursue the
nearest solution that is estimated to be within the subopti-
mality bound, that is it considers best

d̂
first. If it cannot

pursue this node, it considers either improving the quality
of nodes from the focal list (expanding best

f̂
) or raising

the lower bound (expanding bestf ). The former addresses
a flaw in A∗

ǫ (Thayer, Ruml, and Kreis 2009) and the lat-
ter ensures that we can prove that solutions returned by EES
obey the suboptimality bound.

EES has been shown to find solutions faster than other
bounded suboptimal search algorithms for a given subopti-
mality bound, especially in domains with actions of differ-

272



ing costs. However, EES is a bounded-suboptimal search
algorithm. Thus, EES cannot be used to solve bounded-cost
search problems. Next we show how we can apply the ideas
that were shown to be effective in EES to construct two new
efficient bounded-cost search algorithms.

Bounded-Cost Explicit Estimation Search

Bounded-Cost Explicit Estimation Search (BEES) considers
both admissible and inadmissible estimates of cost-to-go (h

and ĥ) as well as inadmissible estimates of actions-to-go (d̂).
BEES is inspired by EES in that both rely on estimates of
solution cost and actions remaining to guide search rather
than exclusively relying on lower bounds as PTS does. To
suit the goal of bounded-cost search, instead of considering
best

d̂
like EES, BEES considers the following node:

best
d̂C

= argmin
n∈open∧f̂(n)≤C

d̂(n)

Note that best
d̂C

is a member of the set of all nodes in OPEN

whose estimated total cost is less than that of the cost bound.
Of these, best

d̂C
is the node with the smallest d̂(n). best

d̂C

is the node we estimate has the fewest actions remaining
between it and a goal, among all the nodes whose estimated
total cost is less than the cost bound.

BEES chooses which node to expand according to the rule:

1. if there exists n ∈ open s.t. f̂(n) ≤ C
2. then return best

d̂C

3. else return bestf

BEES chooses to expand either best
d̂C

or bestf according

the rule described above. Using this rule, BEES attempts
to pursue the shortest solution estimated to be within cost
bound C if it estimates that such a node exists (line 2). If
BEES thinks there are no solutions within the cost bound, it
expands nodes in A∗ order to efficiently prove no solution
exists (line 3).

A Potentially Improved Rule

While straightforward, the previous approach ignores the
potential measurement suggested by Stern, Puzis, and Fel-
ner, 2011. To takes this new quantity into account, we
propose Bounded-Cost Explicit Estimation Potential Search
(BEEPS). In addition to best

d̂C
, BEEPS considers expand-

ing the node with the highest potential, ie lowest f̂lnr(n).
The node selection strategy of BEEPS is exactly the same

as that of BEES, differing only in the last line. When BEES
decides to return bestf , BEEPS will return bestp. BEES

assumes that f̂ is accurate and so if best
d̂C

does not exist,

then there must not exist a solution to this problem within
cost boundC. If that is true, then the optimal way of proving
it is by expanding nodes in A∗ order until we have shown
that there is no node with f(n) ≤ C, proving the problem

unsolvable. In contrast, BEEPS acknowledges that ĥ is not a
perfect estimator and thus even when best

d̂C
does not exist,

the problem may well be solvable. For solvable bounded-
cost problems, PTS was shown to be superior to A∗ with

pruning (Stern, Puzis, and Felner 2011), so BEEPS reverts

to P̂ TS instead.

Comparison of Algorithms

Next, we note several observations on the comparative be-

havior of BEES, BEEPS, PTS and P̂ TS.

Unsolvable Instances For a given problem and cost
bound, there are two possibilities, either there exists a so-
lution with cost no more than C, or no such solution exists.
First, consider the case in which there is no solution under
the cost bound. Proving that no solution exists requires ex-
panding all the nodes with f(n) ≤ C. Thus, every algorithm
will have to expand all the nodes with f(n) ≤ C, and there
is no need to expand any node with f(n) > C.

Consequently, every bounded-cost search algorithm we
consider prunes nodes with f(n) > C. Thus, when no so-
lution below the desired cost bound exists, BEES, BEEPS,

P̂ TS and PTS will all expand exactly the same set of
nodes: those with f(n) ≤ C.

However, in graphs with transpositions or cycles, where
there are multiple paths from the root to the same state,
nodes may be expanded more than once. This may occur
when a node is reached by a suboptimal path (i.e., with g(n)
larger than the lowest-cost path from the root to n). That
node may be expanded many times if it is expanded before
the lowest-cost path to it is found.

Observation 1 If there is no solution with cost smaller than
or equal to the cost bound C, the relative performance of
the algorithms will relate to the number of nodes they re-
expand. If the number of re-expansions is small with respect
to the number of nodes with g(n) + h(n) ≤ C, we expect

BEES, BEEPS, P̂ TS and PTS to perform similarly.

The amount of these node re-expansions depend on the
structure of the domain (e.g., number of cycles), as well as
the type of the search algorithm. For example, with an ad-
missible and consistent heuristic, A∗ is guaranteed to never
re-expand a node (Pearl 1984), while greedy search may re-
expand a node many times.

When no solution exists, if h = h∗ then all algorithms
will end immediately saying that there is no solution of cost
less than C. Assuming that h = h∗ is unrealistic, but it is

common that the inadmissible cost-to-go estimate ĥ is more
accurate than h. Thus, it is interesting to consider another

theoretical scenario, where h 6= h∗ but ĥ = h∗.
In this setting, both BEES and BEEPS will use only their

second expansion rule as all the nodes will have f̂(n) > C
(since there is no solution with cost C). Consequently,
BEES will perform A∗ (always expanding bestf ) and thus
do the least amount of work possible to show that no solu-

tion exists. On the other hand, BEEPS and P̂ TS will ex-
pand nodes in f̂lnr(n) order, which is not identical to the
A∗ order and is thus inefficient for proving no solution ex-
ists. Similarly, PTS will also be inefficient for proving no
solution exists, as it expands nodes according to flnr. So
in this very optimistic setting, BEES will be the most effec-

tive algorithm. Realistically, ĥ 6= h∗ and therefore BEES

273



may expand some nodes in a different order than A∗, even
if there is no solution. This may lead to suboptimal perfor-

mance. If ĥ is fairly accurate and there are many possible
paths to reach a node, then BEES will expand in the same
order as A∗ for most of the nodes, and will therefore outper-
form BEEPS when there is no solution under the cost bound.

Solvable Instances: Non-Uniform Action Costs Next,
we discuss the case where there is a solution of cost smaller
than or equal to the given cost bound C. First, consider the
more general case where there are non-uniform edge costs.

Figure 2 provides a concrete example of a problem where
both BEES and BEEPS will outperform the previous state-
of-the-art, PTS. There are two paths through this graph from
the start S to the goal G. There is a path with two arcs of
cost 20 and a path with 7 arcs of cost 7. Assume that prefect

information is available, that is h(n) = ĥ(n) = h∗(n) and

d̂(n) = d∗(n). Clearly, if the cost bound is 20 or more, the
fastest bounded-cost search algorithm would expand only
node S and T . However, even with such perfect informa-

tion, PTS and P̂ TS will always find the longer solution
(i.e., that which passes via 7 arcs), regardless of the cost

bound. To see this, first note that because h(n) = ĥ(n),

PTS and P̂ TS behave exactly the same, expanding in ev-

ery iteration the node with the lowest flnr = h∗

C−g
. As a

result of the perfect information, flnr will decrease along
any optimal path to the goal (of cost less than or equal to
C). That is, flnr(A) ≤ flnr(B) ≤ ... ≤ flnr(F ). Thus,
if flnr(A) ≤ flnr(T ), PTS will expand the nodes in the
longer path. So long as C is at least 20, initially the open list
of these algorithms will contain A and T . flnr(A) =

6
C−1 ,

while flnr(T ) = 10
C−10 . By algebra, for every value of

C ≥ 20, flnr(T ) < flnr(A), and thus PTS would prefer
node T to node A, and PTS finds the longer path.

For C ≥ 20, BEES and BEEPS will find the shorter solu-

tion. d̂ tells these two algorithms to prefer the shorter path
through T explicitly. For problems like this one, BEES and
BEEPS will return solutions faster than previous approaches
because they rely on information that the other algorithms
do not use: estimates of remaining solution length. For this
reason, in non-unit cost domains we expect the following:

Observation 2 In domains with non-uniform edge cost, for
solvable problem instances (i.e., when there is a solution be-
low the cost bound), we expect BEES and BEEPS to find so-

lutions faster than PTS and P̂ TS for the same cost bound.

Solvable Instances: Uniform Action Costs Next, we
consider the case where there exists a solution of cost
smaller than or equal to C, and the domain has only uni-
form edge costs. In this case, cost-to-go estimates and
actions-to-go estimates are the same (i.e, d(n) = h(n) and

d̂(n) = ĥ(n)). Consequently, greedy search on h is equiva-

lent to greedy search on d (and similarly for ĥ and d̂).
Generally speaking, for large enough values of C, both

BEES and BEEPS will always apply the first expansion rule
which means that they will follow the heuristic greedily to
a goal. Similarly, for large values of C, ordering nodes ac-

cording to the cost functions used by P̂ TS and PTS con-

verge to the same ordering as greedy search (i.e., on ĥ for

P̂ TS and on h for PTS). We have perfect information (i.e.,

h = ĥ = h∗), BEES and BEEPS converge to greedy search

on ĥ and will expand exactly those nodes that lie on an op-

timal solution. Since ĥ = h∗, this is optimal. Similarly,
PTS converges to the same greedy search. This leads to the
following observations.

Observation 3 For values of C that are significantly larger
than the optimal solution, in domains with uniform cost
edges, where either the admissible heuristic is accurate or
where solutions under C are easy to find, BEES, BEEPS,

P̂ TS and PTS should expand a similar number of nodes.

Overhead The discussion above has been in terms of
nodes evaluated, but BEES, BEEPS and P̂ TS use more
heuristics and node orderings (e.g. heap data structures) than
PTS. Specifically, PTS only considers the admissible hi-

eratic h, while P̂ TS considers the inadmissible heuristic ĥ,

and BEES and BEEPS consider d̂ as well.

Observation 4 The overhead per node for PTS is expected

to be lower than that for P̂ TS , which is expected to be lower
than that of either BEES or BEEPS.

In summary, we expect that in domains with uniform edge

cost, BEES, BEEPS, P̂ TS and PTS will have similar per-
formance in the cases described in Observations 1 and 3,
while for non-uniform edge costs, we expect BEES and

BEEPS to outperformPTS and P̂ TS for solvable instances
(Observation 2). By Observation 4, we should expect that,
for domains with uniform cost actions, the reduced overhead
of PTS would lead to slightly better performance in terms
of time to find a solution.

Empirical Evaluation

In order to evaluate whether these theoretical differences in
search performance manifest in practice, we performed an

empirical evaluation of PTS, P̂ TS , BEES, and BEEPS. All
experiments were run on 64-bit Intel Linux systems with
3.16 GHz Core2 duo processors and 8 GB of RAM. The
domain specific solvers, discussed first, were implemented
in OCaml. The evaluation in domain independent planning
was done in the FastDownward framework (Helmert 2011)
and algorithms are implemented in C++. Algorithms were
cut off when they exhausted memory or spent more than
ten minutes in the domain-specific solvers or half an hour
in FastDownward on a given instance.
Vacuum World This domain mirrors the first state space
presented in Russell and Norvig (2010, page 36). A robot is
charged with cleaning up a grid world. Movement is in the
four cardinal direction and whenever the robot is on top of a
pile of dirt, it may vacuum. The dirt has weight, making it
harder for the robot to move: the cost for the robot to take
any action (including vacuuming) is one plus the number of
dirt piles the robot has cleaned up. The problem is solved
when no dirt remains.

274



We use 150 solvable instances that are 200×200 and each
cell has a 35% chance of being blocked. We place ten piles
of dirt and the robot randomly in unblocked cells. For h we
compute the minimum spanning tree of the robot and the dirt
piles, order the edges by greatest length first, and then multi-
ply the edge weights by the current weight of the robot plus
the number of edges already considered. d is computed as a
greedy traversal of the dirt piles (i.e. vacuum to nearest dirt
pile, then next nearest, and so on) assuming that the room

contains no obstacles. In this domain, ĥ and d̂ are computed
using the online corrections discussed previously.

Figure 5 shows the performance of the bounded-cost al-
gorithms on this search domain. In all performance plots,
the x-axis shows the cost bound C. The y-axis shows either
CPU time or the number of nodes expanded, on a log scale.
The lines plot the mean across the instances, and the error
bars represent 95% confidence intervals about the mean.

The results in Figure 5 exhibit an easy→hard→easy pat-
tern. When we supply a cost bound much lower than the
cost of an optimal solution, it is easy to show that the prob-
lems are unsolvable within C. As C approaches what we
assume is the optimal solution cost the difficulty peaks. As
the cost bound continues to rise past this critical point, prob-
lems once again become easy to solve. This parallels a sim-
ilar phenomenon in constraint satisfaction problems except
in an optimization setting.

In the left hand side of the peak in Figure 5, we can see
that the algorithms appear indistinguishable from one an-
other. This corresponds to small values of C, where most
instances could not be solved. Figure 6 shows a closer view
of these unsolvable configurations. On the y-axis of this
plot, we present the number of duplicate states encountered
during search. We see that BEES and PTS encounter rela-
tively few duplicate states. BEES expands nodes in almost
exactly A* order because it almost always predicts that all
nodes have cost above C. The behavior of PTS does not
deviate largely from that of BEES. We see that BEEPS and

P̂ TS re-expand many more nodes than BEES and PTS. This
aligns with Observation 1.

In Figure 5, when we reach the portion of the space where
solutions are easy to find because the cost bound is gener-
ous, we see that BEES and BEEPS are about two orders
of magnitude faster than PTS and are almost an order of

magnitude faster than P̂ TS . This supports our Obser-
vation 2, that for domains with non-uniform action costs,
BEES and BEEPS were likely to be the best performing al-

gorithms. In this domain, P̂ TS is also taking advantage of

actions-to-go, albeit indirectly as it uses d̂ to calculate ĥ(n)

(ĥ(n) = h(n) + ǭh · d̂(n) where ǭh is the mean one-step
error in h), but it never explicitly orders nodes according to

d̂. We see that the two algorithms that search directly on d̂
outperform the algorithm that uses it indirectly.

Sliding Tiles Puzzles We use the 100 instances of the 15-
puzzle presented by Korf (1985). h is the Manhattan dis-

tance heuristic and ĥ was computed using the same online

corrections as before. Because actions have unit cost, ĥ and

d̂ are identical.

Results for the algorithms in this domain are presented in
Figure 7 and Figure 8. Again we see an easy→hard→easy
pattern. Remarkably, algorithms which were very different
from one another in the previous domain are largely indistin-
guishable here — The confidence intervals overlap substan-
tially. This domain has uniform-cost actions and so this sup-
ports Observation 3. The overhead of generating successor
states and computing heuristics is very low in this domain,
so PTS appears to have the best mean performance, in line
with Observation 4. This is confirmed in Figure 8, which
measures the number of nodes generated during search. The
algorithms generate very similarly many nodes, indicating
that the timing differences in Figure 7 can be attributed to
the differing overheads in the algorithms.
Inverse Tiles We study the same 100 15-puzzle instances as
above, but we replace the standard cost function with one
where the cost of moving a tile is the inverse of its face
value, 1

face
. This separates the cost and length of a solu-

tion without altering other properties of the domain, such
as its connectivity and branching factor. This domain was
first suggested by Thayer, Dionne, and Ruml (2011). h is
computed as the weighted sum of Manhattan distances for

each tile, that is h(n) = MD(n)
face(n) , and d is the unweighted

Manhattan distance.
The performance of the algorithms in the inverse tiles

problem is shown in Figure 9. We once more see the
easy→hard→easy transition. As we saw in the vacuum do-
main, algorithms that take the varying costs of actions into

account perform better. P̂ TS is consistently two orders of

magnitude faster than PTS; recall that ĥ(n) relies on d(n).

BEES and BEEPS, which directly rely on search on d̂, are
more than four orders of magnitude faster than PTS for many
cost bounds, confirming Observation 2.
Bounded-Cost vs. Bounded Suboptimal Search Stern,
Puzis, and Felner (2011) noted that bounded suboptimal
search algorithms can be converted into bounded-cost search
algorithms by tuning the supplied suboptimality bound so
that it provides good performance for the desired cost bound.
Figure 12 shows the performance of the state-of-the-art
bounded-suboptimal search algorithm, EES, as a bounded-
cost algorithm. Rather than attempting to tune the subopti-
mality bound for EES, we provide a wide range of subop-
timality bounds to compare to the bounded-cost algorithms
presented in this paper. The version of EES used here ac-
cepts two parameters: the suboptimality bound originally re-
quired by EES and a cost bound. It differs from the original
version only in that it prunes any node with f(n) > C.

In this plot we see that no setting for EES outperforms
BEES or BEEPS. This is because EES is designed for
bounded suboptimal search, not bounded-cost search. While
searching for a solution within a given cost bound, EES is
also proving that the returned solution lies within the given
suboptimality bound as well. Proving that a solution exists
within a suboptimality bound requires expanding all nodes
with an w · f(n) ≤ g(inc), where inc is the incumbent so-
lution returned by EES. For tight bounds (small w) or weak
admissible heuristics, this can be a great many nodes.

EES doesn’t behave identically to BEES or BEEPS for

275



Figure 5 Figure 6 Figure 7 Figure 8

Figure 9 Figure 10 Figure 11 Figure 12

high suboptimality bounds. EES relies on a suboptimality
bound to determine what nodes are likely to lie within a the

bound. Specifically it considers all nodes with f̂(n) ≤ w ·

f̂(best
f̂
). It is possible that many (even all) of these nodes

have f̂(n) > C. Since EES can consider different nodes
than BEES and BEEPS for the same cost bound, the nodes
expanded may also differ.

Bounded-Cost vs. Baseline Algorithms There are three
natural baselines for bounded-cost search: A∗ search with
pruning, greedy search on cost-to-go with pruning, and
greedy search on actions-to-go, often called speedy search,
with pruning. In Figure 4 we compare the performance of
these three natural baselines with the bounded-cost search
algorithms evaluated in this paper. The y-axis is the number
of nodes generated by a search on a long scale, the x-axis is
the cost bound, also on a log scale. The performance of the
A∗ baseline, the greedy baseline, and PTS are very similar.
These three are all dominated by the speedy baseline. BEES,

BEEPS, and P̂ TS all outperform the speedy baseline. For
large C, the performance of BEES, BEEPS, and the speedy
baseline converge as they are all performing best-first search

on d̂.

To gain a deeper insight into the poor performance of
PTS in the inverse tiles puzzle, consider Figure 3, which
shows the relationship between the admissible heuristic and
the true cost-to-go for the inverse tiles problem. Recall that
PTS (when implemented with the flnr cost function), makes
the assumption that h and h∗ are linearly related. In the plot,
we see that the relationship is not clearly linear. This may
be contributing to the poor performance of PTS in this do-

main and highlights another shortcoming of PTS: PTS re-
lies on how h is related to h∗ which we may not know be-
fore solving an instance. This may be especially difficult
when many different types of problem instances that will
be solved. Consider pathfinding in a grid, where problems
may have uniformly distributed obstacles, or be mazes, or
be video-game maps with terrain of differing cost. Further-
more, if one does not know the domain of the problem in
advance, relating h to h∗ a priori is impossible. This is often
the case in domain independent planing, the next setting we
consider.

We chose to implement our algorithms in the FastDown-
ward planning framework (Helmert 2006) because it is
freely available and has been the basis of recent award-
winning planners (Richter and Westphal 2010).

ZenoTravel In zenotravel, the goal is to move passengers
from their point of origin to their chosen destination using
ground transportation and airplanes. We use the 20 instances
of the problem included in the FastDownward repository.

For h, we used the LM-Cut heuristic, for ĥ we used the FF

heuristic, and for d̂ we also used the FF heuristic ignoring
action costs (ff(cost type=1)). No special bookkeeping is
done to reduce the cost of this calculation, we simply run the
FF computation once with a unit-cost representation of the
problem and once with the original problem. Extracting the
number of actions in the relaxed plan is possible and would
likely improve the timing results for BEES and BEEPS in
the FastDownward planner.

Figure 10 shows the performance of algorithms. The y-
axis shows the mean solving time relative to the time taken
by PTS on a log scale. Unlike the previous domains, where

276



the instances formed a set of similarly difficult instances, the
instances here span a wide range of difficulty. Normalizing
to the performance of PTS allows us to compare across this
diverse set.

PTS starts off stronger than the other algorithms. This
is reasonable because few problems are solvable, so only
the admissible cost-to-go heuristic is really useful as it is
what allows algorithms to prune unpromising nodes. Fur-

thermore, as mentioned above, ĥ and d̂ are computed us-
ing the FF heuristic. FF is known to be very effective in
guiding the search to a goal, but it can also be a poor esti-
mator of h∗. Consequently, for unsolvable instances BEES
and BEEPS may often consider nodes as solvable, and will
therefore expand nodes in a greedy manner. This will result
in additional node reexpansions, and degraded performance,

as explained in Observation 1. Furthermore, P̂ TS, BEES,
and BEEPS are all computing additional heuristics, which
contribute very little to the search in this part of the plot. As
the cost bound grows, more problems become solvable and
computing the additional heuristics begins to pay off.

Elevators The elevators domain was one of the new non-
unit-cost domains included in the 2011 international plan-
ning competition. The goal is to minimize the cost of trans-
porting all passengers from their current floor to their desired
floor, and elevators have differing speeds (some elevators are
express elevators, some stop on every floor). We evaluated
on the 20 instances used in the sequential satisficing track of
the 2011 IPC.

Figure 11 shows the performance of the algorithms in the
elevators domain. Rather than reporting mean solving time,
we report the number of instances solved for a given cost
bound. We see that algorithms that do not make any use

of distance-to-go information, i.e. PTS and P̂ TS, solve
no instances for the majority of the cost bounds. For tight
bounds where no solution exists, they do manage to solve
some problems, but in the case where a solution exists and
they must find it, they fail. Again, for very low C, PTS
proves no solution exists for three more instances because it
has reduced overhead (it computes fewer heuristics). BEES
and BEEPS, on the other hand, can both prove that no so-
lution exists below C for small values of C and also find
solutions to the problem when C is large.

In conclusion, in accordance with Observation 2, in do-
mains with non-uniform action costs, algorithms that rely
on estimates of actions-to-go (i.e., BEES and BEEPS) find
solutions faster than those that do not. In heavy vacuums and

inverse tiles, using d̂ for guidance provided speedups of sev-
eral orders of magnitude. For the elevators domain, BEES
and BEEPS solve several problems. For all but the most

conservative C values, PTS and P̂ TS solved no instances.

The speedup on domains with nonuniform-action costs
did not come at the cost of performance on domains with
uniform-cost actions, as we saw in the results for the stan-
dard tiles puzzle. While there were minor difference in tim-
ing, in terms of the number of states evaluated, the algo-
rithms were indistinguishable. When we evaluated the al-
gorithms on a unit-cost planning domain, we saw that algo-
rithms that use inadmissible heuristics outperformed those

that did not.

Discussion

In this paper, we introduced three novel bounded-cost

search algorithms: P̂ TS, Bounded-Cost Explicit Estimation
Search (BEES) and Bounded-Cost Explicit Estimation Po-
tential Search (BEEPS). In contrast to the previous bounded-
cost search algorithm (PTS), both BEES and BEEPS con-
sider a heuristic estimate of the number of actions between
a given node and a goal (the d̂ function). In every iteration,

the node with the lowest d̂ in expanded among the nodes
that are estimated to lead to a bounded-cost goal. If no such
nodes exists, BEES behaves like A* while BEEPS behaves

like P̂ TS . Both BEES and BEEPS were evaluated on five
diverse domains, and show several orders of magnitude im-
provement over PTS in every domain where actions have
non-uniform costs. Sometimes those differences were up to
four orders of magnitude, but often they were at least a sin-
gle order of magnitude.

BEES and BEEPS do not need to make assumptions about
the relationship between the heuristics and truth, unlike PTS.
This makes these algorithms more general. When PTS is
used in a domain without a linear relationship between h and
h∗, an appropriate potential-approximating function must be
found or constructed, or PTS risks poor performance.

Both BEES and BEEPS use distance estimates to guide
the search. However, distance estimates are merely a proxy
for the values we really want to have. We don’t want to
minimize solution length subject to a cost bound, we want
to minimize solving time. Solving time is directly related
to search effort in terms of the number of nodes generated,
which happens to correlate with the estimated number of ac-
tions to a solution (Dionne, Thayer, and Ruml 2011). Find-
ing an efficient method for estimating remaining search ef-
fort is the subject of future work and would benefit not just
bounded-cost search, but also bounded suboptimal search
algorithms that make use of distance estimates as a proxy
for search effort, such as EES (Thayer and Ruml 2011), and
may also improve the performance of anytime search algo-
rithms as well.

Conclusions

In this paper we showed how inadmissible cost and length
estimates can be used to solve bounded-cost search prob-
lems efficiently. This reflects a general trend in subopti-
mal search, where we have seen bounded suboptimal search
algorithms like EES and anytime solvers such as LAMA-
11 benefit from making a distinction between the cost and
length of a solution when searching. Suboptimal search al-
gorithms can and should use additional information such as
distance-to-go estimates and inadmissible heuristics, in ad-
dition to the traditional g and h values.

Acknowledgments

We graciously acknowledge funding from the DARPA
CSSG program (grant HR0011-09-1-0021), NSF (grant IIS-
0812141), and the Israeli Science Fund (grant 305/09).

277



References

Dionne, A.; Thayer, J. T.; and Ruml, W. 2011. Deadline
aware search using online measures of behavior. In The 2011
International Symposium on Combinatorial Search (SOCS-
11).

Haslum, P., and Geffner, H. 2001. Heuristic planning with
time and resources. In European Conference an Planning
(ECP.

Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 191–246.

Helmert, M. 2011. Fast downward planner.
http://www.fast-downward.org. Accessed
Decemeber 16, 2011.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.

Jabbari Arfaee, S.; Zilles, S.; and Holte, R. C. 2011. Learn-
ing heuristic functions for large state spaces. Artif. Intell.
175(16-17):2075–2098.

Korf, R. E. 1985. Iterative-deepening-A*: An optimal ad-
missible tree search. In Proceedings of IJCAI-85, 1034–
1036.

Nakhost, H.; Hoffmann, J.; and Müller, M. 2010. Improving
local search for resource-constrained planning. In SOCS.

Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.

Phillips, M., and Likhachev, M. 2011. Planning in domains
with cost function dependent actions. In AAAI.

Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence 1:193–204.

Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.

Russell, S., and Norvig, P. 2010. Artificial Intelligence: A
Modern Approach. Third edition.

Samadi, M.; Felner, A.; and Schaeffer, J. 2008. Learning
from multiple heuristics. In Proceedings of AAAI-08.

Stern, R. T.; Puzis, R.; and Felner, A. 2011. Potential search:
A bounded cost search algorithm. In Proceedings of ICAPS-
11.

Thayer, J. T., and Ruml, W. 2011. Bounded suboptimal
search: A direct approach using inadmissible estimates. In
Proceedings of IJCAI-11.

Thayer, J. T.; Dionne, A.; and Ruml, W. 2011. Learn-
ing inadmissible heuristics during search. In Proceedings
of ICAPS-11.

Thayer, J. T.; Ruml, W.; and Kreis, J. 2009. Using distance
estimates in heuristic search: A re-evaluation. In Symposium
on Combinatorial Search.

278




