
Integrating Vehicle Routing and Motion Planning

Scott Kiesel and Ethan Burns and Christopher Wilt and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

skiesel, eaburns, wilt, ruml at cs.unh.edu

Abstract

There has been much interest recently in problems that com-
bine high-level task planning with low-level motion planning.
In this paper, we present a problem of this kind that arises in
multi-vehicle mission planning. It tightly integrates task al-
location and scheduling, who will do what when, with path
planning, how each task will actually be performed. It ex-
tends classical vehicle routing in that the cost of executing a
set of high-level tasks can vary significantly in time and cost
according to the low-level paths selected. It extends classi-
cal motion planning in that each path must minimize cost
while also respecting temporal constraints, including those
imposed by the agent’s other tasks and the tasks assigned to
other agents. Furthermore, the problem is a subtask within
an interactive system and therefore must operate within se-
vere time constraints. We present an approach to the problem
based on a combination of tabu search, linear programming,
and heuristic search. We evaluate our planner on represen-
tative problem instances and find that its performance meets
the demanding requirements of our application. These results
demonstrate how integrating multiple diverse techniques can
successfully solve challenging real-world planning problems
that are beyond the reach of any single method.

Introduction
As techniques for high-level task planning and low-level
motion planning each mature, there has been interest in how
they might be integrated together to improve overall system
performance. Often, decisions at the high level, such as who
will do what and in what order, depend on low-level con-
siderations, such as the existence or cost of feasible motions
for particular tasks. A straightforward approach would be
to combine both the task and motion planning problems and
then solve them all at once with a single search algorithm
such as A* (Hart, Nilsson, and Raphael 1968). Because of
the exponential nature of such problems, however, this ap-
proach is intractable for even small instances. Alternatively,
both the task and motion problems could each be solved in-
dependently by first finding a task-level plan and then solv-
ing the motion planning problem for each task. While this
approach is usually feasible, it can lead to poor solutions, or
even incompleteness. This is because the task planner has

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

incomplete knowledge of the cost and dynamics that will be
utilized by motion plans when achieving its tasks, and fur-
thermore, the motion planner is focused on the individual
tasks without considering a global perspective.

This paper makes two main contributions. First, we
present a new problem that requires the combination of task
and motion planning, called Waypoint Allocation and Mo-
tion Planning (WAMP). While the problem is easy to un-
derstand and compact to specify, it presents timely research
challenges. It consists of scheduling a fixed set of vehicles to
achieve different waypoint locations according to given tem-
poral constraints. At the high-level, it is a resource alloca-
tion problem in which waypoints must be assigned to vehi-
cles. For each vehicle, an ordering of the waypoints must be
found such that temporal constraints can be met. At the low
level, it is a difficult motion planning problem where a phys-
ically feasible path that respects the vehicles’ motion models
must be found such that each waypoint is visited and, again,
all temporal constraints are met. The solution cost depends
on the low-level paths that are selected. As we describe be-
low, many of the subproblems of WAMP are known to be
NP-hard. We also prove that the target value search prob-
lem (Kuhn et al. 2008), which is related to WAMP’s routing
subproblem, is NP-complete.

The second contribution is a planner that we have devel-
oped to solve WAMP instances involving fixed-wing air-
craft. We combine tabu search for waypoint allocation,
linear programming for scheduling, and heuristic search
for route planning. The planner separates the high-level
scheduling and resource allocation from the low-level rout-
ing by using a surrogate objective that is optimized by the
high-level solver as a proxy for the true objective of the prob-
lem. This greatly reduces the number of times the router
needs to be called. The low-level planner has the ability to
give feedback to the high-level sequencer to help improve
the accuracy of the surrogate objective. We present experi-
ments that demonstrate the infeasibility of using one single
A* search to solve this problem. Then, we test the scalabil-
ity of our planner and evaluate the performance of its major
components. We also show that our planner is able to solve
realistic problems within the required time limit. This work
illustrates how real world applications can feature the com-
bination of multiple interacting planning problems, requir-
ing the integration of diverse solution techniques.

137

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling

Problem Formulation
WAMP is directly motivated by an application faced by our
industrial partner. An instance of WAMP is given by a 6-
tuple 〈Size, V,W,R,C,K〉 where Size = 〈xmax, ymax〉 is
the problem’s x and y dimensions, V is a set of vehicles, W
is a set of waypoints, R is a set of relative temporal con-
straints between waypoints, C is a set of high cost regions
and K is a set of non-traversable regions. As advised by
our partner’s domain expertise, the state space is restricted
to two dimensions and vehicle collisions are not considered.
Vehicles In our instances, all vehicles are airplanes, so each
element of the set V is a 5-tuple 〈x0, y0, θ0, v, r〉 where x0,
y0 and θ0 define the vehicle’s initial position and heading,
v is the vehicle’s velocity and r is the minimum turn ra-
dius. In this paper only fixed velocity vehicles are consid-
ered. In Figure 1a, the vehicles start poses are depicted by
small black triangles.
Waypoints Each waypoint in the set W is represented as a
circle and is defined by the 8-tuple 〈x, y, r, ts, te, θ0, θ1, A〉,
where x, y and r give the center point and radius, ts and
te give the start and end times of the window during which
the waypoint must be achieved, θ0 and θ1 define a range of
headings that the vehicle must be within when the waypoint
is achieved and A ⊆ V is a set of vehicles that are not al-
lowed to achieve that waypoint. The waypoints can be seen
in Figure 1a as numbers with circles. Each waypoint must
be achieved by being within the circle at a legal time at a
legal heading.
Relative Temporal Constraints In addition to each way-
point having an absolute time window, the set R defines a set
of relative constraints. Each is a 4-tuple 〈u, v,min,max 〉
where u, v ∈ W are waypoints and min and max are the
minimum and maximum allowable time difference between
when u is achieved and v is achieved.
Costs C is a set of two dimensional Gaussians:
〈x , y, h, σx , σy , c〉, where x and y give the center location, h
specifies the ‘height’, or the cost that will be incurred at the
center, the σ terms give the standard deviation in the x and
y directions respectively, and c is the correlation. These are
used to determine the cost of vehicle motion. There is also
a minimum cost present everywhere representing fuel con-
sumption and time. Every vehicle traverses a path, and the
cost incurred by the vehicle is the time it spends in each lo-
cation multiplied by the cost of being in that location. As the
time discretization approaches zero, the limit is the line inte-
gral along the vehicle’s path divided by the vehicle’s speed.
In Figure 1a, the cost of each cell is represented by the shade
of red in the cell. Being in a white area incurs low cost, and
being in a red area incurs high cost.
Keepouts Lastly, K is a set of ‘keepout’ zones that cannot
be traversed. Each zone is a triangular area defined by three
points 〈x0 , y0 , x1 , y1 , x2 , y2 〉. These shapes can be com-
posed to create more elaborate regions. In Figure 1a, the
gray area is a keepout zone.

The cost of a solution is the sum of the cost incurred by
all vehicles. However, after a vehicle achieves its final way-
point it no longer accumulates cost. The objective of WAMP
is to find a minimal cost solution, using the available vehi-
cles, that achieves the given waypoints and meets all of the

problem constraints.

Application Context
The planner must solve problems within ten seconds be-
cause it is part of an interactive decision-support aid with
a human in the loop, who edits the resulting plans. The
planner’s solution might not be immediately acceptable be-
cause the Gaussian cost model is only an approximation of
the real cost model and there may be other assets that are
not modeled in the instance. Our partner also was interested
in pseudo-balanced vehicle makespans. Therefore our plan-
ner’s objective was altered to take into account not only cost
but an adjustable ratio between path cost and makespan.

Relations to Other Problems
We provide brief sketches showing how WAMP can be seen
as a composition of several problems that are known to be
NP-hard. We also provide an NP-completeness proof for one
subproblem that, as far as we are aware, was not previously
known to be NP-complete.
Vehicle Routing Problem with Time Windows VRPTW
is a popular problem in the operations research commu-
nity. While it now has a large number of variants, the clas-
sic VRPTW (Dantzig and Ramser 1951) is: given an in-
finite fleet of vehicles and a set of service requests with
known fixed distances between request locations, find a
schedule such that the number of vehicles and total travel
cost are minimized (in that order) and all requests are ser-
viced within their given time windows. One variant that is
closely related to our problem is the m-VRPTW problem
(Lau, Sim, and Teo 2003) where the number of vehicles is
fixed at some value m and the goal is to find the minimum
cost schedule with this fixed size fleet. The decision vari-
ant of this problem (determining if a feasible schedule ex-
ists) has been shown to be NP-complete (Savelsbergh 1985;
Lau, Sim, and Teo 2003).

The m-VRPTW problem can be reduced to a WAMP in-
stance if each of the m vehicles has infinite capacity and the
delivery destinations reside in the Euclidean plane. The re-
duction can then be achieved by setting the turning radius of
each of the m vehicles to ε with a fixed velocity of 1. All
vehicles share a start and end location, the location of the
depot. Each delivery destination location and time window
are direct mappings from the original problem. Using a large
Gaussian to distribute cost uniformly over the map, such that
the cost of each point on the map evaluates to 1, will result
in a WAMP objective function that directly minimizes the
overall distance traveled.
Jobshop Scheduling Problem JSP is perhaps the most
well-known scheduling problem. The JSP is an NP-
complete problem (Garey and Johnson 1991) concerning a
given set of jobs, each composed of a set of activities that
each have a given length. All activities must be assigned
time on a given set of machines so that no two activities use
the same machine at the same time and each activity must
be serviced by a specified machine. The problem is to deter-
mine whether or not a feasible schedule exists within a given
deadline.

138

0

1
2

3

4

5

6

n Failure Rate
1 24%
2 64%
3 88%
4 98%
5 98%
6 100% 0

1
2

3

(a) (b) (c) (d)

Figure 1: Example solution with 2 vehicles and 6 waypoints (a), example time/cost trade-off (b), A* results (c), a maze (d).

We reduce the JSP to WAMP by associating vehicles with
machines and waypoints with tasks. For each machine m,
there is a special location lm located sufficiently far from the
special locations for all other vehicles that flying between
any two special locations takes longer than the deadline.
Each activity to be scheduled on machine m corresponds
to three unique waypoints, the first one is placed at location
lm, the second is placed at a distance from lm that corre-
sponds to half of the length of the activity and the final one
is placed at lm. These waypoints have temporal constraints
such that the first must be achieved first, the second one, that
is not located at lm, must be achieved exactly half the activ-
ity duration after the first and the final one must be achieved
exactly half of the activity duration after the second. When a
vehicle chooses to achieve the first waypoint for this activity,
it cannot achieve any other waypoints besides the remaining
two for this activity and the entire time to achieve all three
must be equal to the activity duration. Finally, the activities
are ordered within their respective tasks by constraining the
last waypoint for an activity to proceed the first waypoint for
the activity that follows it within the task.
Traveling Salesman Problem TSP is a classic NP-
complete problem (Garey and Johnson 1991). The Eu-
clidean variant of the TSP may be reduced to WAMP by
creating an instance with uniform cost, a single vehicle, a
turn radius that is infinitely small (the vehicle can turn and
point itself directly at its next waypoint) and by placing the
cities of the TSP at their respective x and y locations. The
vehicle is able to traverse this set of waypoints within the
given cost bound if and only if there is a solution to the TSP
within the bound.
Target Value Search While WAMP is defined on a contin-
uous space, our solution uses discrete search-based methods,
thus it is useful to understand the complexity of related dis-
crete problems such as this. TVSP Kuhn et al.; Schmidt et
al. 2008; 2009 is the problem of finding a path from start
to goal whose length is equal to the target value. As far
as we are aware, there are no theoretical results about the
complexity of this problem. Schmidt et al. (2009) conjec-
ture that the optimization variant of the TVSP (i.e., finding
a path with cost as close as possible to the target value) is in
EXPTIME. We will show that the decision problem of de-

termining whether or not a path with the exact target value
exists is, in fact, NP-complete.

We specify a TVSP instance as a 4-tuple 〈G, s, g, T 〉,
where G = 〈V,A〉 is a finite graph with vertices V and a
set of weighted, directed arcs A ⊆ V × V × N, s ∈ V and
g ∈ V are the start and goal nodes in the graph, and T ∈ N

is the target value.

Theorem 1 The target value search problem in a graph is
NP-complete.

Proof The problem is in NP since, given a solution, one
can easily check the validity of the path and sum the edge
weights in polynomial time. We show it is NP-hard by
reducing from SUBSETSUM (Garey and Johnson 1991).
Given an instance of SUBSETSUM — a finite set S ⊆ N and
a positive integer B — we formulate a target value search
problem as follows: T = B is our target value. For each
si ∈ S, we create a vertex vi. The vertices are then linked
together in a chain with two arcs between adjacent pairs of
vertices, one arc has cost 0 and the other has a cost equal
to the element of S corresponding to the first vertex of the
arc: (vi, vi+1, 0) ∈ A and (vi, vi+1, si) ∈ A, 0 ≤ i < |S|.
Finally, our start vertex is s = s0 and our goal vertex is
g = s|A|−1.

There is a path in this graph that achieves the target value
T if and only if there is a subset of S whose sum is equal
to B, with the non-zero-cost arcs corresponding to the ele-
ments included in the subset. �

Our Approach
Our approach is guided by four features of the application
context that we exploit to make the problem easier to solve:
first, the cost function is relatively smooth, meaning that
similar paths will often have similar costs. This allows us
to approximate final path cost by evaluating the cost of a
simple 8-way grid path. This implies that we can postpone
detailed motion planning until we have a promising candi-
date solution. Second, there are many possible low-level
paths, so we can make the assumption that any schedule will
be routable given sufficient time per leg. This allows us to
assume that a spectrum of paths exists between the fastest

139

Figure 2: Overview of our system.

(most expensive) and the cheapest (relatively long) (see Fig-
ure 1b). As we explain below, this spectrum is constructed
optimistically and we therefore will incorporate feedback
from motion planning as necessary to refine the estimates
of achievable paths. Third, making a leg longer can usually
decrease cost of the final route, as the vehicle has more time
to navigate around high cost regions. Finally, it is easy to
make a leg of a route longer, because if the route arrives at
the destination waypoint too early, then extra time can easily
be added by inserting loops into the route at low-cost loca-
tions. This means we can focus on trying to arrive early.

More specifically, our planner uses four stages: pre-
computation, scheduling, building a timetable and routing
(see Figure 2). First, we pre-compute information about
times and costs between pairs of waypoints. This informa-
tion will be used by the later stages to approximate the time
and cost between pairs of waypoints. Next, the sequencer as-
signs waypoints to vehicles and then orders them such that
there should be a feasible route for each vehicle that obeys
the problem constraints. After an assignment and ordering
are found, we use a linear program (LP) to find a timetable
that specifies, for each waypoint, the time at which its as-
signed vehicle should arrive. The timetable is then passed to
the router to find a flyable path for each vehicle that achieves
the given times.

The information about routability used by the sequencer
and LP is approximate, so there are a two places where the
procedure may fail. When this happens, the router posts ad-
ditional problem constraints, which are then used by the LP
and sequencer to improve the accuracy of their estimates.
The following subsections describe each of these steps in
greater detail.

Pre-computation
Both the sequencer and the timetable generation phases need
to estimate the cost and duration of possible routes between
each pair of waypoints, as depicted in Figure 1b. These
estimates are represented by a linear interpolation between
the quickest path and the cheapest path between each set
of waypoints. The slope of this line represents an estimate
of the rate at which adding additional time navigating on a
leg can be converted into cost reduction, which we call the
improvement slope. These shortest and the cheapest paths
between the waypoints are computed in an 8-connected grid
discretization of the problem where the discretization is the
size of the smallest vehicle’s turning radius. Each grid cell
uses a single traversal cost estimate given by the mean of
the true cost sampled at a fixed number of points distributed
uniformly over the cell. In our implementation, the cost be-

tween two adjacent cell centers is the distance multiplied by
half of the cost of each cell. To find the shortest and cheap-
est paths to each waypoint, we use Dijkstra’s algorithm from
each waypoint to all cells in the grid. Since the costs and
distances are invertible, this gives an estimation of the short-
est and cheapest paths to the given waypoint from anywhere
in the problem. While the sequencer only needs waypoint
to waypoint estimates, the router needs a heuristic value for
every cell.

Sequencer
The sequencer finds an ordered assignment of waypoints to
vehicles that is thought to be feasible given the problem con-
straints. For this step, we use a tabu search based on the
technique for m-VRPTW described by Lau, Sim, and Teo.
WAMP however, has a handful of additional constraints
such as allowable vehicle constraints and relative temporal
constraints. The search is over ordered partial assignments
of waypoints to vehicles. In each state, there is a set of way-
points that have yet to be assigned called the holding list and
there is a set of ordered waypoints assigned to each vehi-
cle. The neighborhood of a state is given by five operators:
relocate a waypoint by moving it from one vehicle to a spe-
cific location in the ordering for another vehicle, exchange
two waypoints in the ordering on a single vehicle, unassign
a waypoint by moving it from a vehicle’s ordering to the
holding list, assign a waypoint to a specific location in the
ordering for a vehicle and exchange a waypoint on the hold-
ing list with an assigned waypoint on a vehicle.

The search begins from the initial state where all way-
points are unassigned. The neighborhood of the initial state
is evaluated to find the best neighbor using an ordering pred-
icate described below. As neighbors are generated, they are
tested for validity in two ways. First, constraints imposed
by the ordering of each schedule are tested for feasibility us-
ing a simple temporal network (STN, Cervoni, Cesta, and
Oddi 1994). In order to account for the distance between
waypoints, we use the pre-computed shortest path distances
to constrain each pair of waypoints to be separated by at least
the time required to traverse the shortest path between them.
If the STN reports that the ordering constraints are inconsis-
tent with the constraints of the problem, then the neighbor is
discarded as it cannot lead to a valid solution.

The second test is to see if the neighbor is tabu by check-
ing if any of the waypoints that moved while generating
the neighbor are included in a tabu list. The tabu list con-
tains waypoints that are temporarily disallowed from being
moved. If a neighbor fails the tabu test, then it is considered
as a candidate for the best neighbor, only if there are no other

140

feasible neighbors. The tabu list helps to prevent the search
from getting stuck in local minima by causing it to explore
new portions of the space.

Once the best feasible neighbor is found, then the way-
points that were moved to generate that neighbor are added
to the tabu list. If the size of the tabu list becomes greater
than a fixed size (7 in our experiments), then entries are re-
moved in first-in-first-out order. Finally, the search iterates
with the best neighbor as the new current state. The best
state ever encountered by the search is maintained as an in-
cumbent, giving the sequencer an anytime behavior. The se-
quencer is stopped when either a maximum time limit has
been reached or, if a full schedule has been found, it is
stopped when no new incumbent arrives for a quarter of a
second.

Following Lau, Sim, and Teo (2003), the ordering func-
tion used by the sequencer to estimate the quality of a state
is hierarchical. First, the ordering function prefers states in
which more waypoints have been scheduled. This helps en-
courage the sequencer to find total assignments of all of the
waypoints to vehicles. In order to allow the user to make a
trade-off between inexpensive and short schedules, we break
ties using our version of the WAMP objective.

These costs approximate the actual makespan and cost of
the final flyable route for the given schedule. Since the se-
quencer finds an ordering over the waypoints and not a fully
instantiated timetable, there is some question as to how time
may be allocated among the different legs of each route if
there is flexibility in the temporal constraints. For estimat-
ing the cost of a state during the tabu search, we can use one
of three techniques. The first approximation is optimistic
and assumes that each leg will always use a path with the
cost and duration of the minimum cost grid path. We call
this the min estimation technique.

The greedy technique assigns time to each leg greedily.
Each leg has an associated improvement slope which we
use to estimate the rate at which we can convert extra time
into cost reduction. The greedy technique greedily allocates
more time to legs for which additional navigation time is
likely to reduce cost the most. As we describe below, this
greedy strategy is optimal in certain situations.

The final estimation technique is based on linear program-
ming and is fairly expensive when evaluated on each state
generated by the tabu search. We describe it in the next sec-
tion as it is the same technique used to generate the timetable
of the final solution returned from the sequencer.

Generating a Timetable
Once a waypoint ordering has been found for each vehicle,
we generate a timetable that assigns the time when each
waypoint should be achieved. This timetable will be used
by the router to find a flyable path for each vehicle that
achieves each waypoint at its designated time. In order to
decide where time should be allocated along each vehicle’s
route, we again use an estimation of the time/cost trade-off
for each leg of the route. The objective of this part of the
solver is to assign each leg a time such that the sum of the
associated costs is minimized.

In order to meet the problem’s time constraints, more time
may need to be spent on a leg than would be taken by the
cheapest path. If this happens, the cost of the leg will gen-
erally be greater than the cheapest path cost due to cost in-
curred while waiting for time to pass. Currently, our imple-
mentation uses an optimistic approximation in which addi-
tional time can be added for free.

The LP uses two base variables for each leg: reduction
duration durred(i) and free duration durfree(i). durred(i)
represents the additional time that is devoted to avoiding
high cost areas, and is required to be larger than the min-
imum travel time between the two waypoints, and smaller
than the travel time of the cheapest path between the two
waypoints. durfree(i) represents time beyond the time re-
quired for the cheapest path. durred(i) + durfree(i) =
duri, where duri is the duration spent getting to waypoint
i from the previous place, either the previous waypoint or
the starting location. ti is the time at which waypoint i
was achieved, and it is equal to the sum durj for all way-
points that the vehicle services up to and including way-
point i. The objective function of the LP is minimizing∑

waypoints durred(i) ·redi+0 ·durfree(i) where redi is the
improvement slope. Temporal restrictions from the problem
all restrict ti so these can be entered into the LP directly,
restricting the legal values of the derived variables.

An alternative method for solving the timetable problem
is to use the greedy estimation method used by the scheduler.

Theorem 2 In the case where there are no relative con-
straints in the problem or when all relative constraints are
subsumed by the absolute constraints on each waypoint, the
solution produced by the greedy algorithm is optimal.

Proof Suppose we have a potentially optimal solution that
is not the greedy solution. The fact that this solution is not
greedy means there exists a pair of legs S and S’ such that
S’ offers a worse return on investment of time, and S’ was
allocated time that could possibly have gone to S. This pos-
sibility implies that it is possible to shift time from S’ to S
by simply moving all the waypoints between S and S’ by
some nonzero amount, leaving the duration of all other legs
the same. This solution cannot be optimal, because we can
improve it by moving some time from S’ to S. This reduces
the cost of the solution because S’ offers a worse return on
investment of time than S, and all other legs remained the
same duration. �

Theorem 3 In the general case, the problem requires a non-
greedy method, such as linear programming.

Proof We exhibit an instance with three vehicles (and some
relative constraints) that defies greedy scheduling. Vehicle
v1 must visit waypoint w1, which is at least 2 minutes away.
Vehicles v2 and v3 each start one minute from w2 and w3,
respectively, and must visit them exactly 1 minute before v1
visits w1. Anytime after v1 visits w1, v2 must visit w2′ and
v3 must visit w3′ . w2′ is at least 1 minute from w2 and w3′

is at least 1 minute from w3. All waypoints must be visited
before time 7. The traversal costs are such that giving v1
more time for w1 lowers cost by 6 per minute, giving v2
or v3 more time for w2 or w3 doesn’t lower cost at all, and

141

giving v2 or v3 more time for w2′ or w3′ lowers cost by 5
per minute. The greedy scheduler will put w1 at 7 − ε, w2

and w3 at 6 − ε, and w2′ and w3′ at 7. This lowers cost for
v1 by (5− ε) · −6 and for v2 and v3 by ε · −5, for a total of
−30− 4ε. The optimal solution puts w1 at 2, w2 and w3 at
1, and w2′ and w3′ at 7, which lowers cost for v1 by 0 and
for v2 and v3 by 5 · −5, for a total of −50. �

Routing
The router constructs flyable paths that meet the timetable
while minimizing cost. The router performs this task one
vehicle at a time, one leg at a time. Each invocation has three
phases: finding a grid path, smoothing the grid path, and
adding additional travel if necessary to match the timetable.

Finding a Path The first step in constructing each leg is
to use a discretized version of the problem to find an 8-way
grid path that connects the cells containing the leg’s start and
goal. All grid cells whose center point is within the radius
of the leg’s goal waypoint count as goals. If the waypoint’s
radius does not contain a grid cell center, the grid cell that
contains the waypoint’s center point is used as the goal. Any
cell touched by a keepout zone is marked as impassable in
the grid search. Technically this approximation makes the
planner incomplete, however, this was not an issue in prac-
tice.

Grid paths are found using A* search, modified to account
for time constraints. The modified A* search prunes any
state whose travel time so far tcur and estimated remaining
travel time trem (from the pre-computed shortest 8-way grid
path times) are greater than the deadline di imposed by the
timetable, tcur + trem > di. The cost of each grid cell
is determined in the pre-computation phase. The heuristic
used during search is based on the pre-computed costs. The
pre-computed cheapest path is used if its length is less than
that required to meet the deadline.

Smoothing If used directly, the 8-way grid path is usu-
ally dynamically infeasible and might not intersect the way-
point’s radius or take into account heading constraints from
the waypoint or the previous leg (or start position).

The grid path is smoothed by substituting arcs at sharp
turns, resulting in a smooth path that is traversable by the
current vehicle. This smooth path may not achieve the
waypoint correctly (incorrect heading and/or incorrect po-
sition) and may not line up correctly with the exit tra-
jectory from the previous leg. This is resolved by con-
structing dynamically feasible Dubins paths (Dubins 1957;
LaValle 2006) to match up the ends of the smooth path with
the previous leg and the goal waypoint. This is done by con-
structing a Dubins path that connects a point on the smooth
path to either the goal waypoint or the previous leg.

The connection point choice has very visible impact on
the resulting path. Choosing a point too close may result
in large turns to correct heading discrepancies. Choosing
a point too far away can remove too much of the cheaply
routed path. We iteratively try several lengths, keeping the
best path according to a weighted combination of cost and
distance.

Constructing the connection from the smooth path to the
goal waypoint has one more free variable, the heading at the
waypoint. The waypoint may have an associated heading
constraint so any values chosen must be within the speci-
fied range. The same iterative technique is used to evaluate
connection points along the smooth path.

The heading at which a non-goal waypoint is achieved af-
fects both the cost of the segment entering the waypoint as
well as the cost of the segment exiting the waypoint. We
would like to achieve the waypoint at a heading which is
expected to have a cheap ingress as well as a cheap egress.
To account for both of these costs, we consider a small set
of pairs of Dubins curves where one curve in each pair is
entering the waypoint and the other is exiting. The set is
constructed using all combinations of a discrete set of start-
ing points along the smoothed path entering the waypoint,
ending points along the grid path exiting the waypoint, and
headings at the waypoint. Of this set, we choose the curve
that enters the waypoint from the pair that minimizes the
weighted sum of cost and makespan.

Extending a Route The smoothing process can result in
paths longer or shorter than the grid path solution. When a
path whose increased length results in missing the deadline,
the A* search is continued to find a faster path. If no such
path can be found, the router will fail back to the timetable
stage with a new constraint bounding the problematic leg.

If smoothing results in a path that arrives at the waypoint
before the deadline, the path is lengthened. If the time re-
quired to arrive at the deadline is at least the circumference
of a tight loop of the vehicle, loops are added to the leg in
the area where they will increase the cost least.

When Routing Fails
The timetable is generated using only an approximation of
the routability between waypoints, so it may happen that the
router is unable to meet the given deadlines. This can occur
when the shortest 8-way grid path between two waypoints
is shorter than the shortest flyable path. When the router
fails to successfully route a leg, it passes the true minimum
distance and cost of the failed leg back to the LP and se-
quencer. Using this new distance constraint, a new timetable
is found and routing restarts. Additionally, if the updated LP
has become infeasible, then the ordering produced by the
sequencer is invalid and the sequencer is restarted to find a
different ordering.

To avoid re-planning the same legs again in an updated
timetable, the router caches the route for each successful leg.
When a new timetable requires a leg that has already been
routed with the same time constraint, this leg is re-used from
the cache.

Evaluation
We now present the results from experiments we performed
to evaluate our planner.

A Single Unified A* Search
Our first experiment verified that solving WAMP by run-
ning an A* search on the combined task and motion plan-

142

ning problem would quickly become infeasible. The state
space included the airplane’s position, heading, and time.
The available operators were turn left or right 45◦ and go
straight. For a heuristic, we calculated a minimum spanning
tree of the 8-way grid path costs between waypoints on a
discretized version of the problem, and added the distance
of the vehicle to the nearest waypoint. The A* solver was
written in Java, and we define failure as filling a 7GB object
heap. Figure 1c shows the failure percentages (right column)
as the number of waypoints scales from 1 to 6 (left column).
Each of these problems used a single vehicle and had no
temporal constraints. The A* solver fared extremely poorly
on this problem, and was unable to successfully solve a full
set of these very small instances even with a single waypoint.

Scaling Behavior
We now turn to evaluating the approach discussed in this pa-
per, which was implemented in C++ and run on a 3.16 GHz
machine with 8GB of RAM. Our first evaluation measured
solution time and cost when scaling both the number of ve-
hicles and the number of waypoints. Both of these param-
eters have a large effect on the difficulty of problem. The
plots in Figure 3 show the results of these experiments. The
left-most plot shows the scaling behavior of the min, greedy
and LP surrogates as a function of the number of waypoints.
Each glyph represents the mean time and cost over a set of
instances with a number of waypoints given by the label (10,
20, 30 or 40) and 4 vehicles. The error bars give the 95%
confidence interval on the means. A line connects each mean
in order of increasing number of waypoints. As can be seen,
the problems require more time and accrue more cost as the
number of waypoints increases. When using both the min
and greedy surrogates, we are able to solve the instances
within our 10 second time frame even with up to 40 way-
points. We were surprised by the good performance of the
min approximation. The LP approximation requires more
time and is only able to solve up to 30 waypoint instances
within the 10 second time frame.

The center plot of Figure 3 shows the scaling behavior as
the number of vehicles increases. These instances had 20
waypoints. As the number of vehicles increases, the plan-
ning time increases. Again, the min and greedy surrogates
give the best performance. Both the greedy and min tech-
niques easily solve all problems within the 10 second time
frame. The LP technique requires more than 10 seconds for
some 16 vehicle instances.

Evaluating the Scheduler
Next, we considered synthetic instances that stress each ma-
jor component of the system separately. To evaluate the se-
quencer, we created a set of instances for which we could
find optimal solutions to the scheduling problem. We con-
verted sets of TSP instances with 40 and 100 cities into
WAMP instances for a vehicle with turning radius ε in order
to compare the solutions found by our sequencer to the op-
timal TSP solutions. For comparison, we also implemented
a simple nearest-neighbor TSP solver which chooses to visit
the nearest unvisited city next.

The results of this experiment are shown on the right plot
in Figure 3. We compared the min (M) and greedy (G) ap-
proximation techniques and the nearest neighbor TSP solver
(NN). The y axis shows the factor of the optimal cost, so 1
is optimal and 1.2, for example, is 20% over optimal. Each
box surrounds the middle half of the results, the horizontal
line represents the median value, the ‘whiskers’ extend to
the min and max. Circles beyond the whiskers show out-
liers. This plot does not include any results for the LP-based
approximation as it was unable to solve any of the 100 city
problems within a 120 second time limit. We can see from
this plot that our ordering search tends to find solutions that
are 20% above the optimal cost. For the more difficult 100
city instances, both the min and greedy approximations tend
to outperform the nearest neighbor solver. Additionally, the
100 city instances seem to skew a bit more toward low-cost
solutions than the easier 40 waypoint instances. We inter-
pret these as positive results because they show that our se-
quencer is able to find reasonable solutions to these TSP in-
stances.

Evaluating the Router
To evaluate the router, we created instances that required
traversal of a maze of high-cost regions. Figure 1d shows
the path found for one such instance. While we did not have
any simple way to quantify these results, it is visibly clear
that the router was able to find its way through the mazes
while avoiding high-cost regions.

Application
Finally, we evaluated on a set of instances that were simi-
lar to those used by our industrial partner. These instances
were 200x200 miles, with 3 vehicles, and 41 waypoints. Our
industrial partner’s current system, which we do not have
access to for reasons of intellectual property and security
classification, solves instances like these in approximately
7 seconds. On this set of instances, our solver had a mean
solution time of 2.5 seconds. We have designed our imple-
mentation such that we expect near linear time speedup on a
multi-core machine; so these results could be improved even
further. Due to confidentiality reasons we were unable to di-
rectly compare solutions on quality, however we generally
received positive feedback.

Related Work
Rapidly-exploring Random Trees (RRTs, Lavalle 1998) are
a popular technique for finding dynamically feasible motion
plans, however they do not minimize path cost. The RRT*
algorithm (Karaman and Frazzoli 2010) minimizes cost, but
does not handle constraints.

Bhatia, Kavraki, and Vardi (2010) combine sample-based
motion planning with temporal goals by employing a geom-
etry based multi-layered synergistic approach. Unlike the
temporal constraints of WAMP, their goals are given by lin-
ear temporal logic formula.

Dornhege et al. (2009) describe how to combine low-level
motion planning with high-level task planning via semantic
attachment to a PDDL planner. In their approach, the lower

143

Figure 3: Scaling the number of waypoints and vehicles (left and center) and TSP instances (right).

level planner is used to check action applicability and com-
pute effects whenever certain high level actions are used. In
our approach, we use pre-computed minimum travel times
to allow quick feasibility checking during high level plan-
ning, reserving the low level planner for computing the true
cost of a solution.

Kaelbling and Loranzo-Pérez (2011) present a more flex-
ible technique for combining both task and motion planning
called “hierarchical planning in the now.” The technique
generates a hierarchy dynamically. When refining a transi-
tion at one level in the hierarchy, a planner is used where the
goal specification is given by the preconditions of the desti-
nation node of the transition. This technique does not handle
temporal constraints or a cost metric other than makespan.

Frank et al. (2011) make use of surrogate objective for
motion planning for a robotic arm in the face of deformable
objects. Their technique uses a surrogate objective to avoid
using a computationally intensive finite element methods
simulation to compute the cost of object deformations.

There has also been previous work in routing for aerial
vehicles. McVey et al. (1999) present the Worldwide Aero-
nautical Route Planner (WARP) that plans fuel-efficient air-
plane routes around the globe. S̆tĕpán Kopr̆iva et al. (2010)
present Iterative Accelerated A* (IAA*) which is a tech-
nique developed for flight-path planning that increases the
distance covered by each action primitive when the vehicle
is far from surrounding obstacles. However, neither of these
techniques consider temporal constraints.

Possible Extensions
Our current surrogate objective optimistically assumes that
additional time can be added to a route free of charge. We
plan to explore better approximations for this issue in the
future. One possible improvement is to estimate that addi-
tional time adds cost at a fixed rate. As long as the slope is
greater than the original it can still be captured in a linear
program.

An additional improvement to our current system would

be to allow the router to pass more information back to
the sequencer and linear programming layers. Currently,
the router only sends accurate time/cost information back to
these layers when it determines that a leg is unroutable. One
may imagine a more complex system, however, where infor-
mation flows back to the sequencer and linear programming
layer for every successfully routed leg too.

Conclusion
We introduced the problem of Waypoint Allocation and Mo-
tion Planning, which requires integration of high-level task
planning with low-level motion planning. WAMP models
a real-world application, moving beyond the classic plan-
ning problems and raising interesting issues that have not
received much attention, including how to partition effort
in a multi-level planner and how to trade plan cost for exe-
cution time in a time-constrained context. WAMP contains
many subproblems that are well-known to be NP-complete
and we proved that the target value search problem is NP-
complete. We described an approach for the WAMP prob-
lem that takes advantage of the characteristics of the prob-
lem in order to separate the solving into three distinct stages:
scheduling, building timetables, and routing. Our approach
makes use of a surrogate objective in the high-level layers
in order to avoid calls to the more expensive low-level route
planner. Using this hybrid approach we are able to meet the
demanding requirements imposed by the application.

Acknowledgements
We graciously acknowledge funding from the DARPA
CSSG program (grant HR0011-09-1-0021) and NSF (grant
IIS-0812141).

References
Bhatia, A.; Kavraki, L. E.; and Vardi, M. Y. 2010. Sampling-
based motion planning with temporal goals. 2689–2696.
Anchorage, Alaska: IEEE.

144

Cervoni, R.; Cesta, A.; and Oddi, A. 1994. Managing
dynamic temporal constraint networks. In Proceedings of
AIPS-94, 13–18.
Dantzig, G., and Ramser, J. 1951. The truck dispatching
problem. Management Science 6(1):80–91.
Dornhege, C.; Gissler, M.; Teschner, M.; and Nebe, B.
2009. Integrating symbolic and geometric planning for mo-
bile manipulation. In Proceedings of the Nineteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-09).
Dubins, L. E. 1957. On curves of minimal length with a
constraint on average curvature, and with prescribed initial
and terminal positions and tangents. American Journal of
Mathematics 79:497–516.
Frank, B.; Stachniss, C.; Abdo, N.; and Burgard, W. 2011.
Using gaussian process regression for efficient motion plan-
ning in environments with deformable objects. In Automated
Action Planning for Autonomous Moblie Robotics.
Garey, M. R., and Johnson, D. S. 1991. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York: W.H. Freeman and Company.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics SSC-4(2):100–107.
Kaelbling, L. P., and Loranzo-Pérez, T. 2011. Hierarchical
task and motion planning in the now. In IEEE Conference
on Robotics and Automation.
Karaman, S., and Frazzoli, E. 2010. Incremental sampling-
based algorithms for optimal motion planning. CoRR
abs/1005.0416.
Kuhn, L.; Schmidt, T.; Price, B.; Zhou, R.; and Do, M.
2008. Heuristic search for target-value path problem. In
First International Symposium on Search Techniques in Ar-
tificial Intelligence and Robotics.
Lau, H. C.; Sim, M.; and Teo, K. M. 2003. Vehicle routing
problem with time windows and a limited number of vehi-
cles. Europen Journal of Operational Research 148:559–
569.
Lavalle, S. M. 1998. Rapidly-exploring random trees: A
new tool for path planning. Technical report, Department of
Computer Science, Iowa State University.
LaValle, S. M. 2006. Planning Algorithms. Cam-
bridge, U.K.: Cambridge University Press. Available at
http://planning.cs.uiuc.edu/.
McVey, C. B.; Clements, D. P.; Massey, B. C.; and Parkes,
A. J. 1999. Worldwide aeronautical route planner. In Pro-
ceedings of the Sixteenth National Conference on Artificial
Intelligence (AAAI-99).
Savelsbergh, M. 1985. Local search in routing problems
with time windows. Annals of Operations Research 4:285–
305.
Schmidt, T.; Kuhn, L.; Price, B.; de Kleer, J.; and Zhou,
R. 2009. A depth-first approach to target-value search.
In Proceedings of the Second Symposium on Combinatorial
Search.

S̆tĕpán Kopr̆iva; S̆is̆lák, D.; Pavlı́c̆ek, D.; and Pĕchouc̆ek, M.
2010. Iterative accelerated A* path planning. In Proceedings
of the Foty-nineth Conference on Decision and Control.

145

