
PROST: Probabilistic Planning Based on UCT

Thomas Keller and Patrick Eyerich
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee 52
79110 Freiburg, Germany

{tkeller,eyerich}@informatik.uni-freiburg.de

Abstract

We present PROST, a probabilistic planning system that
is based on the UCT algorithm by Kocsis and Szepesvári
(2006), which has been applied successfully to many areas
of planning and acting under uncertainty. The objective of
this paper is to show the application of UCT to domain-
independent probabilistic planning, an area it had not been
applied to before. We furthermore present several enhance-
ments to the algorithm, including a method that is able to
drastically reduce the branching factor by identifying super-
fluous actions. We show how search depth limitation leads to
a more thoroughly investigated search space in parts that are
influential on the quality of a policy, and present a sound and
polynomially computable detection of reward locks, states
that correspond to, e.g., dead ends or goals. We describe
a general Q-value initialization for unvisited nodes in the
search tree that circumvents the initial random walks inher-
ent to UCT, and leads to a faster convergence on average. We
demonstrate the significant influence of the enhancements by
providing a comparison on the IPPC benchmark domains.

Introduction
In its fourth incorporation, the International Probabilis-
tic Planning Competition (IPPC) has undergone a radical
change by replacing PPDDL, the probabilistic dialect of
the Planning Domain Definition Language, with the Rela-
tional Dynamic Influence Diagram Language (RDDL) (San-
ner 2010). RDDL overcomes shortcomings of PPDDL in
probabilistic settings like difficulties when modeling exoge-
nous or independent effects, especially when combined with
concurrency. Thereby, it is well suited to design domains
that are probabilistically complex. This is in contrast to the
domains that were used in previous competitions which were
mostly probabilistically simple (Little and Thiébaux 2007).
This kind of problem can usually be tackled easily by deter-
minization based replan approaches like FF-Replan (Yoon,
Fern, and Givan 2007), the winner of the first IPPC, or RFF
(Teichteil-Königsbuch, Infantes, and Kuter 2008), the win-
ner of IPPC 2008. Probabilistically complex problems, on
the other hand, require planning systems to take probabil-
ities into account in their decision making process, for ex-
ample to predict the influence of exogenous events, to avoid

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

dead ends, or to consider situations where the optimal policy
cannot be determined by only considering the most likely or
desired outcome. Indeed, for IPPC 2011, it was a predomi-
nant strategy to opt for an algorithm that takes probabilities
into account, with the PROST planner described in this pa-
per coming out on top of the field, and Glutton (Kolobov et
al. 2012) on a close second place.

The contribution of this paper is a detailed description of
the techniques that were implemented on top of the UCT
(Kocsis and Szepesvári 2006) skeleton, a popular algorithm
in planning and acting under uncertainty. We start by for-
malizing probabilistic planning as given by the fragment of
RDDL that was used for IPPC 2011 in the next section. The
basics underlying our planning system are sketched there-
after, including modifications of UCT to adapt the algorithm
to the given circumstances, e.g., with respect to the search
space, the search depth, or pruning of superfluous actions.
We believe that one of the main reasons for the success of
our planner is the initialization procedure that is described
in the subsequent section. An initialization procedure gives
UCT initial guidance to prevent random walks through the
search space. This is followed by a discussion of a method
to detect reward locks, states that can be regarded as goals or
dead ends, and we briefly discuss how this information can
be used to improve the system’s behavior. We finish with
an empirical evaluation of the presented methods before we
conclude.

Probabilistic Planning
An MDP (Puterman 1994; Bertsekas and Tsitsiklis 1996) is
a 4-tuple 〈S,A, P,R〉, where S is a finite set of states; A is a
finite set of actions, including the noop action (denoted a∅);
P : S × A × S → [0, 1] is the transition function, which
gives the probability P (s′|a, s) that applying action a ∈ A
in state s ∈ S leads to state s′ ∈ S; and R : S×A×S → R
is the reward function.

Schematic RDDL incorporates the semantics of a dy-
namic Bayesian network extended with an influence dia-
gram utility node representing immediate rewards. We con-
sider fully observable probabilistic planning with rewards
and finite horizon as given by the fragment of RDDL used
as the input language of IPPC 2011 when fully grounded
(which is meant in the following when we mention RDDL).
RDDL specifies a factored MDP (Boutilier, Dearden, and

119

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling

Goldszmidt 2000; Guestrin et al. 2003), that is a tuple T =
〈V,A, P,R,H, s0〉, where the set of states S is induced by
the set of binary1 state variables V and the remaining steps
h ∈ {0, . . . ,H} as S = 2V × {0, . . . ,H}, where H ∈ N
is the finite horizon and s0 ∈ S the initial state. With s(v)
and s(h), we denote the value of variable v and the number
of remaining steps h in state s. As the remaining steps must
decrease by 1 in each transition, we demand P (s′|a, s) = 0
if s′(h) 6= s(h)− 1. States with s(h) = 0 are terminal
states. In contrast to PPDDL, where changes are encoded as
effects of actions, changes are encoded via transition func-
tions for variables in RDDL. We write Pv(s′(v) = >|a, s)
and Pv(s′(v) = ⊥|a, s) for the probability that applying ac-
tion a ∈ A in state s ∈ S leads to some state s′ where
s′(v) = > and s′(v) = ⊥, respectively. The transition func-
tions for variables are probability distributions over state-
action pairs, and the transition function satisfies the inde-
pendence criterion (Degris, Sigaud, and Wuillemin 2006;
Chakraborty and Stone 2011), i.e., it is induced by the transi-
tion functions for variables as the product of the probabilities
of all variables.

RDDL also allows to model applicability conditions for
actions by using so-called state-action constraints. As IPPC
2011 did not make use of this feature2 we allow execution
of all actions at any state (possibly without effects).

As usual, a solution for an MDP is a policy, i.e. a mapping
from states to actions. Let

E(a, s) :=
∑
s′∈S

P (s′|a, s) ·R(s, a, s′) (1)

be the expected immediate reward of applying action a in
state s. The expected reward of a policy π in MDP T with
initial state s0 is given by the state-value function Vπ as
Vπ(T) := Vπ(s0) with

Vπ(s) :=

{
0 if s is a terminal state
Qπ(π(s), s) otherwise,

(2)

where the action-value function Qπ(a, s) is defined as

Qπ(a, s) := E(a, s) +
∑
s′∈S

P (s′|a, s) · Vπ(s′). (3)

Related to Equation 2, the Bellman equation (Bellman 1957;
Bertsekas 1995) characterizes the expected reward of any
state in an optimal policy.

Due to the exponential number of states in a factored
MDP T , it is usually impractical to compute the expected
reward of a policy π for T . Therefore, it is a common way
to estimate Vπ(T) empirically by sampling a fixed number
of runs, i.e., interactions with an environment that provides
the simulated outcomes of executed actions as in IPPC 2011.
Interleaving planning with execution additionally allows us
to restrict ourselves to the generation of partial policies de-
fined only for the current state, i.e., we repeatedly generate a

1Note that our algorithms can be adapted easily to work with a
framework extended to variables in finite-domain representation.

2IPPC 2011 made use of state-action constraints to check legal-
ity of concurrent actions. This was done in a static manner, though,
i.e. a combination of actions was either always applicable or never.

partial policy π, execute π(s0), and update the current state
s0 to match the observed outcomes until a terminal state is
reached.

UCT: Basic Algorithm
The PROST planning system is based on the upper confi-
dence bounds applied to trees (UCT) algorithm (Kocsis and
Szepesvári 2006), a state-of-the-art approach for many prob-
lems of acting under uncertainty, such as the two player
game of Go (Gelly and Silver 2007; 2011), the nondeter-
ministic single player game of Klondike solitaire (Bjarna-
son, Fern, and Tadepalli 2009) or the Canadian Traveler’s
Problem (Eyerich, Keller, and Helmert 2010), a stochastic
path planning problem. To the best of our knowledge, it has
not been applied to domain-independent probabilistic plan-
ning before IPPC 2011.

As an anytime algorithm, UCT returns a non-random de-
cision whenever queried, and terminates based on a time-
out given to the system as a parameter. In the given time,
UCT performs rollouts, where, as usual in Monte-Carlo
approaches, outcomes of actions are sampled according to
their probability. The state transition graph of a factored
MDP is a directed graph. In our case, where the remain-
ing steps are part of the state, this graph is acyclic. UCT
works on the tree that results from regarding the path that
leads to a state as a part of the state. While this tree
might be much larger than the original graph, especially
if the graph contains a lot of transpositions, we can keep
the tree’s size moderate by eliminating superfluous actions
as shown below. In our context, a UCT node n is a tuple
〈s, a,Nk, Rk, {n1, . . . , nm}〉,where

• s is a (partial) state,

• a is an action,

• Nk is the number of rollouts among the k first rollouts
where node n was chosen,

• Rk is the expected reward estimate based on the k first
rollouts, and

• {n1, . . . , nm} are the successor nodes of node n.

In each rollout, the search tree is traversed from the root
node n0 with n0.s = s0 to a node that has a terminal state
assigned. We distinguish between two kinds of nodes in the
tree, chance nodes and decision nodes, and describe how to
determine the path of a rollout in Algorithm 1.

A decision node n has exactly one successor node ni for
each action ai with ni.a = ai. The attribute that distin-
guishes UCT most from other Monte-Carlo methods is that
it bases the decision which action to take in a decision node
on all previous rollouts: It favors successors that led to high
rewards or have been rarely tried in previous rollouts. To
do so, UCT distinguishes two cases: If a decision node has
at least one successor node ni that has never been selected,
i.e., where ni.Nk = 0, it randomly selects any of the un-
visited successor nodes and applies the corresponding ac-
tion. If all successor nodes have been visited at least once,
UCT balances the classical trade-off between exploitation of
previously good policies and exploration of little examined

120

Algorithm 1: UCT search with decision and chance nodes.

1 def search():
2 while not timeoutReached() do
3 rollout(n0, s0,∅,∅, searchDepth)
4 return greedyPolicy(n0)

5 def rollout(n, s, a, s′, depth):
6 res = 0.0
7 if isDecisionNode(n) then
8 if hasUnvisSucc(n) then n′, a = getUnvisSucc(n)
9 else n′, a = getUCTSucc(n)

10 s′ = applyAllDetSuccFunc(a, s)
11 else
12 n′, s’ = sampleNextProbSuccFunc(n, s, a, s′)
13 if isChanceNodeLeaf(n) then
14 res = R(s, a, s′)
15 s := s′, s′ := ∅, a := ∅, depth := depth −1
16 if depth = 0 then return res
17 res := res + rollout(n′, s, a, s′depth)
18 updateNode(n,res)
19 return res

choices by picking the successor node ni that maximizes the
UCT formula

B

√
log n.Nk

ni.Nk
+ ni.R

k

over all successor nodes ni, where B is a bias parameter
discussed later.

In a chance node n a successor is chosen by sam-
pling the outcome ni according to its transition probabil-
ity P (ni.s|ni.a, n.s). Even though this seems like a simple
process, it raises some technical difficulties: As transition
functions for variables are independent from each other, the
number of outcomes and with it the number of successors of
a chance node might be exponential in the number of vari-
ables. As an example where this has heavy influence take
the SYSADMIN domain of IPPC 2011, where computers in a
network are shut down with independent probabilities. Any
chance node n where n.s is the state where all computers
are running has a successor for each state in the state space,
as each state has a non-zero probability to be an outcome of
any action leading to n. To avoid the need of a data structure
of exponential size, we exploit the structure of RDDL that
provides us with a separate transition probability for each
variable and apply these sequentially similar to the way it
is done when generating the forked normal form for prob-
abilistic PDDL effects (Keller and Eyerich 2011). While
this does not reduce the size of the search space, it dras-
tically reduces the branching factor of chance nodes (each
chance node has a branching factor of two, as depicted in
Figure 1). Given a factored MDP, our technique generates at
most |V | · H successors in chance nodes per rollout, while
a standard technique generates up to 2|V | ·H . Note that the
same technique can be used in decision nodes if concurrent
actions are allowed, leading to a search tree where succes-
sors of decision nodes can be decision nodes themselves and
where actions are scheduled sequentially. Due to the abun-

11001

010xx 101xx

0100x 0101x 1011x

01000 01001 01010 01011 10110 10111

o1 o2

0.
4 0.6

0
.1

0
9

0
.3

0
7

1
.0

0.
2 0.8

Figure 1: Example statespace with decision nodes (rectan-
gles) and chance nodes (circles). An x in the valuation of
state variables stands for an undetermined value in the state.

dance of benchmarks with a high grade of concurrency, i.e.,
a high number of possible action combinations, this proce-
dure did not lead to significantly different results.

Bias Parameter Kocsis and Szepesvári (2006) show that
UCT converges to the optimal policy in the limit, given a
timeout that is sufficiently high. The analysis in the conver-
gence proof suggests that the bias parameter B should be
such that it grows linearly with the expected reward of an
optimal policy. This is also desirable because it means that
the policy is invariant to applying a scaling constant to the
rewards. As the expected reward under an optimal policy
is of course unavailable, we estimate it for the (k + 1)-th
rollout by the expected reward estimate of the previous k
rollouts for s0. The fact that this is undefined for k = 0 does
not affect the algorithm, as the parameter does not affect the
choices of the first rollout anyway.

Regret Minimization The UCT formula is derived from
the UCB1 algorithm, which minimizes the regret in a multi-
armed bandit problem (Auer, Cesa-Bianchi, and Fischer
2002), i.e., the number of times a suboptimal arm is chosen.
As a procedure that was developed in a machine learning
context, a generative model of state transitions is sufficient
for UCT: it does not reason over probabilities but achieves
convergence of the state value function by choosing out-
comes with the correct probability a sufficient number of
times. For this reason, UCT is not perfectly suited for the
circumstances we are facing in probabilistic planning, where
we are provided with a declarative model of state transi-
tions, i.e., with concrete probabilities, which are not directly
used by our planning system when updating search nodes. It
is also not clear if regret minimization is a good optimiza-
tion criterion for an approach that has access to a declarative
model. The experimental evaluation in this paper and the
results of IPPC 2011 indicate that the algorithm is able to
generate competitive policies in domain-independent proba-
bilistic planning, though.

Search Depth Limitation While UCT converges towards
the optimal policy in the limit, in practice it often needs a
prohibitively large number of rollouts to converge. It does
improve bit by bit, though, the more rollouts are made avail-
able. As we have little influence on the available time per
decision, it is important to make sure that the provided time
is spent properly. Decisions far in the future often influ-

121

ence the expected reward of a policy less than immediate
actions, as the uncertainty grows with the number of simu-
lated steps. Consider, for example, the ELEVATORS domain
of IPPC 2011, where passengers who want to get from one
floor to another arrive with a given probability and have to
be served by opening and closing doors, choosing the right
direction and moving the elevator. If a passenger arrives, the
most influential part of good policies is to bring the passen-
ger to their destination with the correct sequence of actions,
while reasoning about other passengers who might or might
not arrive some time in the distant future is less important as
long as service for a passenger is not completed.

It is possible to exploit this by relaxing a factored MDP
T = 〈V,A, P,R,H, s0〉 to Tλ = 〈V,A, P,R,Hλ, s0〉 with
horizon Hλ = min(H,λ), where the search depth limit λ is
given to the planner as a parameter. Our experiments show
that the policy derived from UCT on Tλ is often better than
a policy on T , as a higher number of rollouts is performed,
and as the search space in the more important parts close to
the root node is more thoroughly investigated. It must be
considered, however, that this modification can also be the
cause of problems, most notably that the better of two poli-
cies on T might be worse on Tλ, a problem that is discussed
for the special case of reward locks later in this paper. This
also removes the possibility to reuse the part of the search
tree in the next iteration that corresponds to the outcome of
the last submitted action, as search nodes might have been
updated based on assigned states with a different horizon.

Reasonable Actions It is quite often the case that do-
mains are modeled in a way where actions only affect the
state if certain circumstances are given, similar to condi-
tional effects in PPDDL. In the ELEVATORS domain, for ex-
ample, there is no difference if we choose to close the door
in a state where it is already closed, or if we choose to apply
a∅. It is worth to look into this in more detail, as each ac-
tion that can safely be excluded leads to a lower branching
factor, an important criterion not only for UCT. For this rea-
son, we exclude an action from the search space if there is a
obviously better decision:

Definition 1. Action a dominates action a′ in state s (writ-
ten a >s a′) if P (s′|a, s) = P (s′|a′, s) and R(s, a, s′) ≥
R(s, a′, s′) for all states s′ ∈ S, and R(s, a, s′′) >
R(s, a′, s′′) for at least one s′′ ∈ S.

Theorem 1. Let T be a MDP, and a, a′ and s such that
a >s a

′. For each policy π′ on T with π′(s) = a′ there is a
policy π with Vπ(T) > Vπ′(T).

Proof sketch: Given a policy π′ with π′(s) = a′ and a >s
a′, we construct π such that π(s′) = π′(s′) for all s′ 6= s and
π(s) = a. Then, with Equations 1 to 3, Vπ(T) > Vπ′(T), as
E(π(s′), s′) ≥ E(π′(s′), s′) for all s′ 6= s andE(π(s), s) >
E(π′(s), s).

We can also prune an action if there is no obviously better
alternative, but one that is obviously equally good:

Definition 2. Two actions a and a′ are equivalent in state
s (written a =s a′) if P (s′|a, s) = P (s′|a′, s) and
R(s, a, s′) = R(s, a′, s′) for all states s′ ∈ S.

Theorem 2. Let T be a MDP, and a, a′ and s be such that
a =s a

′. For each policy π on T with π(s) = a there is a
policy π′ 6= π with Vπ′(T) = Vπ(T).

Proof sketch: Consider policy π′ 6= π with π′(s′) = π(s′)
for all s′ 6= s and π′(s) = a′. Then, with Equations 1 to 3,
obviously Vπ′(T) = Vπ(T).

While it is clear in the case of action dominance which
actions are superfluous, action equivalence is a symmetric
relation. For this reason, we arbitrarily choose one element
from the equivalence class with respect to the equivalence
relation given in Definition 2, and declare all other actions
in that class as superfluous. Actions that are not superfluous
are called reasonable.

Q-value Initialization
The UCT algorithm chooses the successor node that maxi-
mizes the UCT formula in decision nodes only if all succes-
sor nodes have already been visited (Kocsis and Szepesvári
2006). If there is at least one reasonable action that has
not been applied, UCT chooses one of the unvisited succes-
sor nodes uniformly randomly. As described so far, it does
not take into account any problem specific information that
would bias the rollouts towards promising parts of the search
space, but follows a random policy initially. This weakness
has been observed in several areas of planning and acting un-
der uncertainty, and is typically addressed by introducing a
initialization that assigns a quality estimate to unvisited chil-
dren of decision nodes, as blind UCT would require a pro-
hibitively large number of rollouts to converge to a good pol-
icy. As each initialized successor node contains information
that corresponds to an action-value function (or Q-value) es-
timate, we refer to this as a Q-value initialization. Publica-
tions on this topic range from general game playing (Finns-
son and Björnsson 2011) over specific game solvers like
the most successful player for Go (Gelly and Silver 2007;
2011) to domain-specific planning problems like the highly
probabilistic Canadian Traveler’s Problem (Eyerich, Keller,
and Helmert 2010). While there is no reason why initializa-
tions should not be applicable to domain-independent prob-
abilistic planning, there is no obvious way how to do so ei-
ther, as the mentioned techniques are tailored to their spe-
cific use-cases: Finnsson and Björnsson (2010) compare
several search control techniques that resemble initializa-
tions in their general game player Cadia Player, winner of
the AAAI 2008 general game playing competition, includ-
ing, e.g., Rapid Action Value Estimation. This technique has
also been applied in the context of Go by Gelly and Silver
(2007), who compare it to an offline-computed initializa-
tion based on Temporal Difference Learning, and Eyerich,
Keller, and Helmert (2010) initialize with an optimistic esti-
mation based on Dijkstra’s algorithm.

All these techniques have in common that they gain in-
formation about the problem by relaxing it, which is used
to guide UCT to promising parts in the search tree. For the
purpose of this paper, we regard a Q-value initialization as
a function I : S × A → R, and we initialize the succes-
sors of decision node n by setting ni.Rk = I(n.s, ni.a),
and ni.Nk = δ for all successor nodes ni, where the num-

122

ber of virtual rollouts δ is a parameter given to the system.
While initializing nodes with any function I does not alter
the convergence result of UCT in the limit, faster conver-
gence on average is only achieved if I(s, a) has some degree
of informativeness, and if the obtained information is worth
more than the additional (uninformed) rollouts that would
have been possible without the computational overhead. In
PROST, we use a Q-value initialization that is based on a
single-outcome determinization of the MDP that is gener-
ated by expecting that the most likely outcome occurs:
Definition 3. The most likely outcome of applying action
a ∈ A in state s is the state s+(a, s), where

s+(a, s)(v) =

{
> if Pv(s′(v) = >|a, s) ≥ 0.5

⊥ otherwise

and s+(a, s)(h) = s(h)−1. The most likely determiniza-
tion of the factored MDP T = 〈V,A, P,R,H, s0〉 is T+ =
〈V,A, P+, R,H, s0〉, where

P+(s′|a, s) =
{
1 if s′ = s+(a, s)

0 otherwise

It should be mentioned that the same determinization is
also used in FF-Replan (Yoon, Fern, and Givan 2007), albeit
in a completely different way. The advantage of simplifying
the MDP by removing the uncertainty is that we can use a
computationally more expensive search algorithm to initial-
ize. In PROST, we have implemented a depth first search
(DFS) procedure, which maximizes the reward that can be
achieved in the determinization in a given number of steps.
As it is not desirable to use a constant search depth in all
domains, we extend this approach to an iterative deepening
search (IDS) with maximal search depth D that is described
in Algorithm 2. We determine a good value forD in a simple
learning procedure on a set of arbitrarily generated, reach-
able states, which is preformed as a preprocess. It is even
possible that a maximal search depth of zero is chosen in the
preprocess, with the result that the initialization is aborted.

During initialization, which is shown in Algorithm 2, we
additionally check if a satisfying degree of informativeness
has been reached in the previous iteration. We approximate
the degree of informativeness by checking if an action is re-
garded as better than doing nothing, i.e. if there is an ac-
tion a ∈ A where I(s, a) > I(s, a∅). The reason why we
regard this as an appropriate metric for measuring the de-
gree of informativeness is best explained with an example,
in which we ignore the remaining steps in states for the sake
of simplicity. Consider a determinization where a∅ does
not change the initial state s0 (as given in all IPPC 2011
domains). A sequence of actions starting with a∅ will al-
ways be one step behind the optimal sequence of actions, as
that optimal sequence can simply be applied after a∅ (as it
did not change the initial state). If, for example, the reward
function always yields 0 or 1, and the optimal sequence of
actions a?, a2, . . . , aD leads to rewards 1 + . . . + 1 = D
for search depth D, then DFS for a∅ on the same state
will lead to sequence a∅, a

?, a2, . . . , aD−1 with rewards
0+1+. . .+1 = D−1. As we normalize the result, i.e., initial-
ize the action-value function with I(s, a) = IDS(s, a) · s(h)D ,

Algorithm 2: Q-value initialization based on IDS.

1 def initialize(s,a):
2 depth := 0, result := −∞
3 while not terminate() do
4 depth := depth+1
5 result := dfs(s, a, depth) ·s(h)/ depth
6 return result

7 def terminate(depth):
8 if resultIsInformative() then return true
9 return depth = maxDepth

10 def dfs(s, a, depth):
11 s′ := apply(s, a)
12 res := R(s, a, s′)
13 if depth = 0 then return res
14 if depth = 1 and earlyTerminationPossible() then
15 return res +R(s′, a∅,∅)
16 bestRew := −∞
17 for a′ ∈ A do
18 futRew := dfs(s′, a′, depth− 1)
19 if futRew > bestRew then bestRew := futRew
20 return res+bestRew

this will lead to estimates of I(s, a?) = D · s(h)D = s(h) and
I(s, a∅) = (D−1) · s(h)D . As the impact of the initialization
is largest if the relative difference between sibling nodes is
largest, we are interested to terminate IDS in depth 1, where
I(s, a?) = s(h) and I(s, a∅) = 0. Even though this proce-
dure is prone to overestimate local maxima, it is both faster
than a search to the maximal depth and leads to better results
on the IPPC 2011 benchmarks.

The last search layer in DFS can be skipped if the re-
ward function is such that R(s, a, s′) = R(s, a, s′′) for all
s, s′, s′′ ∈ S and a ∈ A, which is given for all IPPC 2011
domains, and if R(s, a, s′) ≤ R(s, a∅, s

′) for all s, s′ ∈ S
and action a 6= a∅, which is given if the reward depends
on actions only in the form of costs. Note that, even though
this might seem negligible at first glance, it saves half the
computational effort for a constant branching factor, and ba-
sically turns a DFS of depth D to one of depth D − 1.

Reward Locks
The search depth limitation presented earlier in this simpli-
fies an MDP T to an MDP with limited horizon Tλ. While
this leads to a more thoroughly investigated search space
close to the current state, a policy that is optimal in Tλ is
not necessarily optimal in T .

We illustrate this with an example: Let T be an MDP
with horizon H = 20, where the decision which of two
operators a1 and a2 is applied in s0 determines the reward
of the whole run. Choosing a1 leads to sequence of states
s+1 , . . . , s

+
20 with a probability of 0.6, incurring a reward of

1 in each transition, and to a sequence of states s−1 , . . . , s
−
20

with probability 0.4 with reward of 0 in each transition. Exe-
cuting a2 always leads to the sequence of states s1, . . . , s20,
incurring a reward of 0 in the first 5 transitions, and a re-
ward of 1 thereafter. The expected reward in T of policy
π with π(s0) = a1 is Vπ(T) = 12, and Vπ?(T) = 15 for

123

Algorithm 3: Reward Lock Detection.

1 isARewardLock(s):
2 s′ := apply(a∅, s)
3 r = R(s, a∅, s

′)
4 return checkRewardLock(s, r)

5 checkRewardLock(s, r):
6 add s to closed list
7 if s(h) = 0 then return true
8 for a ∈ A do
9 s′ := sk(a, s)

10 if s′ not in closed list then
11 if rk(s, a, s′) 6= r then return false
12 if rk(s, a, s′) = u then return false
13 if not checkRewardLock(s′, r) then return false
14 return true

policy π? with π?(s0) = a2. In Tλ, where the search depth
is limited to λ = 10, policy π is the better policy: The av-
erage reward per transition does not change for policy π,
as it does not depend on the length of the state sequence,
and therefore Vπ(Tλ) = 6. This is different for policy π′,
where Vπ?(Tλ) = 5 when only accounting for the states
s1, . . . , s10.

It is, in general, not possible to eliminate the risk of biased
estimates completely when using a relaxation Tλ with lim-
ited search depth λ < H to generate a policy for a factored
MDP T . Nevertheless, our experiments show the potential
of search depth limitation on several benchmarks. For this
reason, we present a method to detect special cases called
reward locks, where it is likely that we overestimate some
policy and underestimate another:

Definition 4. A set of states Sl ⊆ S is a reward lock with
reward r?(Sl), if R(s, a, s′) = r?(Sl) for all s ∈ Sl, a ∈ A
and s′ ∈ S with P (s′|a, s) > 0, and if s′ ∈ Sl for all s ∈ Sl
if P (s′|a, s) > 0.

In other words, a reward lock is a state where, no mat-
ter which action is applied and which outcome occurs, we
end up in a state where we receive the same reward as be-
fore, and which is also a reward lock. We talk about goals
if r?(Sl) = maxs,a,s′ R(s, a, s′), and about a dead end if
r?(Sl) = mins,a,s′ R(s, a, s′). Note that dead ends in our
context do not render policies improper as in infinite horizon
MDPs, and goals do not terminate a run prematurely – both
incur the minimal or maximal reward until a terminal state is
reached. As we have no influence on future rewards once a
reward lock state is reached, we can profit in two ways from
a method that detects this kind of states: We can stop a roll-
out as soon as we encounter a reward lock, as all successor
states that are reachable under any policy will yield the same
reward, i.e., we can calculate the total reward by multiply-
ing the remaining steps with the reward of the reward lock.
More importantly, we can react appropriately to minimize
the error incurred by the limited search depth by simulating
the horizon of T rather than Tλ. The question which re-
action is appropriate is not answered for good in this paper

but left open for future research. Possible reactions include
switching back to searching on T rather than Tλ as soon as
a reward lock is encountered; or to actively search for goals
initially, and use a search strategy that applies any of the well
studied, goal-oriented heuristics for classical planning (e.g.,
Helmert and Domshlak 2009). The technique used in the
experiments described in the next section is a much simpler
approach that punishes dead ends and rewards goals by re-
garding rollouts that end in a reward lock as if the used hori-
zon was H (even though we continue to search in Tλ), es-
sentially giving states in reward locks a higher weight. This
is both useful to guide the search towards goal states, and to
avoid dead ends.

Note that the reward lock detection is not restricted to
be used in UCT. Especially algorithms that label states as
solved as, e.g., Labeled Real-Time Dynamic Programming
(Bonet and Geffner 2003), can profit immensely from using
a reward lock detection technique, as state-value functions
of reward lock states can be calculated exactly the first time
such a state is expanded, and can therefore be labeled as
solved immediately.

Deciding whether a state is a reward lock is very hard,
though: Consider the PSPACE-complete plan existence
problem in classical planning (Bylander 1994), which can
be reduced to the problem of detecting that the initial state
of a factored MDP where all non-goal states yield reward 0
and all goal states a reward 1 is not part of a reward lock.
For this reason, we use a procedure that approximates a so-
lution in an incomplete but sound way: We use the three-
valued Kleene logic (Kleene 1950) with values ⊥, > and u
(unknown) with their usual semantics, and check for more
states than necessary if they are part of a reward lock. As
we interpret u as “the value is either > or ⊥”, we calculate
rewards and transition functions on sets of states rather than
on a potentially exponential number of states separately.

Definition 5. The Kleene outcome of applying action a ∈ A
in state s is the state sk(a, s), where

sk(a, s)(v) =

> if Pv(s′(v) = >|a, s) = 1

⊥ if Pv(s′(v) = ⊥|a, s) = 1

u otherwise,

and sk(a, s)(h) = s(h)−1. The Kleene logic relaxation
of the factored MDP T = 〈V,A, P,R,H, s0〉 is T k =
〈V k, A, P k, Rk, H, s0〉, where V k is a set with vk ∈ V k

for each v ∈ V , and where

P k(s′|a, s) =
{
1 if s′ = sk(a, s)

0 otherwise.

For the calculation of rewards with states in Kleene logic,
the variable-based structure of RDDL is exploited: If it de-
pends on a state variable with value u, the reward is also as
unknown, and Rk(s, a, s′) = R(s, a, s′) otherwise. Given
this framework, we can apply successor functions and cal-
culate rewards on states in T k, which corresponds to doing
so on sets of states in T . Algorithm 3 shows the procedure
in detail. It is invoked in PROST in every state that is en-
countered in a rollout. The reference reward r is calculated

124

Figure 2: Deadend BDD in CROSSING TRAFFIC instance
1. r(m,n) stands for robot-at(xm,yn), o(m,n) for
obstacle-at(xm,yn). A state is a deadend if the robot
is at no location or at the same location as an obstacle.

by the algorithm as the reward of applying a∅ in the state
that is currently checked and leading to an arbitrary succes-
sor state. This is possible because all actions and outcomes
must lead to a state with the same reward, so it does not mat-
ter which are used for computation of the reference reward.

Even though the closed list that is used in the procedure
does not distinguish between states with different remain-
ing steps, the state s that is given recursively as an argument
does. Therefore, it can easily be seen that the function is
called recursively at most s(h) times, as the remaining steps
decrease by one in every recursion. Moreover, as all meth-
ods invoked from this procedure are computable in polyno-
mial time, the algorithm is polynomial: The generation of
successor states in Kleene logic is as complex as the gener-
ation of successors in binary logic by definition. The com-
bination of two states s1, s2 in Kleene logic, which is used
when a state is added to the closed list, is the state s′ where

s′(v) =

⊥ if s1(v) = ⊥ and s2(v) = ⊥
> if s1(v) = > and s2(v) = >
u otherwise,

which is clearly polynomial as well. Finally, the function
that checks if a state is in the closed list must compare to at
most s(h) other states in Kleene logic.

Even though the presented procedure checks the reward
on more states than necessary for equality, and even though
it might consider rewards as different even though they are
equal, it is able to detect all reward locks that are present in
the domains of IPPC 2011. In practice, we speed up this pro-
cess by saving reward locks that have been detected once in

a BDD, and additionally check for all states s′ in Algorithm
3 if they are already in the BDD assigned to the current ref-
erence reward r?. A BDD that was created by PROST, the
BDD describing dead ends in instance 1 of the CROSSING
TRAFFIC domain, is shown in Figure 2. Closer examination
shows that the planner is able to reliably detect reward locks
in reasonable time.

Experimental Evaluation
To evaluate our planner empirically, we perform experi-
ments on the IPPC 2011 benchmark suite which consists of
all RDDL domains that are currently publicly available. We
also use the competition’s setting of 30 trials for each of the
10 instances in 8 domains that have to be completed within
a total time limit of 24 hours.

Rather than presenting average rewards, we show nor-
malized scores that are computed in the same way as in
IPPC 2011, including those of Glutton (Kolobov et al. 2012),
which finished close behind PROST at the competition, and
incorporates a Real Time Dynamic Programming (Barto,
Bradtke, and Singh 1995) approach. We evaluate several
versions of PROST with different parameter settings. To
distinguish between different versions of our planner, we de-
note the versions with

• P0 if reasonable action pruning is not used,
• Pλ if search depth limitation is set to λ,
• PI if initialization is enabled, and
• PR if reward lock detection is enabled.

In runs where initialization is enabled, we use δ = 5 vir-
tual rollouts, and for search depth limitation we use λ = 15.
Both numbers were determined empirically.

To measure the influence of reasonable action pruning,
we compare results from P0 and P, which only differ in
the use of action pruning. Closing or opening doors are
superfluous actions in certain situations in the ELEVATORS
domain. Nevertheless, the normalized scores do not differ
much, a fact that is probably biased due to the comparably
bad results. In CROSSING TRAFFIC and NAVIGATION we
can prune those actions that move the agent into the bound-
aries of the gridmap. Effects of reasonable action pruning
can especially be seen in NAVIGATION, where the normal-
ized score is approximately doubled. The domain with the
most superfluous actions, RECON, shows the biggest im-
provement in terms of normalized score: from 0.00 to 0.40.
Combined with the fact that enabling action pruning does
not diminish the results on any domain in a statistically sig-
nificant way, this experiment clearly shows the potential of
reasonable action pruning.

There are three pairs of PROST versions that only differ in
the use of search depth limitation: P / P15, PI / PI15, and PI,R

/ PI,R15 . It can clearly be seen that all versions that make use
of search depth limitation either achieve better or similar re-
sults on all domains besides CROSSING TRAFFIC and NAV-
IGATION. The strength of limiting the search depth is es-
pecially apparent in ELEVATORS, GAME OF LIFE, SYSAD-
MIN and TRAFFIC. Surprisingly, in three of these domains
the version of PROST that only limits the search depth and

125

CROSSING ELEVATORS GAME NAVIGATION RECON SKILL SYSADMIN TRAFFIC TOTAL

P0 0.46 0.01 0.86 0.14 0.00 0.89 0.86 0.98 0.53± 0.09
P 0.51 0.04 0.91 0.27 0.40 0.90 0.86 0.96 0.61± 0.08
P15 0.56 0.01 0.95 0.30 0.46 0.91 0.91 0.99 0.63± 0.08
PI 0.84 0.86 0.88 0.65 0.98 0.94 0.82 0.84 0.85± 0.05
PI15 0.83 0.93 0.91 0.57 0.98 0.95 0.88 0.93 0.87± 0.05
PI,R 0.98 0.85 0.86 0.71 0.98 0.89 0.80 0.83 0.86± 0.04
PI,R15 0.91 0.94 0.92 0.67 0.97 0.92 0.86 0.94 0.89± 0.04
Glutton 0.80 0.90 0.67 0.97 0.76 0.86 0.34 0.67 0.75± 0.06

Table 1: Experimental Results. The scores and the 95% confidence intervales are calculated following the schema of IPPC
2011, and the results of Glutton are taken from IPPC 2011. The best result in each domain and in total are in bold.

does not use any other technique presented in this paper (be-
sides reasonable action pruning) is even the best-performing
planner. Lastly, while the total results seem to indicate that
search depth limitation is not worth the bias we discussed in
this paper, this is only due to the decreased performance in
the domains containing reward locks. When ignoring these
domains, the total results also improve significantly.

This does, however, not come by surprise. We discussed
the reasons in the previous Section, and presented reward
lock detection as a potential solution. Our experiments back
up our expectations empirically: We achieve significantly
better results in CROSSING TRAFFIC and NAVIGATION with
PI,R, and even though some of this gain is lost in PI,R15 , it
still yields better or comparable results than PI in all do-
mains. This is especially important as it shows that using
both search depth limitation and reward lock detection out-
performs using neither, and it also seems that we managed
to find the right balance between the quite contrary methods.

If we regard reward lock detection on its own, the results
confirm that it is an effective approach for problems with
dead ends or goals: We achieve the best normalized score in
the CROSSING TRAFFIC domain, and only Glutton outper-
forms PI,R in NAVIGATION. We think the improvement in
the two domains that actually contain reward locks show the
prospects the technique entails. Note that we could have eas-
ily created a version of PROST that combines the results of
PI,R in CROSSING TRAFFIC and NAVIGATION with those
of PI,R15 on the other domains by, for instance, switching to
PI,R upon detecting any reward lock.

The last approach discussed in this paper is the initializa-
tion method, which has the biggest influence on the scores.
It is enabled in all of the four presented versions that out-
perform Glutton in terms of total score. In all domains but
GAME OF LIFE, SYSADMIN and TRAFFIC the initialization
leads to incomparably better results, increasing the normal-
ized total score by more than 0.2. The trade-off between
informativeness and computational overhead appears to be
in balance: all domains where we find a good policy without
the help of an initialization, i.e., those where it is most likely
that the computational overhead dominates the information
gain, achieve only slightly worse results. Those domains
where long sequences of actions are necessary to achieve

high rewards, ELEVATORS, RECON, and, with the afore-
mentioned weaknesses regarding search depth limitation,
CROSSING TRAFFIC and NAVIGATION, profit immensely
from the determinization-based initialization. Moreover, the
results indicate that a blind UCT version of PROST would
not have been able to win IPPC 2012.

Concluding Remarks
In this paper, we have shown how the remarkable perfor-
mance that the UCT algorithm has demonstrated in other
areas of planning and acting under uncertainty can be re-
flected in domain-independent probabilistic planning. We
have shown how to adapt the algorithm to the special char-
acteristics given in the context of stochastic planning, like
a strongly connected search space that needs to be created
carefully, or reasonable action pruning that is based on ac-
tions that are equivalent or dominated. We furthermore dis-
cussed search depth limitation, an extension that incurs the-
oretical flaws with regard to good policies but yields promis-
ing results in the empirical evaluation.

We have shown how reward locks, states that can be re-
garded as goals or dead ends, can be detected, and discussed
briefly how that information could be exploited. We showed
experimentally that even a simple approach to use this in-
formation is able to increase the planner’s performance in
domains where reward locks are present. Another contribu-
tion of this paper is the Q-value initialization that gives UCT
initial guidance, preventing the algorithm from performing
random walks in the search space initially. It is based on an
iterative deepening search, and is automatically adapted to
the given circumstances in order to find a good trade-off be-
tween informativeness and additional computational effort.
In an empirical evaluation, resembling IPPC 2011, we have
shown the influence of the presented search enhancements,
combining them to a framework that allows UCT to develop
its full power.

Acknowldegements
This work was supported by European Communitys Sev-
enth Framework Programme [FP7/2007-2013] as part of the
CogX project (215181), and by the German Aerospace Cen-
ter (DLR) as part of the Kontiplan project (50 RA 1010).

126

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time Analysis of the Multiarmed Bandit Problem. Machine
Learning 47:235–256.
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learning
to Act Using Real-Time Dynamic Programming. Artificial
Intelligence (AIJ) 72(1–2):81–138.
Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.
Bertsekas, D., and Tsitsiklis, J. 1996. Neuro-Dynamic Pro-
gramming. Athena Scientific.
Bertsekas, D. 1995. Dynamic Programming and Optimal
Control. Athena Scientific.
Bjarnason, R.; Fern, A.; and Tadepalli, P. 2009. Lower
Bounding Klondike Solitaire with Monte-Carlo Planning. In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS), 26–33.
Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improving
the Convergence of Real-Time Dynamic Programming. In
Proceedings of the 13th International Conference on Auto-
mated Planning and Scheduling (ICAPS), 12–31.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic Dynamic Programming with Factored Represen-
tations. Artificial Intelligence (AIJ) 121(1–2):49–107.
Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. Artificial Intelligence (AIJ)
69:165–204.
Chakraborty, D., and Stone, P. 2011. Structure Learning in
Ergodic Factored MDPs without Knowledge of the Transi-
tion Function’s In-Degree. In Proceedings of the 28th In-
ternational Conference on Machine Learning (ICML), 737–
744.
Degris, T.; Sigaud, O.; and Wuillemin, P.-H. 2006. Learn-
ing the Structure of Factored Markov Decision Processes
in Reinforcement Learning Problems. In Proceedings of
the 23rd International Conference on Machine Learning
(ICML), 257–264.
Eyerich, P.; Keller, T.; and Helmert, M. 2010. High-Quality
Policies for the Canadian Traveler’s Problem. In Proceed-
ings of the 24th Conference on Artificial Intelligence (AAAI),
51–58.
Finnsson, H., and Björnsson, Y. 2010. Learning Simulation
Control in General Game-Playing Agents. In Proceedings of
the 23rd Conference on Artificial Intelligence (AAAI), 954–
959.
Finnsson, H., and Björnsson, Y. 2011. CadiaPlayer: Search
Control Techniques. KI Journal 25(1):9–16.
Gelly, S., and Silver, D. 2007. Combining Online and Off-
line Knowledge in UCT. In Proceedings of the 24th Interna-
tional Conference on Machine Learning (ICML), 273–280.
Gelly, S., and Silver, D. 2011. Monte-Carlo Tree Search and
Rapid Action Value Estimation in Ccomputer Go. Artificial
Intelligence (AIJ) 175:1856–1875.
Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S.
2003. Efficient Solution Algorithms for Factored MDPs.

Journal of Artificial Intelligence Research (JAIR) 19:399–
468.
Helmert, M., and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS).
Keller, T., and Eyerich, P. 2011. A Polynomial All Out-
comes Determinization for Probabilistic Planning. In Pro-
ceedings of the 21st International Conference on Automated
Planning and Scheduling (ICAPS), 331–334. AAAI Press.
Kleene, S. C. 1950. Introduction to Metamathematics.
Kocsis, L., and Szepesvári, C. 2006. Bandit Based Monte-
Carlo Planning. In Proceedings of the 17th European Con-
ference on Machine Learning (ECML), 282–293.
Kolobov, A.; Dai, P.; Mausam; and Weld, D. 2012. Reverse
Iterative Deepening for Finite-Horizon MDPs with Large
Branching Factors. In Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS). To Appear.
Little, I., and Thiébaux, S. 2007. Probabilistic Planning
vs Replanning. In ICAPS Workshop International Planning
Competition: Past, Present and Future.
Puterman, M. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley.
Sanner, S. 2010. Relational Dynamic Influence Diagram
Language (RDDL): Language Description.
Teichteil-Königsbuch, F.; Infantes, G.; and Kuter, U. 2008.
RFF: A Robust, FF-Based MDP Planning Algorithm for
Generating Policies with Low Probability of Failure. In Pro-
ceedings of the 6th IPC at ICAPS.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A
Baseline for Probabilistic Planning. In Proceedings of the
17th International Conference on Automated Planning and
Scheduling (ICAPS), 352–360.

127

