
Pruning Methods for Optimal Delete-Free Planning

Avitan Gefen and Ronen I. Brafman
Department of Computer Science

Ben-Gurion University of The Negev, Israel

Abstract

Delete-free planning underlies many popular relaxation (h+)
based heuristics used in state-of-the-art planners; it provides a
simpler setting for exploring new pruning methods and other
ideas; and a number of interesting recent planning domains
are naturally delete-free. In this paper we explore new prun-
ing methods for planning in delete-free planning domains.
First, we observe that optimal delete-free plans can be com-
posed from contiguous sub-plans that focus on one fact land-
mark at a time. Thus, instead of attempting to achieve the
goal, the planner can focus on more easily achievable land-
marks at each stage. Then, we suggest a number of com-
plementary pruning techniques that are made more powerful
with this observation. To carry out these pruning techniques
efficiently, we make heavy use of an And/Or graph depicting
the planning problem. We empirically evaluate these ideas
using the FD framework, and show that they lead to clear im-
provements.

Introduction
Heuristic search is currently the preferred method for solv-
ing satisfycing and optimal planning problems. Among
the different methods for generating heuristic functions,
relaxation-based methods are extremely popular, effective,
and influential (Hoffmann and Nebel 2001; Helmert and
Domshlak 2009). These methods attempt to estimate the
true minimal distance-to-goal of a state in the delete-free
problem generated from a given instance by removing all
delete-effects. Computing this value, known as h+, is NP-
hard (Bylander 1994), but various approximations of it,
starting with the highly influential FF heuristic (Hoffmann
and Nebel 2001), and more recently LM-Cut (Helmert and
Domshlak 2009) have been shown to be very effective in
practice. Nevertheless, good, but imperfect heuristic esti-
mates, such as h+, are not sufficient alone for solving hard
problems, as demonstrated in (Helmert and Röger 2008).
Thus, it is important to introduce to our arsenal of tools ad-
ditional methods that help in other ways, such as pruning
methods (Chen, Xu, and Yao 2009; Chen and Yao 2009;
Coles and Coles 2010) methods for problem decomposi-
tion (Brafman and Domshlak 2006), and others.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper we investigate new pruning techniques that
exploit landmarks within delete-free planning problems. We
focus on delete-free problems for four reasons. First, delete-
free problems offer special structure and flexibility that we
can exploit for this purpose. This structure also allows
us to model delete-free problems using And/Or graphs (or
directed hypergraphs), whose structure we exploit in this
paper. Moreover, this structure leads to the existence of
multiple equivalent permutations of each plan, the prun-
ing of which is important if we wish to prevent redundant
work. Second, we hope our techniques will be applica-
ble, eventually, to standard planning problems, although this
requires non-trivial extensions. Third, solving (optimally,
or not) delete-free problems, i.e., computing h+, is one of
the most effective contemporary techniques for generating
heuristic functions. Thus, any method that effectively solves
delete-free planning problems has immediate use in stan-
dard planning. Finally, a number of interesting, naturally
delete-free planning problems (Gefen and Brafman 2011;
Gallo et al. 1993) cannot be solved by standard planning
techniques.

In the next section we present an overview of our prun-
ing techniques. They are based on two principles: 1. There
exists a minimal plan to the goal whose prefix is a minimal
plan to some landmark, l. 2. Given a disjunctive action land-
mark consisting of actions applicable at s, we can ignore all
other actions at s. To operationalize these ideas, we provide
techniques for identifying useful landmark orderings, small
disjunctive actions landmarks, and some properties of mini-
mal plans. These techniques make heavy use of an And/Or
graph depicting the (delete-free) planning problem. Due to
space limitations, we omit some of the proofs, which can be
found in (Gefen and Brafman 2012).

We evaluate the new pruning methods by measuring their
impact on the performance of A∗ search with the admis-
sible LM-Cut (Helmert and Domshlak 2009) and Merge&
Shrink heuristics (Helmert, Haslum, and Hoffmann 2007)
on delete-free problems obtained from standard benchmark
problems. Our experiments show that pruning notice-
ably improved the performance of state-of-the-art heuristic
search for many domains, and that pruning with blind search
did better on most domains than Merge& Shrink.

56

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling



Background and Overview
A STRIPS planning task, or planning task for short, is a
4-tuple (P,A, I,G). P is a finite set of propositions. A
state s is represented by the set of propositions that are
true in it. I ⊆ P is the initial state. G ⊆ P is the
set of propositions that must be true at any goal state. A
is the set of actions. Each action a ∈ A has the form:
a = 〈pre(a), add(a), del(a)〉 denoting its preconditions,
add effects, and delete effects. An action a is applicable
in a state s ⊆ P iff pre(a) ⊆ s. Applying a in s transforms
the system to the state (s \ del(a)) ∪ add(a). We use a(s)
to denote the resulting state. When a is not applicable in s
then a(s) is undefined.

A solution to a planning task is a plan ρ = (a1, . . . , ak)
such that G ⊆ ak(· · · (a1(I)) · · · ). That is, it is a sequence
of actions that transforms the initial state into a state satisfy-
ing the goal conditions. From here on we will be discussing
only delete-free problems, i.e., problems in which all actions
have an empty delete list.

Landmarks play an important role in solving planning
tasks. In this paper, they play an important role in decom-
posing the planning problem. A fact landmark for a state s
is a proposition that holds at some point in every legal plan
from state s to the goal (Hoffmann, Porteous, and Sebastia
2004). An action landmark for a state s is an action that
must be part of any plan from s to the goal. A disjunctive
action landmark for a state s is a set of actions, at least one
of which must be part of every legitimate plan from state s
to the goal (Helmert and Domshlak 2009).

Let LI denote the set of fact landmarks for the initial
state, and let Ls denote the set of fact landmarks for state
s. The following observations are useful for understanding
the properties of delete-free planning problems. Except for
6, all are immediate.

1. Achieved facts are never deleted, so once achieved they
remain true.

2. Applicable actions always remain applicable since their
preconditions are never deleted.

3. Each action should appear only once in a plan.1

4. The order of actions in a specific plan (a1, a2, . . . ) is not
important as long as the plan is valid. That is, as long as
pre(ai) ⊆ ai−1(· · · (a1(I)) · · · ).

5. Thus, if an action landmark is applicable in state s, we
can immediately apply it.

6. For any state s reachable from the initial state, Ls ⊆ LI ,
and LI \ Ls are the landmarks achieved so far (on route
to state s). Proof in (Gefen and Brafman 2012).

7. Consequently, fact landmarks need only be computed
once in the initial state. This is not generally true when
delete lists are not empty.

In this paper, we focus on finding optimal delete-free
plans. The notion of minimal plans plays a central role in
this. A plan π for G is minimal if no strict subset of π is
a plan for G. Clearly, any optimal plan must be minimal,

1We do not consider actions with conditional effects.

unless zero-cost actions exist, in which case it must have a
sub-plan which is minimal. Therefore, when seeking an op-
timal plan for G, we can prune any plan that is not minimal
without sacrificing optimality.

We now present a number of theoretical results and obser-
vations which will provide the underlying intuitions and the-
oretical justifications for the pruning algorithms we present
in later sections.

Lemma 1. Let L be a set of fact landmarks for a delete-free
planning problem Π = (P,A, I,G), such thatG ⊆ L. Then,
there exists an ordering l1, . . . , lk of L and a minimal plan π
for Π such that π = π1, . . . , πk, where πi is a minimal plan
for (P,A, πi−1(· · · (π1(I)) · · · ), li).

Lemma 1 justifies a divide and conquer approach to opti-
mal delete-free planning, but is not constructive. A similar
idea was used in the context of general planning as a heuris-
tic method (Hoffmann, Porteous, and Sebastia 2004). How-
ever, in delete-free planning, it can be used as a complete-
ness and minimality preserving approach to pruning. The
following corollary makes it applicable.

Corollary 1. Let l be an arbitrary fact landmark for the
delete-free planning problem Π = (P,A, I,G). Let πl be a
minimal plan for (P,A, I, l). Let π′ be a minimal plan for
(P,A, πl(I), G). Then, πl, π′ is a minimal plan for Π.

Corollary 1 has an important practical implication: in-
stead of planning for G, we can plan for l, and maintain
minimality. Later on, we will show how to find such an l
that is easy to achieve. In fact, we will derive a whole se-
quence of landmarks, as Lemma 1 suggests.

When seeking a minimal plan for l, we will employ two
pruning techniques. In theory, these pruning methods can
be used directly to plan for G, rather than l. But, they are
much more effective when applied to a closer ”goal” – thus
the practical importance of choosing an ”easily achieved”
landmark.

The first method allows us to focus on actions within an
applicable disjunctive landmark, pruning all other actions. It
is justified by the following theorem:

Theorem 1. Consider the search tree T for a delete-free
planning problem and some state s in it. LetX be a disjunc-
tive action landmark for s, all of whose actions are applica-
ble in s. Let T ′ be the result of pruning all subtrees rooted
at s that commence with an action outside X . T ′ contains a
minimal solution iff T contains a solution.

Proof. Consider an optimal plan π from s to the goal. It
must contain an action a ∈ X and this action is applicable
at s. As observed above, we can reorder the actions in π,
provided we make sure that each action remains applicable
in the new plan. Since a is applicable in s, there is a plan
that is a permutation of π in which a is the first action after
s. This plan is optimal as well, and it is not pruned by the
above procedure.

Our second method focuses on recognizing non-minimal
plans. During the search we say that we are pursuing l from
state sp if starting in state sp, the landmark we are currently

57



trying to achieve is l. The proof of the following Theorem is
immediate.

Theorem 2. Let alast be the last action taken to reach the
current state s while pursuing landmark l from state sp. We
can safely prune actions that are not included in any mini-
mal plan that contains alast and leads from state sp to a fact
landmark l, provided alast did not achieve any fact landmark
(with respect to sp) including l.

To operationalize this idea, we will later describe tech-
niques that allow us to recognize sets of actions that ”go
together” in minimal plans.

The Relaxed Causal And/Or graph
We can fully capture the structure of a delete-free prob-
lem using graphical models such as And/Or graphs or di-
rected hypergraphs. As the former are more familiar to AI
and planning researchers, we will focus on them, relying
heavily on the framework introduced in (Keyder, Richter,
and Helmert 2010) using And/Or graphs. A rooted And/Or
graph is a G = 〈VI , Vand, Vor, E〉 with vertices V :=
VI ∪ Vand ∪ Vor and edges E. VI , Vand and Vor are disjoint
sets called the Initial nodes, AND nodes, and OR nodes, re-
spectively. That is, it is a directed graph with two types of
vertices: the AND nodes and the OR nodes, as well as set
(usually of size one) of initial nodes, which are OR nodes.
The Relaxed Causal Graph (RCG) is a rooted And/Or graph
associated with a planning problem. It has a single initial
node, that intuitively corresponds to the initial state. The
AND nodes correspond to actions and the OR nodes corre-
spond to propositions. The preconditions of an action are
connected to the action, and the action is connected to its
effects.

Formally, it is a directed graph G = 〈s, Vand, Vor, E〉with
vertices V := {s}∪Vand ∪Vor and edges E. {s}, Vand and
Vor are disjoint sets called the start node, AND nodes, and
OR nodes, respectively. The OR nodes represent proposi-
tions and AND nodes represent actions. The start node s is a
special OR node that represents the current (or initial) state.
There is a special OR node t attached to the goal via a special
AND node g or (aend). See Figure 1 for an example.

More specifically – assuming we are in the initial state I
and all propositions are false (I is empty):

• There are two special OR nodes s, t for start and end
nodes, respectively.

• There is an OR node for every proposition p ∈ P .

• There is an AND node for every action a ∈ A.

• There is a special AND node g or (aend) to connect the
goal propositions to t.

• There is a directed edge (v, a) ∈ E connecting every
proposition v with every action a such that v ∈ pre(a).

• There is a directed edge (a, v) ∈ E connecting every ac-
tion a with every proposition v such that v ∈ add(a).

• There is a directed edge (s, a) if a is applicable in the
current (initial) state. Notice that in this case (s, a) will
be the only edge entering a.

• There is a directed edge (vg, aend) ∈ E where vg is a goal
proposition.

• There is a directed edge (aend, t) ∈ E.

We will use the following notations:

1. pre(a) = {v ∈ Vor : (v, a) ∈ E}. Contains all precondi-
tions of a.

2. add(a) = {v ∈ Vor : (a, v) ∈ E}. Contains all the
effects of action a.

3. ach(v) = {a ∈ Vand| v ∈ add(a)}. It contains all actions
that can achieve v.

4. consumers(v) = {a ∈ Vand| v ∈ pre(a)}. It contains
all actions that need v.

Now, we can extend the definition above to an arbitrary,
non-empty initial state, as follows, starting from the graph
generated for the empty initial state.

1. Remove all true (achieved) propositions (in the current
state) from the graph.

2. Remove any action a ∈ Vand for which add(a) = ∅.
3. If after step two an action a ∈ Vand has pre(a) = ∅,

connect it to the start node s by an edge (s, a).

A (delete-free) plan is a subgraph J = 〈V J , EJ〉 of G
which is said to justify VG ⊆ V if and only if the following
are true for J :

1. s ⊆ V J

2. VG ⊆ V J

3. ∀a ∈ V J ∩ Vand : ∀〈v, a〉 ∈ E : v ∈ V J ∧ 〈v, a〉 ∈ EJ

4. ∀v ∈ V J ∩ Vor : ∃〈a, v〉 ∈ E : a ∈ V J ∧ 〈a, v〉 ∈ EJ

5. J is acyclic.

As the name suggests, J is a justification for VG if J contains
a proof that all nodes in VG are true (VG are reachable via a
hyperpath in J), under the assumption that s is true. The set
V J represents the nodes that are proven to be true by J , and
the edges EJ represent the arguments for why they are true.
The five conditions then state that: (1) the start node is true
(2) all nodes in VG must be proven true (3) AND nodes are
proven true if all their predecessors are true (4) OR nodes
are proven true if they have some true predecessor, and (5)
the proof must be well-founded.

Notice that each J can be represented as J =
(a1, a2, . . . , ai−1, ai, . . . , ak), where every ai ∈ Vand and
pre(ai) ⊆ {s} ∪ add(a1) ∪ · · · ∪ add(ai−1). An optimal
relaxed plan is a lowest-cost justification (sub-graph) J that
starts at s and contains (reaches) t and therefore the goal set.
For a node v ∈ V we say that v is unreachable in G if there
is no justification sub-graph J that proves it (contain v).

Finally, we note that unlike the relaxed planning graph
(RPG) (Hoffmann and Nebel 2001) the RCG contains a sin-
gle copy of each proposition and action. In this respect it is
closely related to the bi-level planning graph (Long and Fox
1999).

58



Pruning with the RCG
We now provide methods for carrying out the pruning ideas
discussed earlier. Our first step will be to recognize the next
fact landmark to pursue. Then, we explain how to recog-
nize a small applicable disjunctive action landmark. Finally,
we will explain how we can recognize that certain actions
cannot co-exist in the same minimal plan, and how we can
use it to provide additional pruning. We note that any (non-
disjunctive) action landmark discovered can be applied as
soon as possible.

Discovering and Ordering Fact Landmarks
We use the graph of strongly connected components (SCC)
of the RCG to identify landmark orderings and, specifically,
the next landmark to pursue. The SCCs of a graph G form a
directed acyclic graph (DAG), denoted Gscc. A node in the
Gscc is a SCC of G. There is an edge from node n to n′ if
there is an edge from some node in the SCC represented by
n to some node in the SCC represented by n′. An example
appears in Figure 1.B. Since the Gscc is a DAG, we can sort
its nodes in a topological order. As a secondary sort we
use the depth of nodes established by the B-Visit procedure
described in (Gallo et al. 1993) (a type of BFS for directed
hypergraphs).

Algorithm 1 Sort topologically nodes of the RCG

1: sortLndmrx(G) {G is a RCG}
2: Find fact landmarks using algorithm of (Keyder, Richter, and

Helmert 2010)
3: Gscc ← build from G
4: T ← Topological sort of Gscc

5: T ← replace each SCC in T with its related nodes from G
{(inner sort by depth of B-Visit)}

6: T ← remove from T nodes which are not landmarks
7: return T

The result of Algorithm sortLndmrx is an ordered list of
landmarks, T . The first landmark l in T that has not been
achieved in s is our candidate for ”nearest” landmark to
s. We note that fact and (non-disjunctive) action landmarks
are found using algorithm of (Keyder, Richter, and Helmert
2010).

Finding Applicable Disjunctive Action Landmark
Theorem 1 can be used to reduce the branching factor for
forward-search planners on delete-free problems substan-
tially. To be effective, we need a method for finding small,
applicable disjunctive action landmarks. Let us assume we
have built the RCG of some delete-free problem starting
with state s. Let l ∈ Ls be the fact landmark we are pursuing
(the first in the list above) for state s. Algorithm findDAL
finds a disjunctive action landmark consisting of applicable
actions for state s with respect to l.

The input to algorithm findDAL is the RCG G(s) for our
current state and a fact landmark l. The set S which is being
built, represents a sub-graph in G that contains all the mini-
mal justification sub-graphs that contain/reach l (minimal in
the sense of set inclusion). For this reason all the applicable

Algorithm 2 Find disjunctive action landmark

1: findDAL(G(s), l) {G(s) is a current state RCG and l is a fact
landmark}

2: Q = ∅, S = ∅
3: for all a ∈ ach(l) do
4: Q← Q ∪ {a}, S ← S ∪ {a}
5: end for
6: while Q 6= ∅ do
7: Select and remove a ∈ Q
8: for all v ∈ pre(a) do
9: for all e ∈ ach(v) do

10: if e /∈ S then
11: Q← Q ∪ {e}, S ← S ∪ {e}
12: end if
13: end for
14: end for
15: end while
16: return all applicable a ∈ S

actions in S compose a disjunctive action landmark. S is
being built by moving backwards from l on G and collecting
all the actions that ”touch” l. Then for each action a that was
removed from Q, we examine all actions that can achieve a
precondition of a. If the action was encountered for the first
time, we add it toQ and S and continue to our next iteration.
Therefore we remove each action only once and the com-
plexity of this algorithm is at most O(C1C2Vand). Where
C1 is the largest pre(a), a ∈ Vand(G) and C2 is the largest
ach(v), v ∈ pre(a) where a ∈ Vand(G). It is important to
notice that the target/end node t is also a fact landmark and
if we will use it in the algorithm we will get all the current
applicable actions.

Sometimes, this method yields an applicable action land-
mark X that is not set-inclusion minimal. To further mini-
mize X , we proceed as follows: (i) We iterate over the set
X ⊆ Aapp returned from Algorithm findDAL. (ii) For each
a ∈ X we ask whether X \ {a} is still a disjunctive ac-
tion landmark, by performing the B-Visit procedure, men-
tioned before (a kind of BFS for directed hypergraphs), and
checking if l or t are unreachable when the actions X \ {a}
are removed temporarily from G(s). Notice, this means
the action a is in the RCG. (iii) If l or t are unreachable,
the set X \ {a} is a disjunctive action landmark , since
G = 〈s, {Vand \ X} ∪ a, Vor, E〉 has no justification sub-
graph that includes t or l. Therefore, we can remove a from
X and continue to the next iteration. We note that, the min-
imization process can theoretically find a disjunctive action
landmark that reaches l but not t, because, if l is unreachable
then tmust be unreachable, since, l is a landmark. But, t can
be unreachable while l remains reachable – this distinction
will be important in next sections.

The result of this procedure will be a set X ′ ⊆ X which
is still a disjunctive action landmark and set-inclusion mini-
mal.

Disjoint-Path Commitment
The next method complements the method of applicable dis-
junctive action landmarks, and follows the idea in Theo-

59



Figure 1: (A) RCG as an And/Or graph G of a planning problem: facts in white, actions in grey, L1 and L2 are the goal and hence fact landmarks, g is a special
goal action. (B) Gscc of G: nodes are SCC’s (shapes are kept just as a visual aid)

rem 2. A naive way of using Theorem 2 would be to find
all minimal plans for achieving landmark l from a parent
state sp. Then, partition these plans into sets of plans that
are (action-wise) disjoint. In that case, if we just applied an
action alast, we will consider only plans from the partition
containing alast. As the number of minimal plans could be
exponential, we require a more clever approximation tech-
nique. We will use the actions achieving a fact landmark as
”markers” for a subset of all minimal plans.

Let the current state be s reached by alast from state sp.
Let M be all the minimal plans from state sp to a fact land-
mark l. LetM(a) be all minimal plans that use action a. Let
Aapp be all applicable actions that can get a new proposition
in state s. Let Al = {a1, · · · , ak} be all the actions that
achieve l, then:

• M(ai) ∩M(aj) = ∅, where ai, aj ∈ Al, ai 6= aj .
Notice that even if ai achieves a precondition for aj , a
minimal plan to l that include ai would not include aj . For
example, in Figure 2.A: M(a5) = {(a1, a5)}, M(a6) =
{(a1, a4, a6), (a2, a6)}, M(a7) = {(a3, a7)}.
• If there exist an action aL ∈ Al and a ∈ Aapp, where
M(alast) ∩M(aL) 6= ∅ ∧ M(a) ∩M(aL) 6= ∅ then it
is possible that M(alast) ∩M(a) 6= ∅, but if there is no
such aL then it is obvious thatM(alast)∩M(a) = ∅. For
example, in Figure 2.B, M(alast) = {(a2, a6)} and there
is only one aL = a6 and one applicable action a6 where
M(a2) ∩M(a6) 6= ∅ ∧ M(a6) ∩M(a6) 6= ∅.
• Let µ(a) = {aL|aL ∈ Al,M(a) ∩M(aL) 6= ∅}, i.e. the

set of all actions that can achieve l and reside in a minimal
plan with action a. Let a ∈ Aapp, if µ(alast) ∩ µ(a) = ∅,
then M(alast) ∩M(a) = ∅.
The set µ(a) is approximated by a super set µ′(a) ⊇ µ(a)

in algorithm labelArcs using a back propagation procedure
that will propagate backwards aL ∈ Al as labels. So, instead
of looking at state s (reached by alast from sp) and verifying
whether for some applicable action a ∈ Aapp, M(alast) ∩
M(a) 6= ∅, we ask if µ′(alast) ∩ µ′(a) 6= ∅.

We call the division ofM according to the actions achiev-
ing the fact landmark l a disjoint-path-sets where the dis-
jointness refers to the actions achieving a fact landmark. To
use the idea of disjoint-path-sets in practice, we use a two

step procedure: (i) Algorithm labelArcs is executed before
the search begins. It propagates labels of arcs achieving fact
landmarks backwards on the RCG G(I) and computes for
each action va ∈ Vand a set µ′(va) where µ(va) ⊆ µ′(va).
When it terminates we can easily check for each va which
are the actions aL that achieve some fact landmark l and
µ′(va) ∩ µ′(aL) 6= ∅. (ii) Algorithm filterAppOps is exe-
cuted during search (if alast did not achieve a new fact land-
mark) and compares an applicable disjunctive action land-
mark (with respect to l) with the last action taken alast to see
which actions can be safely pruned, i.e. they do not share a
label of a landmark achieving action with alast.

Algorithm 3 Arc labeling for disjoint-path-sets

1: labelArcs(G) {G is a RCG}
2: S = ∅
3: Gscc ← build from G
4: for all a ∈ A do
5: if there is a fact landmark l ∈ add(a) then
6: n ← scc(a) {scc(a) denotes the SCC node containing

a in Gscc}
7: dp(n)← {a} {dp(n) set of arc labels of n}
8: S ← {n}
9: end if

10: end for
11: while S 6= ∅ do
12: Select and remove n ∈ S
13: for all n′ ∈ predeccessors(n) do
14: if dp(n) 6⊆ dp(n′) then
15: dp(n′)← dp(n′) ∪ dp(n)
16: S ← S ∪ {n′}
17: end if
18: end for
19: end while

Algorithm labelArcs starts by constructing theGscc of G.2
Next, we mark each SCC node n ∈ Gscc by labels which are
the arcs that reside in the SCC n – but only if these arcs are
fact landmark achieving actions. More specifically, if an ac-
tion a ∈ Vand has a fact landmark l ∈ add(a), we add the

2It is possible, in theory, to devise an algorithm that will get the
same output going over G, but when we have many cycles in G,
going over Gscc will be quicker.

60



Figure 2: (A) A sub-graph of a RCG of a planning problem: propositions in white, actions in grey, L is fact landmarks that needs to be achieved. (B) The same
sub-graph after executing action a2.

label a to the set dp(n), the set of labels for SCC node n in
Gscc The SCC nodes that were updated will also be inserted
to the set S, which will serve for the back propagation pro-
cedure that takes place over theGscc. Now, we start the back
propagation procedure, taking out SCC nodes from S, and
propagating information to their predecessors in the Gscc.
An update will take place if dp(n) 6⊆ dp(n′) where n′ is a
predecessor of n in Gscc. If there was an update we need to
propagate it further so we add n′ to S. At the end of the run
of algorithm labelArcs, for each action a ∈ A we can check
all the actions in dp(scc(a)) that ”enter” a fact landmark and
are reachable from a.

For example, the graph in Figure 2.A will have the
following labels at the end of the run of Algorithm la-
belArcs (notice that the Gscc of this graph will look the
same): dp(scc(a1)) = {a5, a6}, dp(scc(a2)) = {a6},
dp(scc(a3)) = {a7}, dp(scc(a4)) = {a6}, dp(scc(a5)) =
{a5}, dp(scc(a6)) = {a6}, dp(scc(a7)) = {a7}.

Algorithm 4 Filter focused applicable ops for disjoint-path

1: filterAppOps(G, l, alast) {G is a RCG and l is a fact land-
mark, alast is the last action taken to reach the current state}

2: F ← A(G, l) {return X ⊆ Aapp(s)}
3: if alast didn’t achieve any fact landmark then
4: S = ∅ {new set of actions for expansion}
5: dpl← dp(alast) ∩ ach(l) {dpl = committed labels}
6: for all a ∈ F do
7: if dp(a) ∩ dpl 6= ∅ then
8: S ← S ∪ {a}
9: end if

10: end for
11: return S
12: end if
13: return F

To use the labels gathered in Algorithm labelArcs during
search, we use Algorithm filterAppOps. Algorithm filterAp-
pOps filters out applicable actions (returned from algorithm
findDAL) which we can ignore because of our commitment
to some set of paths. This filtration is with respect to the
last action alast taken to reach from sp to the current state s.
We filter out all actions that will never appear with alast in a
minimal plan that starts at sp and achieve l. This is the rea-

son why filtration can occur only when alast did not achieve
a fact landmark. If it did, we need first to consider all sets of
paths before we commit. Notice, that for this procedure to
be sound the set X ⊆ Aapp that we get from algorithm find-
DAL, must be a disjunctive action landmark with respect to
the fact landmark l and not only t (the end node).

Summary/Putting It Altogether
We now summarize and demonstrate the entire procedure
using the example G in Figure 1.

Preprocessing:
1. Find fact and action landmarks (Keyder, Richter, and

Helmert 2010): we find {L1, L2, t} to be fact landmarks
of the problem. The only action landmark is g (aend).

2. Run Algorithm sortLndmrx to order fact/action land-
marks: The order of fact landmarks is: (L1, L2, t). Notice
that the SCC of L1 must appear before the SCC of L2 in
a topological sort of the Gscc of G. Both appear before t.

3. Run Algorithm labelArcs to label disjoint actions: Be-
fore propagation, the SCC of L1 is labeled with {a6, a7}.
a8, a9, a10, which enter L2, are in independent SCCs,
so each is labeled by itself. g (aend) is also labeled
by itself. Next, we add to S all SCC’s that have
an action that achieves some fact landmark: S =
{scc(a6), scc(a8), scc(a9), scc(a10), scc(g)}. As an ex-
ample of an update during propagation, assume the
scc(a6) is taken out of S. Thus, we need to check for
both scc(a1), scc(a2) if their dp set already contains the
labels in dp(scc(a6)). If it does not, as in the first time,
we propagate the labels and add the updated dp sets to S.
After backward propagation we have: dp(scc(a1)) =
{a6, a7, a8, a10, g}, dp(scc(a2)) = {a6, a7, a8, a10, g},
dp(scc(a3)) = {a9, g}.

During search – Constructing filtered action state for
state s:
1. Apply any applicable action landmark immediately.
2. If none exists, find closest fact landmark l that was not

yet achieved. Specifically, if our current state is the initial
state, we choose L1.

61



3. Build RCG for current state s G(s).

4. Run Algorithm findDAL to get an applicable disjunctive
action landmark X with respect to l: We get back X =
{a1, a2}.

5. Try to minimize X by iterating all actions a ∈ X (min-
imize with respect to l): Nothing to remove from X =
{a1, a2}.

6. Run Algorithm filterAppOps to filter the set X: In the
initial state we don’t have a last action, so let us consider
two scenarios: (i) we performed a2 in s, the returned set
X = {a1, a7}, both a1 and a7 have the same labels with
a2, so there is nothing to filter out. (ii) we performed
(a1, a6, a2) and achieved L1 using a6. Thus, we are now
pursuing L2 and the return set X = {a3, a8, a10}. a8 and
a10 both have a common label with a2. However, a3 does
not have a common label with them, so we can filter it out.

7. Expand s using the filtered set.

To get possibly even more pruning we can alter step 5, to
minimize the set X once with respect to t – call it X1, and
once with respect to l – call it X2. The set X2 can then
continue to stage 6, and in stage 7 we will take the minimal
set for expansion.
Duplicates in A*: Our pruning technique is agnostic to the
search algorithm used, but obtaining an optimal plan re-
quires an appropriate search algorithm, with A* being the
natural choice. Here, some caution is required. One of our
pruning technique (disjoint-path commitment) uses the last
action executed to prune the actions considered in the cur-
rent state. Planning algorithms using A* maintain this in-
formation, so no change in the implementation of A* is re-
quired. However, a delicate question arises in the case of
graph search. What happens if we reach the same state s
with two path ending with different actions: first a and later
a′? Clearly, if the path to s ending in a′ has better g value,
we need to re-expand s pruning based on a′. If both paths
have the same g value, it may seen that we need to recon-
sider actions that were pruned by a but are not pruned by a′.
Fortunately, we can show that no re-expansion is needed in
that case.

Theorem 3. When using Theorem 2 for pruning in A*
search, there is no need to reopen an already visited state,
unless we reached it with a lower f cost.

Empirical Results
We implemented the ideas described in the previous sections
on the FD framework (Helmert 2006). We evaluated their
performance both in the context of blind search and heuris-
tic search (using A*) using two of best existing admissible
heuristics: LM-Cut and Merge& Shrink (Helmert, Haslum,
and Hoffmann 2007), comparing them to the performance
of these optimal planning algorithms without our pruning
method.

As delete-free benchmark domains we used the set of
problems available in the FD distribution to which a new

delete-removal procedure can be applied.3 These domains
include domains that are known to be solvable, like blocks,
and some that are considered very hard to solve even in their
delete-free form, like freecell.

Table 1: search time limit used is 5 minutes per prob-
lem. As expected, the results show that LM-Cut is superior
to Merge& Shrink in delete-free problems. Freecell is the
only domain in which pruning+X had lower coverage than
X , specifically, pruning reduces the coverage of LM-Cut. In
all other domains, pruning improves coverage and reduces
the number of expansion. It is interesting to see that, ex-
cept for the freecell domain, pruning+blind behaves better
than Merge& Shrink. In fact, the only reason why prun-
ing+Merge& Shrink does not solve all of the blocks prob-
lems is because Merge& Shrink did not finish its pre-process
step. It is therefore not a surprise that pruning+Merge&
Shrink behaves only slightly better than pruning+blind.

Table 2: search time limit used is 30 minutes per prob-
lem. We continued to explore the performances of LM-Cut
alone versus pruning+LM-Cut. As expected, we can see
that in all domains pruning reduced the number of expan-
sions, in some domains significantly compared to LM-Cut
alone, like rovers and depot. In these domains the search-
time score was also significantly better. But not in all do-
mains where the expansion-score is noticeably better, does
the search-time score behaves the same. In general, the com-
putation overhead depends on the domain’s (or specific in-
stance) structure. It seems that the most time intensive over-
head occurs where the disjunctive action landmark is very
large and can not be minimized. This makes the minimiza-
tion step (minimal set-inclusion) both time consuming and
futile.

We also tried our pruning procedure on the seed-set prob-
lems with zero cost actions. Zero cost actions are challeng-
ing to existing solvers, and as reported by Gefen and Braf-
man (2011), they cannot solve any instance of this prob-
lem. Pruning, in this case, is not sufficient to overcome this
method. However, when we augment pruning with a sim-
ple procedure that applies all applicable zero-cost action,
then pruning+blind-search+zero-cost-procedure, solves all
the seed-set problems.

Summary and Related Work
Building on a number of observations with respect to delete-
free planning, we extended the use of the RCG (Keyder,
Richter, and Helmert 2010) to provide more information in
preprocessing time and during planning. Specifically, we
showed how to generate an ordered list of fact landmarks,
how to generate small disjunctive action landmarks from
them, and how to update this information during search.
By focusing on the actions in these landmarks, we obtained
some initial pruning. Then, we described how information
can be propagated in the RCG in order to identify disjoint
paths and we utilized this information to provide additional
pruning which is based on the idea of focusing on one path

3This procedure, not implemented by us, has difficulty with
some formats, and so this is only a subset of available domains.

62



Domain (# of problems) Pruning + blind No pruning + M&S Pruning + M&S No pruning + LM-cut Pruning + LM-cut
a b c a b c a b c a b c a b c

blocks(35) 35 643 0.96957 24 15945 31.31 24 339 0.99 35 18052 1 35 643 0.96

freecell(80) 0 − − 2 256081 2.98 0 − − 4 54710 1 1 3379 0.98

gripper(20) 6 974166 5564.16 3 242095 4493.78 7 387312 1669.07 20 960 1 20 960 1

logistics00(28) 22 1133 1.44 14 1385231 2974.63 22 1039 1.33 23 741 1 28 1075 1

logistics98(35) 5 4310 13.41 2 4431 128.50 6 14486 89.18 9 833 1 11 2614 0.80

rovers(40) 12 108096 12.60 7 1935626 710.13 14 204795 0.93 12 836893 1 19 24501 0.36

Table 1: Search time limit per problem: 5 minutes. Column a: # of solved problems. Column b: total number of expansions for all solved instances. Column c: Avg
improvement w.r.t. baseline of No pruning + Lm-cut, computed as (

∑
i Xi/Yi)/Z where: i – problem solved by both planners; Z – # of problems solved by both

planners; Xi – # of expansion executed by current planner in problem i; Yi – # of expansion for No pruning + Lm-cut planner. Lower values are better.

Domain No pruning + LM-cut Pruning + LM-cut
a b c a b c

blocks(35) 35 98.57 98.25 35 100 100
freecell (80) 6 54.20 63.15 2 56.00 26.23
Gripper (20) 20 100 99.62 20 100 100
Logistics00 (28) 23 100 100 28 100 100
Logistics98 (35) 10 94.43 90.46 16 100 95.09
rovers (40) 13 59.62 71.87 23 100 100
depot (22) 7 59.1 62.88 12 97.18 96.38
driverlog (20) 14 88.31 92.60 15 94.32 92.04
Miconic (150) 150 99.99 94.30 150 99.99 84.41
Mystery (30) 26 91.98 85.04 26 96.57 79.11
pipesworld- 17 86.59 93.01 9 86.66 83.48
notankage (50)
pipesworld- 10 90.6 90.06 9 92.79 79.12
tankage (50)

Table 2: Search-time limit per problem: 30 minutes. Column a: # of solved
problems. Column b: expansion score avg. Column c: search-time score avg.
b, c values are calculated for instances solved by both planners. Scores based
on (Röger and Helmert 2010). Higher values are better. 100 is highest.

at a time. Our procedure show variable computational over-
head, working well on many domains (extremely well on
some) and less on others. For some domains the overhead
is too large and the procedure performs worse than heuristic
search alone.

To our knowledge no other work in the literature focuses
on pruning in delete-free problems. However, there has
been quite a few recent papers dealing with action prun-
ing: Stratified Planning (SP) (Chen, Xu, and Yao 2009),
Expansion core (EC) (Chen and Yao 2009), Bounded in-
tention Planning (BIP) (Wolfe and Russell 2011), Sym-
metries (Coles and Coles 2010; Fox and Long 1999;
Pochter, Zohar, and Rosenschein 2011). Of these, the only
work we are aware of that is landmark based is the SAC al-
gorithm (Xu et al. 2011). This algorithm is related to the
notion of stubborn sets (explained in the same paper). The
SAC algorithm uses a disjunctive action landmark which is
then extended (to a stubborn set) to prevent conflicts be-
tween actions in the extended set to actions outside the ex-
tended set. This extended set can then be used as the ex-
pansion set of some state s, which means they can prune all
other applicable action. This pruning keeps an optimal solu-
tion in the search tree because of the properties of stubborn
sets. The relation of stubborn sets to delete-free planning

is unclear. Nevertheless, since this method is complete in
general planning, our Algorithm findDAL can be viewed as
a simplification of SAC to the delete-free space. That be-
ing said, our algorithms for finding small disjunctive action
landmarks that utilize a topological ordering of landmarks,
finds all applicable actions related to a fact landmark that is
close to search state s, and applies the the minimization step,
could be used by the SAC algorithm to find smaller expan-
sion sets. However, the extension step may potentially insert
back some of the actions.

There are various potential ways our pruning procedure
could be improved. First, improving the minimization step
(minimal set-inclusion) would have immediate impact on
currently weak domains. Another option would be to recog-
nize such domains and avoiding the mentioned step. Other
option is to analyze the topology of the RCG at each state
(during search) instead of doing so only in the initial state.
Another direction is extending these algorithms to general
planning: some of the algorithms developed could immedi-
ately be used in regular planning (e.g., extending the SAC
algorithms), the idea of disjoint path, may be generalizable
to regular planning.

Acknowledgements: The authors were partly supported
by ISF Grant 1101/07, the Paul Ivanier Center for Robotics
Research and Production Management, and the Lynn and
William Frankel Center for Computer Science.

References
Brafman, R. I., and Domshlak, C. 2006. Factored planning:
How, when, and when not. In AAAI. AAAI Press.
Bylander, T. 1994. The computational complexity of propo-
sitional strips planning. Artif. Intell. 69(1-2):165–204.
Chen, Y., and Yao, G. 2009. Completeness and optimality
preserving reduction for planning. In IJCAI, 1659–1664.
Chen, Y.; Xu, Y.; and Yao, G. 2009. Stratified planning. In
IJCAI, 1665–1670.
Coelho, H.; Studer, R.; and Wooldridge, M., eds. 2010.
ECAI 2010 - 19th European Conference on Artificial Intelli-
gence, Lisbon, Portugal, August 16-20, 2010, Proceedings,
volume 215 of Frontiers in Artificial Intelligence and Appli-
cations. IOS Press.

63



Coles, A. J., and Coles, A. 2010. Completeness-preserving
pruning for optimal planning. In Coelho et al. (2010), 965–
966.
Fox, M., and Long, D. 1999. The detection and exploitation
of symmetry in planning problems. In Dean, T., ed., IJCAI,
956–961. Morgan Kaufmann.
Gallo, G.; Longo, G.; Pallottino, S.; and Nguyen, S. 1993.
Directed hypergraphs and applications. Discrete Applied
Mathematics 42(2-3):177–201.
Gefen, A., and Brafman, R. I. 2011. The minimal seed set
problem. In Bacchus, F.; Domshlak, C.; Edelkamp, S.; and
Helmert, M., eds., ICAPS. AAAI.
Gefen, A., and Brafman, R. I. 2012. Pruning methods for
optimal delete-free planning. Technical report, Department
of Computer Science Ben-Gurion University.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A. E.; Cesta, A.; and Refanidis, I., eds.,
ICAPS. AAAI.
Helmert, M., and Röger, G. 2008. How good is almost
perfect? In Fox, D., and Gomes, C. P., eds., AAAI, 944–949.
AAAI Press.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flex-
ible abstraction heuristics for optimal sequential planning.
In Boddy, M. S.; Fox, M.; and Thiébaux, S., eds., ICAPS,
176–183. AAAI.
Helmert, M. 2006. The fast downward planning system. J.
Artif. Intell. Res. (JAIR) 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
fast plan generation through heuristic search. J. Artif. Int.
Res. 14(1):253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. J. Artif. Intell. Res. (JAIR) 22:215–
278.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound
and complete landmarks for and/or graphs. In Coelho et al.
(2010), 335–340.
Long, D., and Fox, M. 1999. Efficient implementation of
the plan graph in stan. J. Artif. Intell. Res. (JAIR) 10:87–115.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Ex-
ploiting problem symmetries in state-based planners. In Bur-
gard, W., and Roth, D., eds., AAAI. AAAI Press.
Röger, G., and Helmert, M. 2010. The more, the merrier:
Combining heuristic estimators for satisficing planning. In
ICAPS, 246–249.
Wolfe, J., and Russell, S. J. 2011. Bounded intention plan-
ning. In Walsh, T., ed., IJCAI, 2039–2045. IJCAI/AAAI.
Xu, Y.; Chen, Y.; Lu, Q.; and Huang, R. 2011. Theory
and algorithms for partial order based reduction in planning.
CoRR abs/1106.5427.

64




