
Short-Sighted Stochastic Shortest Path Problems

Felipe W. Trevizan
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA, USA

fwt@cs.cmu.edu

Manuela M. Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA

mmv@cs.cmu.edu

Abstract

Algorithms to solve probabilistic planning problems can be
classified in probabilistic planners and replanners. Probabilis-
tic planners invest significant computational effort to gener-
ate a closed policy, i.e., a mapping function from every state
to an action, and these solutions never “fail” if the problem
correctly models the environment. Alternatively, replanners
computes a partial policy, i.e., a mapping function from a set
of the state space to an action, and when and if such pol-
icy fails during execution in the environment, the replanner is
re-invoked to plan again from the failed state. In this paper,
we introduce a special case of Stochastic Shortest Path Prob-
lems (SSPs), the short-sighted SSPs, in which every state has
positive probability of being reached using at most t actions.
We introduce the novel algorithm Short-Sighted Probabilistic
Planner (SSiPP) that solves SSPs through short-sighted SSPs
and guarantees that at least t actions can be executed with-
out replanning. Therefore, by varying t, SSiPP can behave as
either a probabilistic planner by computing closed policies,
or a replanner by computing partial policies. Moreover, we
prove that SSiPP is asymptotically optimal, making SSiPP the
only planner that, at the same time, guarantees optimality and
offers a bound in the minimum number of actions executed
without replanning. We empirically compare SSiPP with the
winners of the previous probabilistic planning competitions
and, in 81.7% of the problems, SSiPP performs at least as
good as the best competitor.

1 Introduction

Probabilistic planning captures the uncertainty of plan ex-
ecution by probabilistically modeling the effects of actions
in the environment, and therefore the probability of reach-
ing different states from a given state and action. As com-
monly used, we consider a probabilistic planning problem to
be represented as a Stochastic Shortest Path Problem (SSP)
(Bertsekas and Tsitsiklis 1991), where an initial state and
a set of goals states are given and actions have predefined
probabilistic transition among states. In this work, we ad-
dress the question of how to efficiently and optimally solve
probabilistic planning problems.

One approach to solve probabilistic planning problems is
to use value iteration and policy iteration algorithms, which

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

are optimal algorithms (Bertsekas and Tsitsiklis 1996). Plan-
ners based on these algorithms return a closed policy, i.e.,
an universal mapping function from every state to the opti-
mal action that leads to a goal state. Assuming the model
correctly captures the cost and uncertainty of the actions
in the environment, these solutions to a probabilistic plan-
ning problem are extremely powerful as the execution of
such policies never “fails,” and the planner does not need to
be re-invoked ever. Unfortunately the computation of such
policies is prohibitive in complexity as problems scale up.
The efficiency of value-iteration based probabilistic planners
can be improved by combining asynchronous updates and
heuristic search (e.g., Labeled RTDP (Bonet and Geffner
2003)), resulting in optimal algorithms with convergence
bounds. Although these techniques allow planners compute
compact policies, in the worst case these policies are still
linear in the size of the state space, which itself can be expo-
nential in the size of the state or goals.

Another approach to solve probabilistic planning prob-
lems is by replanning. Replanners, do not invest the com-
putational effort to generate a closed policy, and instead
compute a partial policy, i.e. a policy that does not ad-
dress all the probabilistic possible reachable states. Dif-
ferent methods can be employed to generate partial poli-
cies, e.g. determinization (Yoon, Fern, and Givan 2007;
Yoon et al. 2008), sampling (Dean et al. 1995; Teichteil-
Koenigsbuch, Infantes, and Kuter 2008) and finite horizon
search (Pearl 1985; Kocsis and Szepesvri 2006). During the
execution of such solution in the environment, a state not in-
cluded in the partial policy can be reached and in this case
the replanner is re-invoked to compute a new partial policy
starting from the unpredicted state.

Interestingly, replanning approaches have shown to per-
form well at the International Probabilistic Planning Com-
petition (IPPC) (Younes et al. 2005; Bonet and Givan 2007;
Bryce and Buffet 2008), e.g., with the winning performance
of FF-Replan (Yoon, Fern, and Givan 2007). The idea be-
hind FF-Replan is simple and powerful: relax the probabilis-
tic problem into a deterministic problem D and use the de-
terministic planner FF (Hoffmann and Nebel 2001) to solve
D. When and if the execution of the solution for D fails
in the probabilistic environment, FF is re-invoked to plan
again from the failed state. Probabilistic planners at IPPC
did not perform as well since they could not computation-

288

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling

ally solve large problems. Despite its major success, FF-
Replan is oblivious to probabilities and dead-ends, leading
to poor performance in specific IPPC problems, e.g., the tri-
angle tire-domain (Little and Thiébaux 2007).

In this work, we present an approach that offers the best
from both the probabilistic planners and the replanners,
namely optimal solution generation, and the efficient incom-
plete solution generation, respectively.

Specifically, we define a new probabilistic model, the
short-sighted Stochastic Shortest Path Problems (short-
sighted SSPs), a special case of SSPs in which every state
has positive probability of being reached using at most t ac-
tions. We introduce the novel algorithm Short-Sighted Prob-
abilistic Planner (SSiPP) that solves SSPs through short-
sighted SSPs and guarantees that at least t actions can be ex-
ecuted without replanning. Therefore, by varying t, SSiPP
can behave as either a probabilistic planner by computing
closed policies, or a replanner by computing partial policies.
Moreover, we prove that SSiPP is asymptotically optimal,
making SSiPP the only planner that, at the same time, guar-
antees optimality and offers a bound in the minimum num-
ber of actions executed without replanning.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work and Section 3 introduces the ba-
sic concepts and notation. Section 4 defines formally short-
sighted SSPs. Section 5 presents our main theoretical re-
sults for short-sighted SSPs. Section 6 presents the SSiPP
algorithm and the proof of its asymptotically optimal per-
formance. Section 7 empirically evaluates the impact of t in
the time to compute ǫ-approximations to the optimal solu-
tion and compares SSiPP with the winners of the previous
IPPCs. Section 8 concludes the paper.

2 Related Work

FF-Hindsight (Yoon et al. 2008) is a non-optimal replan-
ner that generalizes FF-Replan and consists of three steps:
(i) randomly generate a set of non-stationary deterministic
problems D starting from s; (ii) use FF to solve them; and
(iii) combine the cost of their solution to estimate the true
cost of reaching a goal state from s. Each deterministic
problem in D has a fixed length (horizon) and is generated
by sampling one outcome of each probabilistic action for
each time step. This process reveals two major drawbacks of
FF-Hindsight: (i) a bound in the horizon size of the problem
is needed in order to produce the relaxed problems; and (ii)
rare effects of actions might be ignored by the sampling pro-
cedure. While the first drawback is intrinsic to the algorithm,
a workaround to the second one is proposed (Yoon et al.
2010) by always adding the all-outcomes relaxation of the
problem to D and, therefore, ensuring that every effect of an
action appears at least in one deterministic problem in D.

Also based on sampling, the Upper Confidence bound for
Trees (UCT) algorithm (Kocsis and Szepesvri 2006) is a
non-optimal replanner that chooses actions greedily accord-
ing to an approximation of the t-look-ahead heuristic (Pearl
1985). Given t > 0, this approximation is obtained by solv-
ing a series of t multi-armed bandits problems where each
arm represents an action and a finite-horizon of t actions are

considered. Sparse sampling techniques are employed to ef-
ficiently solve this new problem.

Another relevant approach is performed by two non-
optimal replanners: Envelope Propagation (EP) (Dean et
al. 1995) and Robust FF (RFF) (Teichteil-Koenigsbuch, In-
fantes, and Kuter 2008). In general terms, EP and RFF com-
pute an initial partial policy π and iteratively expand it in
order to avoid replanning. EP prunes the state space S and
represents the removed states by a special meta state out
and the appropriate meta actions to represent the transitions
from and to out. At each iteration, EP refines its approxima-
tion S′ of S by expanding and then re-pruningS′. Re-pruning
is necessary to avoid the convergence of S′ to S and this
is the main drawback of EP because low probability states
are pruned and therefore ignored. As in FF-Replan, these
states might be necessary in order to avoid large costs and
dead-ends. RFF uses a different approach: an initial partial
policy π is computed by solving the most-likely outcome
determinization of the original problem using FF and then
the robustness of π is iteratively improved. For RFF, robust-
ness is a synonym of probability of replanning, i.e., given
ρ ∈ [0, 1], RFF computes π such that the probability of re-
planning when executing π from s0 is at most ρ. An ap-
proach similar to RFF and EP in the context of motion plan-
ning is Variable Level-of-detail Motion Planner (Zickler and
Veloso 2010) in which poorly predictable physical interac-
tions are ignored (pruned) in the far future.

The first asymptotically optimal replanner proposed by
the community, Real Time Dynamic Programming (RTDP)
(Barto, Bradtke, and Singh 1995), is a heuristic search algo-
rithm that interleaves search and execution. Given an admis-
sible heuristic, RTDP maintains a lower bound for V ∗ and
acts greedily according to it. In order to avoid being trapped
in loops and to find the optimal solution, RTDP updates the
lower bound of every state visited during its search. If a goal
state is reachable from every other state and the input heuris-
tic is admissible, then after several executions of RTDP (pos-
sibly infinitely many), its lower bound converges to V ∗ over
the relevant states. Unlike the replanners described so far
that have no optimality guarantee, RTDP is asymptotically
optimal, however no guarantee is given w.r.t. to replanning.
The scalability of RTDP is improved by ReTrASE (Kolobov,
Mausam, and Weld 2009) in which the lower bound on V ∗

is projected into a lower dimensional space. The set of base
functions used by ReTrASE is obtained by solving the all
outcomes determinization of the original problem using FF.
Due to the lower dimensional representation, ReTrASE is a
non-optimal replanner.

Although RTDP is a replanner, it is mainly used as a
probabilistic planner: RTDP simulates the problem inter-
nally until the lower bound on V ∗ has approximately con-
verged and a closed policy is extracted from it. Based on this
idea, several extensions of RTDP were proposed and, due
to space constraints, we only highlight some of those. La-
beled RTDP (LRTDP) (Bonet and Geffner 2003) introduces
a labelling schema to find states that have already converged
and therefore avoid exploring them again. With this tech-
nique, LRTDP provides an upper bound on the number of
iterations necessary to reach ǫ-convergence w.r.t. V ∗. Two

289

other algorithms, Bounded RTDP (McMahan, Likhachev,
and Gordon 2005) and Focused RTDP (Smith and Simmons
2006) provide empirical evidence of improvements on the
convergence time of RTDP by also keeping track of an up-
per bound on V ∗.

SSiPP, the planner presented in this paper, differs from
all the planners presented above by, at the same time, being
asymptotically optimal and offering a bound in the minimum
number of actions executed without replanning.

3 Background

A Stochastic Shortest Path Problem (SSP) is defined by the
tuple S = 〈S, s0,G,A, P, C, C

G〉, in which (Bertsekas and
Tsitsiklis 1991; Bonet and Geffner 2003):1

• S is the finite set of state;

• s0 ∈ S is the initial state;

• G ⊆ S is the set of goal states;

• A is the finite set of actions;

• P (s′|s, a) represents the probability that s′ ∈ S is reached
after applying action a ∈ A in state s ∈ S;

• C(s, a) ∈ (0,+∞) is the cost of applying action a ∈ A

in state s; and

• CG : G → [0,+∞) represents the cost incurred when the
given goal state is reached.

A solution to an SSP is a policy π, i.e., a mapping from S

to A. If π is defined over the entire space S, then π is a closed
policy. A policy π defined only for the states reachable from
s0 when following π is a closed policy w.r.t. s0 and S(π, s0)
denotes this set of reachable states. For instance, in the SSP
depicted in Figure 1, the policy π0 = {(s0, a0), (s

′
1, a0)} is

a closed policy w.r.t. s0 and S(π0, s0) = {s0, s
′
1, sG}.

Given a policy π, we define trajectory as a sequence
Tπ = 〈s(0), . . . , s(k)〉 such that, for all i ∈ {0, · · · , k − 1},
π(s(i)) is defined and P (s(i+1)|s(i), π(s(i))) > 0. An opti-
mal policy π∗ is any policy that always reaches a goal state
when followed from s0 and also minimizes the expected cost
of Tπ∗ . For a given SSP, π∗ might not be unique, however the
optimal value function V ∗, i.e., the mapping from states to
the minimum expected cost to reach a goal state, is unique.
V ∗ is the fixed point of the set of equations defined by (1)
for all s ∈ S \ G and V ∗(s) = CG(s) for all s ∈ G.

V ∗(s) = min
a∈A

C(s, a) +
∑

s′∈S

P (s′|s, a)V ∗(s′) (1)

Definition 1 (reachability assumption). An SSP satisfies
the reachability assumption if, for all s ∈ S, there exists a
policy π and a trajectory Tπ = 〈s, . . . , s(k)〉, s.t. s(k) ∈ G.

Given an SSP S, if a goal state can be reached with posi-
tive probability from every state s ∈ S, then the reachability
assumption (Definition 1) holds for S and 0 ≤ V ∗(s) <∞

1SSPs are closely related to Markov Decision Processes
(MDPs) (Puterman 1994) and SSPs are strictly more expressive
than infinite-horizon MDPs (Bertsekas 1995).

s2 s ks0 s1s1
’

a0
a1

... s

p
1−p

1−p
p

G

Figure 1: Example of an SSP. The initial state is s0, the goal
state is sG, C(s, a) = 1, ∀s ∈ S, ∀a ∈ A and CG(sG) = 0.

(Bertsekas 1995). Once V ∗ is known, any optimal policy π∗

can be extracted from V ∗ by substituting the operator min
by argmin in equation (1).

A possible approach to compute V ∗ is the value iteration
algorithm: define V i+1(s) as in (1) with V i in the right hand
side instead of V ∗ and the sequence 〈V 0, V 1, . . . , V k〉 con-
verges to V ∗ as k → ∞ (Bertsekas 1995). The process of
computing V i+1 from V i is known as Bellman update and
V 0(s) can be initialized with an admissible heuristic H(s),
i.e., a lower bound for V ∗. In practice we are interested in
reaching ǫ-convergence, that is, given ǫ, find V such that
maxs |V (s) − mina C(s, a) +

∑

s′ P (s′|s, a)V (s′)| ≤ ǫ.
We conclude this section with the following well-known re-
sult necessary in most of our proofs (Bertsekas and Tsitsiklis
1996, Assumption 2.2 and Lemma 2.1):

Theorem 1. Given an SSP S, if the reachability assumption
holds for S, then the admissibility and monotonicity of V are
preserved through the Bellman updates.

4 Short-Sighted Stochastic Shortest Path

Problems

Several replanners address the scalability issue by simplify-
ing the action space through the all outcomes or most likely
outcome determinization. The drawback of this approach is
being oblivious to the probability of each outcome of ac-
tions and their correlation. We introduce short-sighted SSPs,
a model that simplifies the state space instead of the action
space of a given SSP.

Definition 2 (δ(s, s′)). The non-symmetric distance δ(s, s′)
between two states s and s′ is argmink{Tπ =
〈s, s(1), . . . , s(k−1), s

′〉|∃π and Tπ is a trajectory}.

Definition 3 (Short-Sighted SSP). Given an SSP
S = 〈S, s0,G,A, P, C, C

G〉, a state s ∈ S, t > 0
and a heuristic H , the (s, t)-short-sighted SSP
Ss,t = 〈Ss,t, s,Gs,t,A, P, C, C

G
s,t〉 associated with S is

defined as:

• Ss,t = {s
′ ∈ S|δ(s, s′) ≤ t};

• Gs,t = {s
′ ∈ S|δ(s, s′) = t} ∪ (G ∩ Ss,t);

• CG
s,t(s) =

{

CG(s) if s ∈ G

H(s) if s ∈ Gs,t \ G

For simplicity, when H is not clear by context nor explicit,
then H(s) = 0 for all s ∈ S.

Figure 2 shows the (s0, 2)-short-sighted SSP associated
with the example in Figure 1. The state space Ss,t of (s, t)-
short-sighted SSPs is a subset of the original state space in

290

s2s0 s1s1
’

a0
a1

s

p
1−p

1−p
p

G

Figure 2: The (s0, 2)-short sighted SSP associated to the
SSP in Figure 1. The set of goal states Gs0,2 is {sG, s2},
CG

s0,2(sG) = 0 and CG
s0,2(s2) = H(s2) = 0.

which any state s′ ∈ Ss,t is reachable from s using at most t
actions. The key property of short-sighted SSPs that allows
them to be used for solving SSPs is given by the definition of
CG

s,t: every artificial goal state s′
G

, i.e. s′
G
∈ Gs,t \ G, has its

heuristic value H(s′
G
) used as goal cost CG

s,t(s
′
G
). Therefore,

the search for a solution to short-sighted SSPs is guided to-
wards the goal states of the original SSP, even if such states
are not in Gs,t.

The optimal value function for Ss,t on s, V ∗
Ss,t

(s), is re-

lated to the value obtained by the t-look-ahead heuristic
Lt(s) for s (Pearl 1985). As an intuition of the difference
between using Lt and V ∗

Ss,t
as heuristics to solve SSPs, con-

sider the example depicted in Figure 1 and depth t = 2:

• L2(s0) is the minimum expected cost of executing 2 ac-
tions in a row, therefore only trajectories of size 2 are con-
sidered; and

• V ∗
Ss0,2

(s0) is the minimum expected cost to reach a

goal state in Ss0,2 (Figure 2) from s0. Thus all possi-
ble trajectories in Ss0,2 are considered and the maximum
size of these trajectories is unbounded due to the loops
〈s0, a0, s

′
1〉 and 〈s′1, a0, s

′
1〉.

Precisely, the difference between the look-ahead and short-
sighted SSPs is that the former relaxes the original prob-
lem by limiting the maximum number of executed actions
(horizon), while short-sighted SSPs approximates the origi-
nal problem by pruning the state space without limiting the
problem’s horizon. We prove that the optimum value func-
tion for short-sighted SSPs is an admissible heuristic for the
original SSP and is at least as informative as the look-ahead
heuristic (Theorem 2).

Theorem 2. Given an SSP S = 〈S, s0,G,A, P, C, C
G〉, s ∈

S, t > 0 that satisfies the reachability assumption and an
admissible heuristic H , then Lt(s) ≤ V ∗

Ss,t
(s) ≤ V ∗(s).

Proof. By Theorem 1, 〈V 0
Ss,t

, . . . , V k
Ss,t
〉 produced by value

iteration converges to V ∗
Ss,t

as k →∞ and is monotonic non-

decreasing. By definition of short-sighted SSPs, V 0
Ss,t

(s′) =

V 0(s′) = H(s′) for all s′ ∈ Ss,t and V ∗
Ss,t

(s) ≤ V ∗(s)

since Bellman updates preserve admissibility (Theorem 1).
Also, Lt(s) = V t(s) by definition of t-look-ahead heuristic
and the set of states necessary to compute V t(s) is exactly
Ss,t. Therefore Lt(s) = V t(s) = V t

Ss,t
(s) ≤ V ∗

Ss,t
(s) ≤

V ∗(s).

5 Non-Learning Short-Sighted Probabilistic

Planner

We present a step towards the definition of our asymptot-
ically optimal planner by describing its basic non-learning
version. We also present and prove the guarantees offered by
this basic algorithm that are inherited by our main algorithm
defined in Section 6. We start by defining a key concept for
the rest of the paper:

Definition 4 (t-closed policy). A policy π is t-closed w.r.t.
a state s if, for every trajectory 〈s, s(1), . . . , s(k)〉 generated
by π that does not reach a goal state, i.e., s(k) 6∈ G, then π
is not defined for s(k) and k ≥ t.

Therefore, t-closed policies guarantee that at least t− 1 ac-
tions can be executed without replanning. All the replanners
reviewed on Section 3 compute 1-closed policies, i.e., they
offer no guarantee about the minimum number of actions
applied before replanning, and in this section we present an
algorithm to compute t-closed policies for arbitrary values
of t. Notice that, t-closed policies when t→∞ are equiva-
lent to closed policies and Theorem 3 gives an upper bound
on t for when a t-closed policy becomes a closed policy.

Theorem 3. Given an SSP S = 〈S, s0,G,A, P, C, C
G〉, for

all t ≥ |S|, every t-closed policy for S is a closed policy.

Proof. Suppose π̂ is a t-closed policy w.r.t. s for S such that
t ≥ |S| and π̂ is not a closed policy. Since π̂ is not closed,
at least one trajectory Tπ̂ from s finishes because π̂(s(k)) is

not defined and k ≥ t. By assumption, t ≥ |S|, therefore at
least one state s′ ∈ S was visited more than once. Let T ′ be
a trajectory starting at s and finishing at s(k) such that every

state in Tπ̂ is visited at most once. Then, |T ′| < |Tπ̂| and π̂
is a t′-closed policy for t′ < t, a contradiction.

Besides having partial policies and closed policies as ex-
treme cases, t-closed policies are able to represent the con-
tinuum of policies between these two extremes. This char-
acteristic of t-closed policies is key in the relation between
SSPs and (s, t)-short-sighted SSPs as shown by the follow-
ing theorem:

Theorem 4. Given an SSP S = 〈S, s0,G,A, P, C, C
G〉 and

a state s ∈ S then any closed policy π w.r.t. s for Ss,t is a
t-closed policy w.r.t. s for S.

Proof. Since π is closed for Ss,t w.r.t. s, then every trajec-
tory Tπ in Ss,t from s finishes at a state s′ ∈ Gs,t. If s′ 6∈ G,
then s′ is an artificial goal and |Tπ | ≥ t by the definition of
Gs,t. Therefore π is t-closed w.r.t. s for S.

Algorithm 1 shows our algorithm, NOLEARNING-
SSIPP, based on Theorem 4, which generates and solves,
on-demand, (s, t)-short-sighted SSPs until a goal state of
the original SSP is reached. The procedure SSP-SOLVER,
used by NOLEARNING-SSIPP, returns a policy that reaches
a goal state for the given SSP. To illustrate the execution of
NOLEARNING-SSIPP, consider as input the SSP S in Fig-
ure 1 for t = 2. The first short-sighted SSP built by the
algorithm is Ss0,2 (Figure 2) and there are only two possible
2-closed policies for it: (i) π0 = {(s0, a0), (s

′
1, a0)}; and (ii)

291

NOLEARNING-SSIPP(SSP S = 〈S, s0,G,A, P, C, C
G〉

and t > 0)
begin

s← s0
while s 6∈ G do

Ss,t ← short-sighted-SSP(S, s, t)
π ← SSP-SOLVER(Ss,t)
while s 6∈ Gs,t do

s← execute-action(π(s))

Algorithm 1: Non-learning algorithm to solve SSPs using
short-sighted SSPs.

π1 = {(s0, a1), (s1, a1)}. If SSP-SOLVER returns π0 as so-
lution for Ss0,2, then the original SSP S is solved, since π0

is a closed policy for S w.r.t. s0. Instead, if π1 is returned by
SSP-SOLVER, then ⌈k+1

2 ⌉ short-sighted SSPs, representing

the 3-states subchains of s0
a1−→ s1

a1−→ s2
a1−→ · · ·

a1−→ sG,
are generated and solved by SSP-SOLVER.

6 Learning the Optimal Value Function V
∗

We introduce our algorithm, Short-Sighted Probabilistic
Planner (SSiPP) which is an extension of Algorithm 1 ca-
pable of learning the optimal value function V ∗. We also
prove that SSiPP converges to V ∗ over the relevant states
S(π∗, s0).

Algorithm 2 presents SSiPP and differs from
NOLEARNING-SSIPP in two ways: (i) SSP-SOLVER

is replaced by OPTIMAL-SOLVER; and (ii) SSiPP maintains
and updates a lower bound V for V ∗. Given an SSP
S = 〈S, s0,G,A, P, C, C

G〉 and a heuristic H for V ∗ of S,
OPTIMAL-SOLVER returns an optimal policy π∗ w.r.t. s0
for S and V ∗ associated to π∗, i.e., V ∗ needs to be defined
only for s ∈ S(π∗, s0).

According to the IPPCs (Younes et al. 2005; Bonet and
Givan 2007), optimal SSP solvers such as LRTDP are com-
petitive with the best SSP solvers for small to medium prob-
lems, therefore restricting SSiPP to optimal solvers should
have no practical drawback. Moreover, the usage of an op-
timal SSP solver brings all the extra guarantees of SSiPP
over NOLEARNING-SSIPP, namely the optimality and ter-
mination guarantees of SSiPP (Theorem 5 and Corollary 6,
respectively).

Theorem 5. Given an SSP S = 〈S, s0,G,A, P, C, C
G〉 such

that the reachability assumption holds and an admissible
heuristic H , then the sequence 〈V 0, V 1, · · · , V t〉, where
V 0 = H and V t = SSiPP(S, t, V t−1), converges to V ∗ as
t→∞ for all s ∈ S(π∗, s0).

Proof. Let S∗ ⊆ S be the set of states being visited infinitely
many times. Clearly, S(π∗, s0) ⊆ S∗ since a partial policy
cannot be executed ad infinitum without reaching a state in
which it is not defined.

In order to show that SSiPP performs Bellman updates
implicitly, consider the loop marked with ♦ in Algorithm 2.
Since OPTIMAL-SOLVER computes V ∗

Ss,t
, by definition of

short-sighted SSP: (i) V ∗
Ss,t

(sG) equals V (sG) for all sG ∈

SSIPP(SSP S = 〈S, s0,G,A, P, C, C
G〉, t > 0 and H a

heuristic for V ∗)
begin

V ← Value function for S initialized by H
s← s0
while s 6∈ G do

Ss,t ← short-sighted-SSP(S, s, t, V)
(π∗

Ss,t
, V ∗

Ss,t
)← OPTIMAL-SOLVER(Ss,t, V)

♦ forall the s ∈ Ss,t do
V (s)← V ∗

Ss,t
(s)

while s 6∈ Gs,t do
s← execute-action(π∗

Ss,t
(s))

return V

Algorithm 2: Our asymptotically optimal algorithm to
solve SSPs using short-sighted SSPs.

Gs,t, therefore the value of V (sG) remains the same; and (ii)
mina∈A C(s, a)+

∑

s′∈S
P (s′|s, a)V (s′) ≤ V ∗

Ss,t
(s) for s ∈

Ss,t \Gs,t, i.e., the assignment V (s)← V ∗
Ss,t

is equivalent to

at least one Bellman update on V (s), because V is a lower
bound on V ∗

Ss,t
and Theorem 1.

Therefore, we can view the sequence of lower bounds
〈V 0, V 1, · · · , V t〉 generated by SSiPP as asynchronous
value iteration. The convergence of V t−1(s) to V ∗(s) as
t → ∞ for all s ∈ S(π∗, s0) ⊆ S

∗ follows (Bertsekas and
Tsitsiklis 1996, Proposition 2.2, p. 27) and guarantees the
convergence of SSiPP.

Corollary 6. SSiPP always terminates under the conditions
of Theorem 5.

Proof. Suppose SSiPP does not terminate. Then, there is a
trajectory T of infinite size that can be generated by SSiPP.
Since S is finite, then there must be an infinite loop in T
and, for all states s in this loop, V (s)→∞ as the execution
continues, a contradiction since V (s) ≤ V ∗(s) <∞.

An interpretation for Theorem 5 is that, given an ad-
missible heuristic H , SSiPP improves the quality of H
while maintaining its admissibility and, after enough runs
of SSiPP, V becomes the perfect heuristic, i.e., V ∗. As the
experiments presented in the next section show, this combi-
nation of replanning and optimality guarantees, not present
in any other replanner, translates into improvements in both
quality and time to compute the solution of SSPs.

7 Experiments

We present two sets of experiments to: (i) explore the impact
of different values of t in the time necessary to compute ǫ-
approximations of V ∗; and (ii) compare the performance of
SSiPP with the winners of the IPPCs 04, 06 and 08 (Younes
et al. 2005; Bonet and Givan 2007; Bryce and Buffet 2008).

LRTDP is used as OPTIMAL-SOLVER for SSiPP in all the
experiments because it offers an upper bound on the number
of iterations necessary to reach ǫ-convergence and it com-
putes closed policies w.r.t. to s0 instead of closed policies.

292

All the experiments have the parameter ǫ (for
ǫ−convergence) set to 10−4 and are conducted in a
Linux machine with 4 cores running at 3.07GHz. The
planners have a 2Gb memory cut-off and the cpu-time
cut-off is different for each set of experiments.

Impact of t in the time to compute V ∗

For this set of experiments, we use the race-track domain
(Barto, Bradtke, and Singh 1995; Bonet and Geffner 2003).
The goal of this domain (Figure 3) is to find a closed pol-
icy w.r.t. s0 for driving a car from the initial state to a set
of goal states minimizing the expected cost of the travel. A
state is the tuple (x, y, vx, vy, b) in which: x, y represent the
position of the car in the given 2-D grid (track); vx, vy is the
velocity in each dimension; and b is true if the car is broken.
The car breaks every time it tries to leave the track and the
special action FIXCAR is used in order to fix the car (i.e., set
b to false) maintaining its position and setting vx = vy = 0.
To move the car, acceleration actions are used. These actions
are pairs (ax, ay) ∈ {−1, 0, 1}

2 denoting the instantaneous
acceleration in each direction, which might fail, that is, not
change the velocity, with probability 0.1. Acceleration ac-
tions have cost 1, while FIXCAR has cost 50.

We consider six race-tracks in this experiment: ring-small,
ring-large, square-small, square-large, y-small and y-large.
The shape of each track is depicted in Figure 3 and Table
1 presents detailed information about them. For each track,
we consider exponentially increasing values of t until tmax is
such that S(π∗, s0) = S(π∗

Ss0,t
, s0), i.e., π∗ and the optimal

policy for the (s0, t)-short-sighted SSP are equivalent. Table
1 shows the values of tmax for each track.

In this experiment, we use SSiPP to compute ǫ-
approximations of V ∗(s0), i.e., each run consists in execut-
ing SSiPP for s0 multiple times and reusing the computed V
until |V ∗(s0)− V (s0)| < ǫ. Figure 4 presents the results of
this experiment as a log-log plot in which every data point
represents the average over 50 runs and the error bars repre-
sent the 95% confidence bound of the average run time. The
convergence time obtained on tmax can also be obtained for
values of t less than tmax, showing empirical evidence that
there exists a value t′ < tmax such that using (t′, s)-short-
sights SSPs, as opposed to the original SSP, has no effect
in the time to compute V ∗(s). Such value t′ is different for
each problem and, for the considered race-tracks, they are:
128 for ring-large and 32 for the other configurations. Fig-
ure 4 further shows that, for t < t′, the convergence time
decreases exponentially as the value of t increases.

Comparison with IPPCs Winners

In this section, we compare SSiPP, LRTDP and the first
place planners of the IPPCs over four domains used in
IPPC’08, namely blocks world, zeno travel, triangle tire
world and exploding blocks world.2 The first two do-
mains are, respectively, a puzzle and a logistic domain
(Veloso 1992). The last two domains, exploding blocks

2The other domains of IPPC’08 and the problems of IPPC’11
are not considered because our current implementation of SSiPP
does not fully support PPDDL.

Figure 3: Shape of the race-tracks used. Each cell represents
a possible position of the car. The initial state and the goal
states are, respectively, the marked cells in the bottom and
top of each track.

problem |S| % rel. tmax V ∗(s0) Hm(s0) t. Hm

square-s 42396 2.01 71 18.26 11.00 20.209

square-l 193756 0.75 272 22.26 13.00 145.616

ring-s 4776 12.91 74 21.85 12.00 0.451

ring-l 75364 14.34 869 36.23 24.00 32.056

y-small 101481 10.57 114 29.01 18.00 32.367

y-large 300460 9.42 155 32.81 21.00 211.891

Table 1: Description of each race-track used: size, ratio
S(π∗, s0)/S, tmax, V ∗(s0), value of the min-min heuristic
(Bonet and Geffner 2003) for s0 (Hm(s0)) and time in sec-
onds to compute Hm(s0).

world and triangle tire world, are probabilistically inter-
esting (Little and Thiébaux 2007), i.e., problems in which
planners that oversimplify the probabilistic structure of ac-
tions have a poor performance. In the exploding blocks
world, the extra precondition (not (= ?b1 ?b2)) in
action put-on-block(?b1 ?b2) is added to avoid the
inconsistent state in which a block is on the top of itself (Lit-
tle and Thiébaux 2007). For all the problems, we consider
that C(s, a) = 1 for all s ∈ S and a ∈ A and CG(s) = 0 for
all s ∈ G.

We compare SSiPP against the planners: (i) LRTDP im-
plemented by mGPT (Bonet and Geffner 2005) the 2nd
place of IPPC’04; (ii) FF-Replan (winner of IPPC’04); (iii)
FPG (winner of IPPC’06) (Buffet and Aberdeen 2009); and
(iv) RFF (winner of IPPC’08).3 We consider 12 different
parametrizations of SSiPP obtained by using t ∈ {2, 3, 4, 8}
and H as the zero, min-min (Bonet and Geffner 2003) and
FF heuristics. The FF heuristic is the only non-admissible
heuristic. Given a state s, it equals the length of the solution
computed by FF for the all-outcomes determinization of the
original problem using s as initial state. For LRTDP, we con-
sider the same 12 parametrizations as in SSiPP, where t is
the number of look-ahead steps, and LRTDP without look-
ahead (i.e., t = 1), totalizing 15 different configurations.

We use a methodology similar to the one in IPPC’04 and
IPPC’06, in which there is a time cutoff for each individ-

3The planner Prost, winner of IPPC’11, is not currently avail-
able.

293

Figure 4: Time to compute ǫ-approximations of V ∗(s0) versus short-sighted size t. The last point in the line for each track,
tmax, is such that S(π∗, s0) = S(π∗

Ss0 ,tmax

, s0), therefore the performance is the same for t ≥ tmax. The error bars represent the

95% confidence interval for the average run time.

ual problem. Formally, each problem needs to be solved
50 times in 20 minutes using the MDPSIM (Younes et al.
2005), an environment simulator. The computation of each
solution for the same problem is called a round and train-
ing is allowed between rounds, i.e., the knowledge obtained
from one round, e.g., the lower bound on V ∗(s0), can be
used to solve subsequent rounds. The evaluation is done by
the number of rounds simulated by MDPSIM that reached
a goal state. The maximum number of actions allowed per
round is 2000 and rounds that exceed this limit are stopped
by MDPSIM and declared as failure, i.e., goal not reached.

In order to respect the time cutoff, SSiPP simulates rounds
internally until it ǫ-converged or the remaining time to solve
the problem is smaller than 50× (avg+2.33×sem), where
avg is the average time to internally solve a round of the
given problem and sem is the standard error of the mean.
This deadline is an approximation the upper part of the 98%
confidence interval for the time to simulate 50 rounds. When
the deadline is reached, SSiPP starts the 50 rounds simu-
lations through MDPSIM. We employ the same approach
for LRTDP using the LRTDP-TRIAL function (Bonet and
Geffner 2003).

Figure 5 shows the results on parametrizations of SSiPP:
SSiPP-O, the overall best configuration; and SSiPP-D, the
best configuration for each domain. The parametrization of
SSiPP-O is t = 3 and the FF heuristic; the parametrization
of SSiPP-D is: t = 8 and the zero heuristic for the triangle
tire world; t = 3 and the FF heuristic (same as in SSiPP-O)
for the exploding blocks world; and t = 2 and the FF heuris-
tic for both the zeno travel domain and the blocks world. For
LRTDP, only the best configuration for each domain is pre-

sented (LRTDP-D) and these parametrizations are the same
as in SSiPP-D except for the triangle tire world, in which
LRTDP-D corresponds to t = 3 and zero heuristic. This dif-
ference between SSiPP-D and LRTDP-D is because LRTDP
using t-look-ahead does not scale up for t > 3 in the trian-
gle tire world. Also, the zero heuristic obtains the best per-
formance for the triangle tire domain because both the FF
heuristic and the min-min heuristics favor the shortest path
from the initial state to the goal state and the probability of
this path reaching a dead-end is positive and increases expo-
nentially with the problem size (Little and Thiébaux 2007).

SSiPP-D perform at least as good as FF-Replan and RFF
in, respectively, 81.7% and 86.7% of the problems and never
performs worse than LRTDP-D and FPG. The performance
of SSiPP-D is especially noteworthy in the triangle tire
world in which it scales up better than the other planners
and outperforms them in the 7 largest instances. SSiPP-O
perform at least as good as RFF, FF-Replan and LRTDP-D
in, respectively, 73.3%, 81.7% and 85% of the problems and
never worse than FPG.

8 Conclusion

In this paper we introduced short-sighted SSPs, a model
for probabilistic planning problems that offers a new ap-
proach for relaxing SSPs. This approach consists of prun-
ing the state space based on the non-symmetric distance be-
tween states and defining artificial goal states that guide the
solution towards the original goals. We proved that closed
policies to (s, t)-short-sighted SSPs can be executed in the
original problem for at least t actions starting from s. More-
over, we also proved that the optimal value function for an

294

1= 2= 3= 4= 5= 6= 7= 8= 9 10 11 12 13= 14= 15=
0

10

20

30

40

50
Block World

1+ 2+ 3+ 4+ 5= 6= 7= 8+ 9+ 10= 11 12 13 14 15
0

10

20

30

40

50
Exploding Blocks World

1= 2= 3= 4= 5= 6= 7= 8= 9+ 10+ 11+ 12+ 13+ 14+ 15+
0

10

20

30

40

50
Triangle Tire World

1= 2= 3 4+ 5 6+ 7+ 8+ 9+ 10+ 11= 12+ 13= 14= 15=
0

10

20

30

40

50

N
um

be
r

of
 r

ou
nd

s
so

lv
ed

 o
ut

 o
f 5

0

Zeno Travel

SSiPP−O SSiPP−D LRTDP−D FF−Replan FPG RFF

Figure 5: Number of rounds solved for each problem in the domains considered. Only 2 parametrizations of SSiPP are shown:
SSiPP-D, the best parametrization for the given domain; and SSiPP-O, the best setting when considering all the problems. In
the number of the problems (x-axis), the symbols + and = represent, respectively, problems in which SSiPP-D outperforms the
other planners and ties with the best competitor.

(s, t)-short-sighted SSPs is a lower bound, i.e., an admissi-
ble heuristic, for the optimal value function of the original
SSP and is more informative than the look-ahead heuristic.

We introduced two algorithms to solve SSPs using short-
sighted SSPs, namely NoLearning-SSiPP and SSiPP. Both
algorithms guarantee that at least t actions are executed be-
fore replanning and, for t ≥ tmax, replanning is not needed.
Therefore, by varying t, NoLearning-SSiPP and SSiPP can
behave as either probabilistic planners by computing closed
policies, or replanners by computing partial policies. On the
theoretical side, we bounded the value of tmax and proved
that SSiPP is asymptotically optimal, making SSiPP the
only planner that, at the same time, guarantees optimality
and offers a bound in the minimum number of actions exe-
cuted without replanning. On the empirical side, we found
a correlation in the value of t and the time to compute ǫ-
approximations of the optimal solution. This trend suggests
that, for different problems, there exists t′ < tmax such that
the time to converge to the optimal solution remains approx-

imately the same for t ≥ t′. We also empirically compared
SSiPP with LRTDP and the available winners of the prob-
abilistic planning competitions and, in 81.7% of the prob-
lems, SSiPP performs at least as good as the best competitor.

Our current research agenda includes: (i) adding full sup-
port of PPDDL to SSiPP; (ii) further explore the relation
between t′, tmax and domain metrics; and (iii) combine the
replanning guarantees of SSiPP and RFF.

Acknowledgments

We would like to thank Marcelo Hashimoto, Charalam-
pos Tsourakakis and the anonymous reviewers for their in-
sightful comments and Blai Bonet, Hector Geffner (mGPT),
Olivier Buffet, Douglas Aberdeen (FPG), Florent Teichteil-
Konigsbuch, Guillaume Infantes and Ugur Kuter (RFF) for
making the code of their planners available.

295

References

Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
act using real-time dynamic programming. Artificial Intelli-
gence 72(1-2):81–138.

Bertsekas, D., and Tsitsiklis, J. 1991. An analysis of
stochastic shortest path problems. Mathematics of Opera-
tions Research 16(3):580–595.

Bertsekas, D., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific.

Bertsekas, D. 1995. Dynamic Programming and Optimal
Control. Athena Scientific.

Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improving
the convergence of real-time dynamic programming. In Pro-
ceedings of the 13th International Conference on Automated
Planning and Scheduling (ICAPS’03).

Bonet, B., and Geffner, H. 2005. mGPT: A probabilistic
planner based on heuristic search. Journal of Artificial In-
telligence Research 24.

Bonet, B., and Givan, R. 2007. 2th International Probabilis-
tic Planning Competition (IPPC-ICAPS’06). http://www.
ldc.usb.ve/˜bonet/ipc5/ (accessed on Dec 13, 2011).

Bryce, D., and Buffet, O. 2008. 6th International Planning
Competition: Uncertainty Track. In 3rd International Prob-
abilistic Planning Competition (IPPC-ICAPS’08).

Buffet, O., and Aberdeen, D. 2009. The factored policy-
gradient planner. Artificial Intelligence 173(5-6):722–747.

Dean, T.; Kaelbling, L.; Kirman, J.; and Nicholson, A. 1995.
Planning under time constraints in stochastic domains. Arti-
ficial Intelligence 76(1-2):35–74.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14(1):253–302.

Kocsis, L., and Szepesvri, C. 2006. Bandit based Monte-
Carlo Planning. In Proceedings of the European Conference
on Machine Learning (ECML’06).

Kolobov, A.; Mausam; and Weld, D. S. 2009. ReTrASE:
Integrating Paradigms for Approximate Probabilistic Plan-
ning. In Proceedings of the 21st International Joint Confer-
ence on Artificial Intelligence (IJCAI’09).

Little, I., and Thiébaux, S. 2007. Probabilistic planning
vs replanning. In Proceedings of ICAPS Workshop on IPC:
Past, Present and Future.

McMahan, H.; Likhachev, M.; and Gordon, G. 2005.
Bounded real-time dynamic programming: RTDP with
monotone upper bounds and performance guarantees. In
Proceedings of the 22nd International Conference on Ma-
chine Learning (ICML’05).

Pearl, J. 1985. Heuristics: Intelligent Search Strategies
for Computer Problem Solving. Menlo Park, California:
Addison-Wesley.

Puterman, M. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons, Inc.

Smith, T., and Simmons, R. G. 2006. Focused Real-Time
Dynamic Programming for MDPs: Squeezing More Out of

a Heuristic. In Proceedings of the 21st National Conference
on Artificial Intelligence (AAAI’06).

Teichteil-Koenigsbuch, F.; Infantes, G.; and Kuter, U. 2008.
RFF: A robust, FF-based mdp planning algorithm for gen-
erating policies with low probability of failure. 3rd Interna-
tional Planning Competition (IPPC-ICAPS’08).

Veloso, M. 1992. Learning by analogical reasoning in gen-
eral problem solving. Ph.D. Dissertation, Carnegie Mellon
University.

Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008.
Probabilistic planning via determinization in hindsight. In
Proceedings of the 23rd National Conference on Artificial
Intelligence (AAAI’08).

Yoon, S.; Ruml, W.; Benton, J.; and Do, M. B. 2010. Im-
proving Determinization in Hindsight for Online Probabilis-
tic Planning. In Proceedings of the 20th International Con-
ference on Automated Planning and Scheduling (ICAPS’10).

Yoon, S.; Fern, A.; and Givan, R. 2007. FF-Replan: A
baseline for probabilistic planning. In Proceedings of the
17th International Conference on Automated Planning and
Scheduling (ICAPS’07).

Younes, H.; Littman, M.; Weissman, D.; and Asmuth, J.
2005. The first probabilistic track of the international plan-
ning competition. Journal of Artificial Intelligence Research
24(1):851–887.

Zickler, S., and Veloso, M. 2010. Variable Level-Of-Detail
Motion Planning in Environments with Poorly Predictable
Bodies. In Proceedings of the 19th European Conference on
Artificial Intelligence (ECAI’10).

296

