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Abstract

This paper presents a decision-theoretic planning ap-
proach for probabilistic environments where the agent’s
goal is to win, which we model as maximizing the prob-
ability of being above a given reward threshold. In com-
petitive domains, second is as good as last, and it is of-
ten desirable to take risks if one is in danger of losing,
even if the risk does not pay off very often. Our algo-
rithm maximizes the probability of being above a par-
ticular reward threshold by dynamically switching be-
tween a suite of policies, each of which encodes a differ-
ent level of risk. This method does not explicitly encode
time or reward into the state space, and decides when
to switch between policies during each execution step.
We compare a risk-neutral policy to switching among
different risk-sensitive policies, and show that our ap-
proach improves the agent’s probability of winning.

1 Introduction

Many probabilistic planners seek to maximize expected re-
ward, and do little to incorporate the variance of the reward
distribution when developing a plan for an agent. Therefore,
many planners assume the agent has a risk-neutral attitude.
In competitions, however, one often sees people behave dif-
ferently (e.g., take more risks) when they believe they may
end up losing. For instance, a sports team may play more ag-
gressively when losing, but more defensively when trying to
maintain a lead. This reflects the idea that it does not matter
by how much one wins or loses, as long as the score is in the
agent’s favor. We model this as maximizing the probability
of being above a given reward threshold (e.g. a competitor’s
current top score).

An agent needs to adjust its risk attitudes dynamically to
exceed a threshold and win. For example, a campaign man-
ager may appeal to particular advocacy groups or change the
tone of the candidate’s speech based on the candidate’s po-
sition in the polls. In hockey, if a team is losing, they often
remove the goalie in hopes that having an additional offen-
sive player will increase the chances of a tying goal. This
strategy is risky since it increases the chances of losing by
more goals. If the hockey team were just trying to maximize
its expected goal differential over the season it may never
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chose to remove the goalie. Intuitively, the idea of an agent
needing to be more aggressive or conservative while execut-
ing a policy parallels a human’s risk-seeking and risk-averse
preferences.

A straightforward approach is to encode cumulative re-
ward explicitly in the state space of a standard Markov De-
cision Process (MDP). Doing so, however, explodes the state
space since the number of different cumulative reward val-
ues is typically very large. We propose an alternate approach
in which multiple policies are generated offline. Then, an on-
line algorithm decides which policy to use based on which
is more likely to achieve the threshold constraint.

The algorithm reasons about the complete distribution of
rewards, not just mean and variance, to make fine-grained
decisions about which policy is most applicable for a given
situation. In particular, we provide an algorithm that decides
when to switch between strategies, at run-time, by estimat-
ing non-parametric distributions of the reward functions for
each of these policies. Agents with risk-sensitive policies to
choose from now have the ability to switch to a policy with a
higher variance in hopes of increasing their chances of meet-
ing the given threshold. We show that by switching policies
in such a manner, the agent will end up doing better (with
respect to the goal of finishing above a certain threshold of
reward) than if it just followed the risk-neutral policy.

2 Background
2.1

Initially, our algorithm requires a model of the environment.
We formulate this model as a Markov Decision Process, a
mathematical representation of a sequential decision prob-
lem. An MDP is a four-tuple {S, A, T(S, A), (S, A)} con-
sisting of:

Markov Decision Processes

e S :setofstates {sg... S0}

e A:setofactions {ag...ax}

o T(sy,a) transition function yielding s¢4q1, with
P(St+1|8t, at)

e 7(s¢,ay) : immediate reward function

Solving an MDP produces a policy, 7, that maps states to
actions 7 : S — A. One approach is to use value-iteration
to find a policy using the value-update rule below. This value
function is also used to estimate the distribution of future



discounted reward, as described in section 4.2.

V7(s) = max{R(s,a) +7 > _ P(s's,)V(s)} (1)
s’'esS

2.2 Utility and Risk

Incorporating risk attitudes captures the trade-off between
variance and mean in the distribution of reward outcomes.
For instance, risk-seeking policies tend to have a lower mean
and larger variance (more upside, but also more downside)
than risk-neutral policies. Utility theory provides structure
for making decisions of varying risk attitudes (Pratt 1964). A
utility function maps an agent’s value to a plan of wealth that
represents the agent’s rational choice. Linear utility func-
tions maximize expected cumulative reward and represent
risk-neutral decision makers, while exponential functions
model risk-sensitive decisions. Concave utility functions re-
flect risk-averse decisions, and convex utility functions char-
acterize risk-seeking decisions. The convexity of these func-
tions changes for different risk factors.

When an agent’s utility function is constant for the func-
tion duration (such as linear or exponential) the risk measure
is constant, and this is known as a zero-switch utility func-
tion. Zero-switch utility functions are unrealistic, since deci-
sions often change as wealth level changes. (Liu and Koenig
2008) take this a step further in defining MDPs that have a
one-switch utility function. In the one-switch case, an agent
acting risk-neutral may switch to being more conservative,
which entails one switch from a linear function to a con-
cave exponential function. While this is closer to realistic
decision making, it seems more natural to allow the agent to
switch multiple times between many utility functions, which
is what our approach supports.

3 Related Work

While previous work has investigated switching between
strategies (policies) to achieve different subgoals (Comanici
and Precup 2010), our work instead considers adapting a
strategy with the assertion of risk for a single goal — that
of winning. In defining what it might mean to win, other
works have discussed the idea of using thresholded reward
objective functions (McMillen and Veloso 2007), (Wagman
and Conitzer 2008). Our work differs by not requiring an ad-
versary, by focusing on the use of risk attitudes, not requir-
ing a threshold to be known ahead of time, and by having
the ability to switch strategies during run-time. These works
focus on solving variants of the MDP’s objective function,
and produce a single static policy. For instance, in (Geibel
and Wysotzki 2005), risk is incorporated into the estimated
objective function as a weighting factor.

By not focusing on altering the MDP’s objective function,
our work also trades off computation at execution time for
creating policies more efficiently during planning time. This
tradeoff was also a goal of work done by (Roth, Simmons,
and Veloso 2005) in limiting communication for distributed
agents modeled as DEC-POMDPs.

Another distinguishing characteristic of our work is that
we reason about the complete distribution of a policy’s re-
ward, rather than just the expectation: in particular the re-
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ward is modeled as a non-parametric distribution. Other
work that estimates the variance of an MDP (Tetreault, Bo-
hus, and Litman 2007) does so by adding uncertainty to
the MDP model’s parameters. This is done by modeling
the transition probabilities as a Dirichlet distribution and
mapping confidence intervals over transition counts. Our
approach better handles the tails of the distribution, which
is very important for distinguishing the effects of different
risk-sensitive policies.

4 Run-Time Policy Switching

A utility function that maximizes the probability of being
over a given threshold, while representing the entire do-
main, is difficult to know ahead of time. This paper assumes
that function is unknown, and emulates a multi-switch utility
function by deciding which policy to follow (corresponding
to different risk attitudes) during run-time. To accomplish
this, we generate a suite of policies, including a risk-neutral
policy (linear utility function), and risk sensitive policies
(see section 4.1). A risk factor, ¢, controls the amount of
convexity for the exponential utility functions.

Then, for each policy, we estimate the complete reward
distribution. This is done by executing (offline) a sufficient
number of trajectories in the original MDP and collecting
statistics on the cumulative rewards achieved at each state.
The distribution of rewards is then modeled as a Cumulative
Distribution Function (CDF) (see section 4.2). Finally, at
each step during run-time, the agent determines which pol-
icy has the highest probability of exceeding the (user spec-
ified) reward threshold, given the current state and cumula-
tive reward, so far. The agent then picks the action associated
with the current state for that policy, executes it, then deter-
mines again which policy to use (see section 4.3).

4.1 Creating Policies

Creating a suite of policies that allow a variety of strate-
gies for the agent to employ, requires a model of the world
in the form of an MDP. While different techniques may be
used to generate the various risk-sensitive policies, we use
the transformation algorithm described in (Koenig and Sim-
mons 1994) and (Liu 2005). This transformation does not
affect the state space, but merely changes the structure of
the MDP to choose actions based on probabilities that now
form an exponential utility rather than a linear utility. The
reason exponential utility functions are used is because they
maintain the Markov property, preserve the decomposability
of planning functions, and they are one of the most common
risk functions. Convex utility functions (Figure 1a) are of the
form:
U(r)y=40",0>1
and concave functions (Figure 1b) are of the form:
U(r)=-0",0<d < 1.

where ¢ is the risk factor, and r is a reward. (Liu 2005) fur-
ther simplifies the function as :

Ue:L‘p (7‘) = L(Sra

where
L= sgnlné.
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Figure 1: Convex and concave exponential utility functions

To summarize the approach described in (Koenig and
Simmons 1994), the transition probabilities of the origi-
nal MDP are transformed by multiplying them by a func-
tion of risk and the immediate rewards are also trans-
formed. Specifically, all non-goal state transition probabil-
ities are converted to P(s'[s,a)é”(>®). The original prob-
abilities add up to one, but transforming the probabilities
cause them to decrease depending on the risk factor. Since
the transformed probabilities no longer add up to one, an
additional sink state is introduced where the probability is
1— >, cq P(s'|s,a)6"(>%). The larger the risk factor, the
greater chance the agent has of falling into this sink state,
and the more it is encouraged to take riskier actions. There-
fore, increasing the risk parameter, J, generates policies that
select increasingly riskier actions. Models with mixed posi-
tive and negative rewards, known as arbitrary rewards, re-
quire certain properties to hold, described in (Liu 2005).
Positive rewards cause the initial MDP probabilities to be
scaled to a value less than or equal to the reward, which
might be greater than one, so arbitrary rewards are trans-
formed to [0,1].

4.2 Estimating the Reward Distribution

The next step is to empirically estimate the (non-parametric)
distribution of reward for every state of each policy. We do
this by executing the policies in the original MDP. Each tra-
jectory run will result in a cumulative discounted reward
value. These values make up the distribution.

The cumulative discounted reward is given by:

R(s) =Y _~'r(si, a;) )
=0

where ~y is the discount factor.

More explicitly:

a=T(s) ‘

R(s) = 7"r(s0, a0) +7 32720 v'r(si, ai)

R(s) = r(s0,a0) +v(r(s1,a1) + y(r(s2,a2) +...))
where T(s,a) is the transition function for generating all of
the next states:

R(s) = r(s,a) + v(R(T(s,a))) 3)

Note that the discount factor decreases the contribution of
the future reward term over time. Therefore, there is a point
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where the discount factor causes the future reward to be ar-
bitrarily small WTT * marR < e;, where max R is the max-
imum possible immediate reward and ¢; is a small constant.
Trajectory length (7'r), or required number of time-steps, is
then calculated as:

_ log(er) —log(maxR)

Tr = 4
: log(v) @

A trajectory is a sequence of state and action transitions
sp =™ 51 = sy generated by following the known pol-
icy in the environment, and may visit the same state mul-
tiple times. The stopping criteria, for how many trajecto-
ries to run, is based on the convergence of a fourth-order
statistic. The statistic needs to be scale invariant, since our
approach is domain-independent. Convergence occurs when
the variance of the distribution variance divided by the mean
of the variance is less than some small value, e5. This statis-
tic states that convergence occurs when the spread between
numbers in sample distributions (obtained from the overall
distribution) is arbitrarily small, and then this is scaled by
the mean.

After collecting the distribution of values for each policy,
we convert them into the corresponding Cumulative Distri-
bution Function (CDF).

)= [ " fWydt= PV <) )

The CDF, F(z), gives the probability of achieving reward
less-than-or-equal to some cumulative discounted reward, x.
Note that for each policy we need a separate CDF for every
state. Example CDFs are shown in Figure 4 and pseudocode
for estimating the reward function is presented in Algorithm
1. For every state, the trajectory length is calculated by equa-
tion (4). Then, while the statistic has yet to converge, lines
7-10 go through an entire trajectory sequence saving off the
immediate reward that corresponds with each state. The next
for loop is used to discount all the states’ corresponding re-
ward values at once.

To increase efficiency, we simultaneously collect rewards
for every state visited along a trajectory. In particular, the
cumulative value of s; is R(s;) as given in equation (2).
Trajectories can visit the same state multiple times, so one
trajectory run may collect multiple values for that state. We
run trajectories of length 2 « T'r (line 6 of Algorithm 1), but
do not include values of states s; where ¢ > T'r. Even with
having to run each trajectory twice as long, collecting mul-
tiple values per trajectory is a huge win in our experiments,
at least an order of magnitude faster.

4.3 The Switching Criteria

It is straightforward to calculate the maximum probability
over a threshold using the CDF. The probability of being
above a discrete threshold is a matter of subtracting the CDF
from one.

1— F(z) = /Oo Ft)dt = P(V > ) (6)



Algorithm 1 generates reward distributions given a policy.
For each starting state, a trajectory is run for the calculated
trajectory size. The second nested for loop is used to dis-
count the rewards by backtracking.

I: fori =1 — stateSz do
2: Tr=getTrajectorySize(er)
: do

3
4:  wals = get AllV alsSavedForStartState(s;)
5:  statistic = var(var(vals))/mean(var)

6: forj=1—2«Trdo

7

8

a; = m(s;)
: r=r(sj, a;)
9: saveO f f(r,s;,0,7)
10: sj+1 = getNextState(T (s, a;))
11:  end for
12:
13:  //backtrack to discount the values
14 R=0
15:  for z = savedOf fValsSz — 1 do
16: r = getSavedOf f(x).ImmedRew
17: R=r+~vxR
18: if x < T'r then
19: s = getSavedOf f(x).s
20: saveOf f(r,s, R, x)
21: end if
22:  end for
23:  while(statistic > €)
24: end for

We define R’ (s) as the running cumulative discounted re-
ward for time ¢, starting in state s.

N

[Note that R(s) in equation [2] is then equal to R*°(s).]

Now, P(V > z), becomes:
P(R(sg) > thresh|r)

t—1 o]
R(so) = 3 'r(s,a) + 34y "r(si, a,)
i=0 i=t
R(so) = R *(s0) + 7' R(s:)

so to maximize the probability of being greater than thresh-
old thresh, we have:

max P(R'™(so) + ' R(s¢) > thresh|r)

thresh — R'=1(sg)

max P(R(s:) > p |7)
_ pt—1
valtofind = thresh ’)’tR (50)

The pseudocode in Algorithm 2 details the process of se-
lecting actions, by choosing the policy that maximizes the
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probability of being above valfofind. Note that, if the poli-
cies are equal, the algorithm defaults to following the risk-
neutral policy. Also note that the CDF for each policy is not
required to be smooth, and in some cases may resemble a
step function. It is necessary to interpolate the values to re-
trieve the probability since the CDF is not continuous. This
occurs on lines 7 and 8 (of Algorithm 2) in the cdf Get func-
tion.

Algorithm 2 executes actions starting in some initial state. It
switches between selecting the actions from a set of policies
based on a threshold.

1: Given threshold thresh, start state s,

2: Tr = getTrajectorySize(e)

3: g = 0

4: forv=0—Tr —1do

50 i =r(si,a4)

6: cdfVal = (thresh — R;) /v

7.

8

max = 0

TeurrBest — Trisk—neutral

9 for 0 — alledfs do

10: cCurr = 1 — cdf Get(cdf Val, cdf .this)
11: if cCCurr > max then

12: max = cCurr

13: TeurrBest — TcurrCDF

14: end if

15:  end for

16: Qi1 = 7"-(:11,7"7’1'36591‘/(Si)

17: Ri+1 =R, + ﬁ/l * 1y

18:  si41 = getNextState(T (s, aiv1))
19: end for

4.4 Changing the Reward Threshold

Our formulation assumes that the reward threshold is given
as an input. In some cases, threshold values can correlate to
interpretations of the world, such as cut-off times for deliver-
ing items or the current high score of a video game. A thresh-
old could also be a percentage line in the CDF, such that
60% of the time the distribution is better than some value.
The threshold depends on the problem one is trying to solve.
The algorithm does not care how the threshold is chosen or
what it represents. The algorithm attempts to maximize the
probability of being over the threshold, regardless.

Note, however, that as the threshold shifts to the lower end
of the reward distribution, the agent chooses policies that are
more risk-averse; as the threshold shifts to the other extreme,
the agent chooses more aggressive policies. Depending on
the uncertainty in the environment, it may need to switch to
risky policies earlier, rather than later, or scale back to a less
risky policy when it is performing well.

5 Evaluation

We have tested our algorithm in two domains: Super Mario
Bros (described in section 5.1) and a simpler pizza delivery
domain (described in section 5.4).



5.1 Mario Domain

The Super Mario Bros domain uses the Infinite Mario simu-
lator !. Previous work using this domain (Mohan and Laird
2011) compared a learning agent to the agent provided with
the simulator for one world. Our agent generalizes a small
state space over many worlds.

Infinite Mario includes a trainer for generating episodes
of varying difficulty and type. The agent (Mario) must move
through the environment collecting objects, fighting mon-
sters, all while getting to a goal line without being killed.
The environment is made up of observations and actions.
Mario receives the visual scene as a 16 x 22 array of tiles.
Each tile contains a character or a number. If the tile is a
character, it represents the tile type (coin, block, etc); if it is
an integer, it indicates how Mario can travel through that tile.
There is also an observation vector that includes the location
and types of monsters in the environment. The primitive ac-
tions Mario can take correspond to buttons on a Nintendo
game controller: direction, jump, and speed.

Figure 2: Mario world (screen capture from the Infinite
Mario simulator)

The action space for our model is made up of nine macro-
actions (see Table 1), inspired by Function Level Operators
in (Mohan and Laird 2010). A macro-action tries to find a
path to its object of interest using A*. The A* path goes
around anything Mario is not able to travel through on his
way to the object. The macro-action executes the A* path
until the end condition is met, using the appropriate combi-
nation of primitive actions.

The state space for our MDP is based on Mario’s rela-
tionship to objects in the environment. A symbolic state rep-
resentation for Mario was presented in (Mohan and Laird
2010). Our state vector contains seven dimensions {mario,
block, coin, mushroom, pipe, finish, goomba}. Each dimen-
sion takes on two possible values; either the object is near (in
the visual scene) or far (not in the visual scene). The “mario”
dimension indicates if Mario is big or small.

In Infinite Mario, each episode is generated based on a
seed value. The rewards Mario receives are -0.01 for each
time step, -10 for dying, 1 for collecting a coin or killing a
monster, and 100 for reaching the finish line. We ran 1,000
trials over different starting episodes to estimate the transi-
tion probabilities and cumulative rewards for macro-actions.

"http:/2009.11-competition.org/mario.php

87

Macro-actions

Action Name Description End Condi-
tion
grabCoin go to nearest coin | past coin
grabCoinForever | go to nearest coin | no coins
avoidMonster g0 past monster past monster
tackleMonster go to above mon- | past monster
ster (to smash)
tackleMonster go to above mon- | all monsters
Forever ster (to smash) smashed
searchBlock hit nearest ques- | past block
tion block
searchBlock hit nearest ques- | blocks
Forever tion block searched
getMushroom find hidden | past mush-
mushroom room
moveSmart use A-Star to | past move
move right 4 position

Table 1: Macro-actions of the MDP model

Mario chooses randomly from the set of macro-actions at
each time step (biased to moving towards the finish line, in
order to avoid getting stuck too often). While the macro-
action is executing, immediate rewards are accumulated, and
these become the “immediate” reward of the macro-action.
Similarly, the state when the macro-action is started and the
state when it completes are used to update the transition
probability for that pair of states.

The MDP is solved using value-iteration, where the im-
mediate reward and transition functions return values based
on the information captured by sampling the Mario world.
To generate each risky policy, the probability changes to
P(s'|s,a)d"(%%) where P(s'|s, a) is the transition probabil-
ity obtained from earlier testing, § is a risk factor greater than
one, and r(s,a) is the average immediate reward for this
state and action from the recorded rewards. The Mario world
contains both negative and positive rewards, so the probabil-
ity returned must be linearly transformed to a range between
0 and 1. In other words, the interval [0,1 % gmazReward]
needs to map to [0, 1]. Exponential functions maintain their
convexity for affine transforms. The linear transformation
for the probability mapping is just a mapping from [A, B]
to [C, D] where 2’ = ((D — C)/(B — A))z + C.

The policies produced for the risk-seeking transformation
tend to choose the forever macro-actions more (see Table 1).
For these actions, there is a chance of getting a higher score
by retrieving all the objects and an increased chance of dy-
ing, since Mario is in the environment longer. The moveS-
mart macro-action also is chosen more often in the risky
policies. This action may be chosen more because it pro-
duces more variance in the environment than just going after
a particular object. The histograms for various policies are
displayed in Figure 3. Not that, as the risk value increases,
the distributions have a larger variance but lower mean.

The reward functions for each state in the MDP are esti-
mated according to the algorithm described in section 4.2.
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Figure 3: Histograms for varying risk values

Two variations of the domain were used. The Mario world
modeled as an MDP and the actual Infinite Mario simulator.
The difference between the two can be thought of as an ex-
ample where the model is well known and one where things
may not be modeled perfectly.

Reward distributions are estimated for each state in these
domains. For the Infinite Mario simulator, estimations are
taken over multiple random seeds (different episodes) and,
for the MDP model, domain trajectories are sampled based
on the transition probabilities constructed previously. The
number of samples needed depend on the convergence
statistic described in section 4.2. CDFs are then constructed
for all of these states. The CDF for various policies in start
state 0 {mario small, block far, coin far, mushroom far, pipe
far, finish far, goomba far} is shown for the MDP domain in
Figure 4a and the actual Mario simulator in Figure 4b. The
MDP modeled Mario is slightly more optimistic, partly be-
cause the model was constructed using the average immedi-
ate rewards collected in the environment. Also, it is possible
the MDP assumes that there are more transitions to states
with higher reward (such as more coins) than actually exist
in the real environment.

5.2 Mario Results

Different threshold values affect how often the switching
strategy chooses more risky actions. The rewards are dis-
counted so the total reward received is lower than the ex-
act values returned in the Mario simulator. First, the results
are displayed for exploiting the policy in the modeled Mario
MDP (Tables 2 and 3). Each group of results compares 1,000
trajectory runs, all with start state 0, using just the risk-
neutral policy versus 1,000 runs using the switching strat-
egy (switching between the risk-neutral policy and a risky
policy with 6 = 1.2). In order to compare trajectories fairly,
random probabilities are generated offline on a per-state ba-
sis. As the policy is being exploited in the original MDP, the
probability that corresponds to the current state, and num-
ber of times visited, is retrieved. This probability is then the
same for both trajectories, and is used to determine the next
state.

Table 4 shows results in the actual Mario world for the
risk-neutral policy and the switching strategy (switching be-
tween the risk-neutral policy and a risky policy with 6 =
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| Mario MDP model for a threshold of 30: ]

Switching Switching
Wins Loses
Risk-neutral Wins 754 18
Risk-Neutral Loses 59 169
No switching lost : 228 times
Switching strategy lost: 187 times.

Table 2: Fails 4.1% less using switching strategy; reduces

losses by 18%.

| Mario MDP model for a threshold of 100:

Switching Switching
Wins Loses
Risk-neutral Wins 40 41
Risk-Neutral Loses 222 697
No switching lost : 919 times
Switching strategy lost: 738 times.

Table 3: Fails 18.1% less using switching strategy; reduces

losses by 19.7%

| Mario simulator for a threshold of 30:

Switching Switching
Wins Loses
Risk-neutral Wins 72 90
Risk-Neutral Loses 107 731
No switching lost : 838 times
Switching strategy lost: 821 times.

Table 4: Fails 1.7% less using switching strategy; reduces
losses by 2%

1.05). Each group of results compares runs over 1,000 dif-
ferent worlds, generated using different seeds.

5.3 Mario Discussion

The results for trajectories run in the MDP model demon-
strate how beneficial the switching strategy is when the
model is well known. As the threshold value increases the
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Figure 4: CDFs for the Mario MDP model and the Infinite
Mario simulator for start state 0. The graphs show the esti-
mated reward function of the risk-neutral policy (6=1) com-
pared to risky policies (6 = 1.05,6 = 1.2) for each domain.

switching strategy is more beneficial because the higher
threshold takes riskier actions sooner, which allows the re-
sulting CDF to reside in between the risk-neutral and risky
policy at higher values. Low thresholds may never take risky
actions soon enough to reach the higher cumulative dis-
counted reward values.

The results for trajectories in the Mario simulator show
that even in a world that may not be modeled perfectly the
switching strategy can provide some benefit. There is no im-
provement when using a threshold of 80, but in Figure 4b
one can see that a threshold this high is approaching the up-
per bound for what the agent can achieve in practice.

5.4 Pizza Domain

We also evaluated our algorithm in a navigation domain,
where a vehicle drives through a non-deterministic world for
the purpose of delivering a pizza. The idea is that the deliv-
ery driver may need to be risk-sensitive in order to make
the delivery on time. The state space has three dimensions:
an x,y location and a Boolean value indicating whether the
driver has a pizza. For a ten by ten grid, the world contains
200 states (refer to Figure 5).

The world contains the following actions: (PICKUP,
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Figure 5: Navigation grid for pizza delivery world

| Reward Mappings |
[ Action Name | State | Reward |
DROPOFF x,y=delivery| 50
location,
have pizza
PICKUP X,y=pizza -1
shop, no
pizza
RISKMOVE{N,S.E.W}{ any -2
MOVE{N,S,E,W} any -6

Table 5: Reward mappings of the MDP model

DROPOFF, MOVE{N,S,E,W}, RISKMOVE{N,S,E,W}).
The MOVE{N,S,E;W} actions are more deter-
ministic and have a higher cost. Riskier actions
(RISKMOVE{N,S,E,W}) are cheaper and have a chance
of traveling further, but have a lower probability of ac-
tually progressing. For action MOVE{N,S,E,W}, there
is an 80% chance of moving one square and a 20% of
staying in the same square. The probabilities for the action
RISKMOVE{N,S,E,W} are a 9% chance of moving one
square, a 7% chance of moving two squares, and an 84% of
staying put. Table 5 presents the immediate rewards for this
domain.

5.5 Pizza Domain Results

The results in Tables 6 and 7 compare the risk-neutral policy
and a risky policy with risk factor 6 = 1.2, at two different
threshold values. The policies generated are run in the orig-
inal MDP domain. Each group of results compares 10,000
trajectory runs between the risk-neutral policy versus the
switching strategy. As before, we generate random proba-
bilities offline on a per-state basis to compare the policies
fairly.

As stated in the introduction, a straightforward approach
to the problem of exceeding reward thresholds is to en-
code cumulative reward explicitly in the state space. Since
the pizza delivery domain is small enough, we can feasibly
do that and compare the results against our approach. The
state space of the pizza domain was augmented to include
an additional dimension of cumulative reward. We capped
the maximum and minimum cumulative reward from 0 to
-150 and removed discounting. This inflates the 200 states



| For a 30% threshold (threshold = -100):

Switching Switching
Wins Loses
Risk-neutral Wins 6422 458
Risk-Neutral Loses 1412 1708
No switching lost : 3120 times
Switching strategy lost: 2166 times.

Table 6: Fails 9.5% less using switching strategy; reduces

losses by 30.6%

| For a 60% threshold (threshold = -88.5):

Switching Switching
Wins Loses
Risk-neutral Wins 2885 830
Risk-Neutral Loses 3271 3014
No switching lost : 6285 times
Switching strategy lost: 3844 times.

Table 7: Fails 24.4% less using switching strategy; reduces
losses by 38.8%

to 30,000 states. The MDP reward function now returns a
large positive reward if the driver delivers a pizza at the
goal and the cumulative reward exceeds the reward thresh-
old and a small positive reward for delivering the pizza while
not exceeding the threshold, to encourage the planner to
achieve the goal regardless. An additional cost is also added
for states that are not the goal and are under the threshold
value. This parallels the MDP transformation necessary to
use thresholded reward objective functions as explored in
(McMillen and Veloso 2007).

As expected, the offline planning times for the reward-
augmented policy were significantly greater than for our al-
gorithm. Solving for the policy with 30,000 states took ap-
proximately 18 hours, while solving for the 200 state policy
took a few seconds (using an Intel 3.15 Ghz processor). Even
though our algorithm must solve multiple policies, gener-
ate offline reward distributions for each state (which took
5 to 10 minutes per policy) and construct the correspond-
ing CDFs (which took about 1 minute per policy), the pro-
cessing is still significantly less than it takes to solve for the
augmented-reward policy.

The difference in run time computation is small. Our ap-
proach must evaluate a point on the CDF for each policy,
which is a straightforward linear interpolation. There is a
cost for reading in the CDFs (which are generated offline)
for each state of each policy, but that is done just once, at
start up.

Comparing the results of the policies did not show a
significant difference between the reward-augmented and
switching policies. Both performed better than the risk-
neutral policy, but their similarity could be attributed to the
fact that in such a simple domain the switching strategy is
approaching optimal. In general, the reward-augmented pol-
icy is expected to perform better (and should behave opti-
mally, with respect to the objective of exceeding the reward
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threshold).

5.6 Pizza Domain Discussion

Besides performing significantly better than the risk-neutral
policy, it is interesting to note that the average trajectory
lengths are higher for the switching strategy versus the fol-
lowing the risk-neutral policy. Also, the trajectory lengths
for the switching strategy increase as the threshold increases
because as more risky actions are taken there is a higher
chance of getting stuck in the same state.

Policies generated contained all MOVE actions for the
risk-neutral case and more RISKMOVE actions depending
on the convexity of the risk factor. The reward-augmented
policy chose more risky actions as the cumulative reward
got closer to the threshold, and returned to MOVE actions
once the threshold was exceeded.

While increasing the state space to include cumulative
reward creates an optimal policy for thresholded rewards,
there is a tradeoff with longer execution time and less flex-
ibility for setting the threshold. The optimal policy must be
re-generated for every threshold that needs to be tested. This
can take days depending on the size of the state space. Our
algorithm allows a threshold to be re-set during the switch-
ing stage, and does not affect the offline policy generation.

6 Conclusion

For these specific domains, there was not a large difference
between the risk-seeking levels, so results are shown only
comparing risk-neutral with one risky policy. This algorithm
allows for more complex domains to compare with multiple
risk-sensitive policies based on the architect’s preferences.

We presented a domain-independent algorithm that aims
to maximize the probability of exceeding a threshold at ex-
ecution time using risk-sensitive policies. This was demon-
strated on two domains showing the benefits of taking more
risks to win. For future work, we would like to continue to
explore additional ways an agent adapts and operates reli-
ably in a dynamic environment. More specifically, having
the agent gather more contextual awareness on whether it
was winning or losing is useful. The long term goal is to ap-
ply these principles to enhance the robustness of real robotic
systems.
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