
Optimal Planning for Delete-Free Tasks with Incremental LM-Cut

Florian Pommerening
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee 52
79110 Freiburg, Germany

pommeren@informatik.uni-freiburg.de

Malte Helmert
Universität Basel

Fachbereich Informatik
Bernoullistrasse 16

4056 Basel, Switzerland
malte.helmert@unibas.ch

Abstract

Optimal plans of delete-free planning tasks are interesting
both in domains that have no delete effects and as the relax-
ation heuristic h+ in general planning. Many heuristics for
optimal and satisficing planning approximate the h+ heuris-
tic, which is well-informed and admissible but intractable to
compute. In this work, branch-and-bound and IDA∗ search
are used in a search space tailored to delete-free planning to-
gether with an incrementally computed version of the LM-
cut heuristic. The resulting algorithm for optimal delete-free
planning exceeds the performance of A∗ with the LM-cut
heuristic in the state-of-the-art planner Fast Downward.

Introduction
The delete-relaxation heuristic h+ is a well-informed heuris-
tic for classical planning. It is defined as the optimal solu-
tion of a task where all negative effects are ignored. Since it
is intractable, it is seldom used in practice and approxima-
tions are used instead. For example, the additive heuristic
(Bonet and Geffner 2001) is an upper bound approximation
for h+. The FF heuristic (Hoffmann and Nebel 2001), ad-
ditive FF heuristic (Keyder and Geffner 2008), set-additive
heuristic (Keyder and Geffner 2008) and local Steiner tree
heuristic (Keyder and Geffner 2009) are all defined as costs
of (potentially suboptimal) solutions to a delete-relaxed task
and are hence also upper bounds for h+. Admissible heuris-
tics based on delete relaxations provide lower bounds for
h+, including Bonet and Geffner’s (2001) hmax, Karpas and
Domshlak’s (2009) admissible landmark heuristics and the
LM-cut heuristic hLM-cut (Helmert and Domshlak 2009).

For most of these heuristics, it is unknown how closely
they approximate h+. An algorithm that determines optimal
solutions for delete-free planning tasks could help answer
this question. Moreover, it could be applied directly to do-
mains that contain no delete effects, such as the minimal
seed set problem (Gefen and Brafman 2011).

Recent work by Betz and Helmert (2009) demonstrated
the informativeness of h+ as a heuristic for general plan-
ning tasks. Bonet and Helmert (2010) relate h+ computation
to finding optimal hitting sets for sets of disjunctive action
landmarks. Bonet and Castillo (2011) turn this idea into an

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

algorithm that computes h+ through an implicit hitting set
problem formulation. Haslum, Slaney, and Thiébaux (2012)
follow the same basic approach, but use a different algorithm
for generating the disjunctive action landmarks to hit. Based
on this algorithm for computing h+, Haslum (2012) defines
the heuristic h++ that uses an optimal relaxed plan as input
and discovers plans with increasing costs that converge on
the optimal solution of the original planning task.

One way to calculate h+ is to solve the delete relaxation
of a task with an optimal planner. For example, A∗ can be
used with the LM-cut heuristic, which is based on disjunc-
tive action landmarks. In regular A∗ search, these landmarks
are computed from scratch for every search state.

We present a new approach for solving delete-free plan-
ning tasks using the LM-cut heuristic. The key ingredients
are a search space exploiting the properties of delete-free
tasks and the use of depth-first search algorithms that allow
incremental computation of hLM-cut.

Notation
The planning tasks considered here are delete-free proposi-
tional STRIPS tasks with action costs:

Definition 1 (Delete-free planning task). A (delete-free)
planning task is a tuple Π = 〈V, I,G,O〉 with a finite set
of propositional variables V , an initial state I ⊆ V , a set
of goals G ⊆ V and a finite set of operators O, where each
o ∈ O consists of a set of preconditions pre(o) ⊆ V , a set
of (add) effects add(o) ⊆ V , and a cost cost(o) ∈ R+

0 .

An operator o is applicable in state s ⊆ V if pre(o) ⊆ s.
Applying o in s results in the state s[o] = s ∪ add(o). An
operator sequence π = o1 . . . on is applicable in s if there
are states s0, . . . , sn such that s0 = s and for all 1 ≤ i ≤
n, oi is applicable in si−1 and si−1[o] = si. Applying π
in s results in s[π] = sn. If G ⊆ s[π], the sequence π
is called a plan for s. The cost of an operator sequence is
cost(o1 . . . on) =

∑n
i=1 cost(oi).

Heuristic functions h map states s to heuristic values
h(s) ∈ R+

0 ∪ {∞}. The perfect (delete-relaxation) heuris-
tic h+ maps each state s to the cost of a cheapest plan for
s. Heuristics h that never overestimate this cost, i.e. where
h(s) ≤ h+(s) for all s, are called admissible.

Optimal planning is the problem of finding minimal-cost
plans for I . In the delete-free setting, this problem is NP-

363

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling

equivalent (Bylander 1994) and not approximable within a
constant factor unless P = NP (Betz and Helmert 2009).

Theory

Branch-and-Bound. Depth-first branch-and-bound search
(Lawler and Wood 1966) is an informed search procedure
which uses a heuristic to prune parts of its search tree. It
finds the cheapest solution in a given interval or proves that
there is no such solution. If the full interval [0,∞) is used,
a globally cheapest solution is discovered. Whenever a plan
π is discovered, the interval is intersected with [0, cost(π))
and the search for a cheaper solution continues. For each
search node σ, the sum f(σ) of a heuristic value h(σ) and
the cost needed to reach this node g(σ) is an estimate for all
solutions in the subtree rooted in σ. A node is pruned if the
search interval does not intersect the interval [f(σ),∞), as
this means that no solution represented in this subtree has
a cost that is contained in the search interval. Branch-and-
bound search is complete and optimal if the search space is
finite and the heuristic is admissible.

Search Space. The search space used here differs from the
one used by general planning algorithms. Instead of intro-
ducing one successor for each applicable operator in the
search node’s state, we pick one applicable operator and
branch over the decision whether this operator is applied
now or never. This is possible for delete-free STRIPS tasks,
where no operator needs to be applied more than once and
it is never beneficial to defer application of an operator to a
later stage in the plan. If s is the state associated with the
current search node and o is the chosen operator, then one
successor node has the associated state s[o] and the other has
associated state s, and in both successor nodes o is removed
from the set of operators.1 As an additional optimization,
if any operator with cost 0 is applicable in s, it is applied
and subsequently removed from the task immediately with-
out branching, as applying it can never be harmful. This op-
timization is also mentioned by Gefen and Brafman (2011).

A major advantage of this search space over a traditional
one is that due to the removal of operators, heuristic values
can increase quickly or even become infinite if a critical op-
erator is removed, leading to more pruning.

LM-cut Heuristic. We use the LM-cut heuristic within
branch-and-bound search, which experiments have shown
to provide very accurate lower bounds to h+ for many plan-
ning tasks (Helmert and Domshlak 2009). LM-cut is based
on disjunctive action landmarks, i.e., operator sets L such
that at least one operator in Lmust be contained in every so-
lution. The cost of a landmark is the minimum over the costs
of all operators contained in it. We refer to the literature for
a complete description of hLM-cut (Helmert and Domshlak
2009; Bonet and Helmert 2010). For our purposes, we only
need to know that the LM-cut computation is performed in
rounds where each round proceeds as follows:

1For a formal proof that the search space is correct in the sense
that it always contains some optimal plan if the task is solvable, we
refer to the first author’s Master’s thesis (Pommerening 2011).

1. Compute the hmax values of all variables. If hmax(g) =
0 for all goal variables g, stop and return the computed
heuristic value. If hmax(g) = ∞ for some goal variable
g, stop and return∞.

2. Use the hmax values to compute a landmark L and add
the cost c of L to the heuristic value (which starts as 0).

3. Reduce the operator costs of all operators in L by c.
In the usual (nonincremental) LM-cut heuristic, each com-
puted landmark is discarded after step 3. and all operator
costs are restored to their original values before returning.
Incremental LM-cut. The search space described above al-
lows incremental computation of hLM-cut(s). To do so, we
store the landmark set L computed by the LM-cut procedure
as well as the remaining operator costs at the time the proce-
dure ends. Assume we have just computed the heuristic for
search node σ and are now considering a successor of σ.

For the successor σo where operator o is applied, we dis-
charge all landmarks in L containing o by removing them
from L and adding the costs of these landmarks back to
their operators to undo step 3. of the LM-cut computation.
All other landmarks in L must also be landmarks of σo, so
we can start the LM-cut computation with these landmarks
already computed. For the successor σ¬o where operator
o is not applied but forbidden, all landmarks in L remain
valid and o can be removed from all landmarks containing
it. If this makes some landmark empty, the node is a dead
end. Again, we can start the LM-cut computation with many
landmarks already computed.

In the common case of binary-cost planning tasks, where
all action costs are equal to 0 or 1, the landmarks produced
by LM-cut are always disjoint, so each operator o can be
part of at most one landmark, which we call its containing
landmark L(o) (undefined if o is not contained in any land-
mark). In this case, the incremental LM-cut computation
can be made particularly efficient by applying the following
rules:
• o was just applied and L(o) is undefined: no recomputa-

tion at all is necessary
• o was just applied and |L(o)| = 1 (i.e., o is the only op-

erator in its landmark): discharge L(o); no further recom-
putation is necessary

• o was just applied and |L(o)| > 1: discharge L(o) and
run the LM-cut procedure to check for new landmarks

• o was just forbidden and L(o) is undefined: no recompu-
tation at all is necessary2

• o was just forbidden and |L(o)| = 1: the new node is a
dead end; return a heuristic value of∞ immediately
• o was just forbidden and |L(o)| > 1: remove o from
|L(o)| and run the LM-cut procedure to check for new
landmarks
Formal correctness proofs for these rules are provided by

Pommerening (2011), along with examples showing that in
the two cases where LM-cut computations are performed,
they are indeed necessary to avoid missing landmarks.

2This is only true if we apply the previously mentioned opti-
mization of automatically applying zero-cost operators.

364

Improvements
Variable Ordering. The search space of our branch-and-
bound search is similar to the one used in backtracking al-
gorithms for constraint satisfaction problems (CSPs). One
important consideration for CSP search is which variable to
branch over next (in our case: which applicable operator to
consider). A frequently used heuristic for choosing the next
variable to assign in CSPs is the minimum remaining values
heuristic (Bacchus and van Run 1995) that chooses a vari-
able with a minimal number of possible values, i.e. one that
is maximally constrained. In our setting, this corresponds
to branching over an applicable operator in a smallest land-
mark. We follow this strategy by determining the minimum
size of a landmark that contains an applicable operator, col-
lecting all applicable operators from such landmarks, and
then selecting one such operator uniformly at random. (We
do not consider operator cost in our branching decision be-
cause our experiments are limited to unit-cost task.)
Unit Propagation. The search space can be seen as defin-
ing an implicit model finding (SAT) task. For each oper-
ator, the algorithm has to decide whether it is part of the
desired solution or not, which can be seen as a propositional
variable. Dependencies between operators implicitly define
constraints between such variables; in particular, landmarks
correspond to propositional clauses. This view allows us
to adopt the idea of unit propagation (Davis, Logemann,
and Loveland 1962): if there is a single-operator landmark
L = {o} in σ and o is applicable, we can apply o with-
out branching, i.e., only generate successor σo but not σ¬o.
However, unit propagation can only lead to trivial run time
improvements in the presence of the above-mentioned vari-
able selection strategy (which prefers branching over short
landmarks) and incremental LM-cut heuristic (which imme-
diately identifies σ¬o as a dead end).
Pure Symbol Heuristic. We already mentioned the auto-
matic application of zero-cost operators. This can be com-
pared to the pure symbol heuristic (Russell and Norvig 2010,
Ch. 7) for satisfiability, which automatically assigns either a
false or true value to a propositional variable if this choice
clearly dominates assigning the complementary truth value.

Preprocessing
To reduce the search space further, we apply two preprocess-
ing techniques that preserve optimal solution costs. First,
we remove variables and operators that are irrelevant to the
goal according to a standard back-chaining relevance analy-
sis (e.g., Nebel, Dimopoulos, and Koehler 1997).

Second, following an observation by Haslum et al. (2012),
we remove all operators that are not first achievers of any
variable (cf. Richter, Helmert, and Westphal 2008).3 We also
remove variables which have no achievers.

Both filters are executed at least once and then repeated
alternately until one of them reaches a fixpoint. Either fil-
ter can trigger additional pruning in the other one arbitrar-

3This transformation can be performed in polynomial time and
preserves optimality for delete-free tasks. Neither of these proper-
ties holds for general planning tasks.

ily often. To see this, consider the task family where the
nth task has variables {i, g, a, b1, . . . , bn}, initial state {i},
goals {g} and operators 〈i→ a〉, 〈a→ g〉, 〈a→ b1〉, 〈b1 →
a, b2〉, . . . , 〈bn−1 → a, bn〉, 〈bn → a〉, where 〈P → E〉 is
an operator with preconditions P , effects E, and cost 1.

Experiments
We evaluated the algorithm on delete relaxations of all IPC
1998–2006 domains for which the grounded task representa-
tion generated by Fast Downward (Helmert 2006) does not
have conditional effects or axioms. All experiments were
run on a single core of an AMD Opteron 2356 CPU with a
2 GB memory limit and a 5 minute time limit.

We report the probability (as a percentage) to solve a ran-
domly selected task from a randomly selected domain (cov-
erage) and expected values for run time and number of ex-
pansions. The latter are reported as logarithmically scaled
scores between 0 (≥300 s and ≥1 000 000 expansions resp.)
and 100 (≤1 s and ≤100 expansions resp.), following the
scoring system suggested by Richter and Helmert (2009).
Because of the randomized variable selection strategy of
the branch-and-bound search, we repeated the experiments
5 times and report averages (µ) and standard deviations (σ).
Comparison to A∗+ LM-cut. In an initial experiment, we
compared our branch-and-bound algorithm to the state-of-
the-art planner Fast Downward. Our planner uses the “trans-
lator” part of Fast Downward for grounding, and hence the
two planners start from the same grounded task representa-
tion. Other than this, we share no code with Fast Downward.

Our algorithm improves over the coverage of Fast Down-
ward by nearly ten percentage points, clearly demonstrat-
ing the utility of the dedicated search space and incremental
heuristic computation (Table 1, rows 1 and 2).
Initial Upper Bound. To further improve our algorithm, we
compute an initial upper bound before starting the search.
Tighter bounds in branch-and-bound search can reduce the
search effort due to additional pruning. Specifically, we use
the local Steiner tree improvement heuristic hlst by Keyder
and Geffner (2009). This heuristic is a post-processing tech-
nique for the additive FF heuristic hFF/add, which in turn is
based on the additive and FF heuristics. Given a plan gener-
ated by hFF/add, hlst selects a state variable v and partitions
the plan into three parts: one needed only to reach v, one
that depends on v being true, and the rest of the plan. An
alternative for the first part is then generated and the part
is replaced if the alternative is cheaper. This process is re-
peated for every state variable v achieved by the plan. As
the heuristic value of hlst is the cost of a plan for the relaxed
task, it is an upper bound for h+. Using this upper bound
led to a modest but statistically significant improvement in
coverage and a larger improvement in the expansion score
due to the additional pruning (Table 1, row 3).
Improving All Plans. Building on these results we tried
finding tighter upper bounds not only at the start of the
search but also during search. Whenever branch-and-bound
search discovered a new cheapest solution, we use the hlst
idea to try to find an even cheaper solution in order to re-
duce the upper bound more quickly. For this purpose, we

365

Time score Expansion score Coverage score
Name µ σ µ σ µ σ

Fast Downward with A∗ and hLM-cut 44.249 - 46.096 - 49.249 -
Branch-and-bound search 54.294 0.099 51.974 0.085 59.032 0.301
BnB + initial upper bound 55.326 0.119 54.033 0.094 59.981 0.267
BnB + initial upper bound + local Steiner tree improvement 55.618 0.116 54.502 0.144 60.519 0.466
IDA∗ 55.188 0.117 53.667 0.082 60.120 0.112

Table 1: Algorithm scores for a 300 s time limit.

generalized the local Steiner tree improvement method in
such a way that it can be seeded with an arbitrary initial plan
(the original method exploits the particular way in which
hFF/add generates plans; see Pommerening, 2011, for de-
tails on our generalization). The additional pruning intro-
duced by improved solutions increased the coverage and ex-
pansion scores by another 0.5 points, again a modest but
statistically significant improvement (Table 1, row 4).

IDA∗. We also experimented with a different approach
to calculate h+ with an incrementally calculated LM-cut
heuristic. Our branch-and-bound algorithm can be used to
perform an iterative deepening A∗(IDA∗) search (Korf 1985;
Korf, Reid, and Edelkamp 2001) by performing a sequence
of zero-window branch-and-bound searches (i.e., searches
with equal lower and upper bound). The first solution dis-
covered by IDA∗ is optimal by construction, so the previous
solution improvement techniques cannot be used here. The
results are comparable to those for branch-and-bound search
with solution improvement (Table 1, row 5).

Details and Comparison to Hitting-Set-Based Methods.
Table 2 shows the number of solved tasks in each domain for
our two best performing search strategies, for Fast Down-
ward using A∗+ hLM-cut (FD), and for the hitting-set-based
approaches by Bonet and Castillo (BC) and by Haslum et al.
(HST). Our branch-and-bound algorithm almost dominates
Fast Downward, solving more than 50 additional tasks and
only offering worse coverage in two domains. Compared to
the approach by Bonet and Castillo, we solve more than 100
additional tasks and achieve the same or better coverage in
all domains. The approach by Haslum et al. solves around
30 more tasks than we do, but the results are clearly comple-
mentary, with our IDA∗ algorithm solving more tasks than
Haslum et al. in nine domains and fewer in seven domains.

Comparing our two algorithms to each other, neither
branch-and-bound nor IDA∗ dominates the other. Note that
the domains where IDA∗ search performs better contain only
few high-quality upper bounds. As discussed, a tighter upper
bound increases pruning and therefore decreases run time in
branch-and-bound search. However, IDA∗ search does not
use upper bounds and is hence independent of their quality.

In 370 cases, both bounds are perfect and the search for
h+ trivializes to calculating the two bounds. We remark that
this is the first comparison of hlst to h+, and it shows that
hlst often provides excellent approximations to the optimal
relaxed plan. For the domains blocks, gripper and miconic-
strips, polynomial algorithms computing h+ exist (Betz and
Helmert 2009). In these domains, hlst was always perfect
and hLM-cut was only off by 1 in one blocks task.

Bounds perfect
Domain (#tasks) FD BC HST BnB IDA∗ (hLM-cut/hlst/both)
airport (50) 34 50 49 50 50 (50/41/41)
blocks (35) 35 35 35 35 35 (34/35/34)
depot (22) 7 5 18 14 14 (2/6/2)
driverlog (20) 14 2 11 15 15 (3/6/2)
freecell (80) 6 1 21 2 3 (0/0/0)
grid (5) 1 1 4 2 2 (1/2/1)
gripper (20) 20 20 20 20 20 (20/20/20)
logistics00 (28) 23 26 28 28 28 (26/24/22)
logistics98 (35) 9 7 12 16 15 (13/12/9)
miconic-strips (150) 150 150 150 150 150 (150/150/150)
mprime (35) 27 14 25 27 26 (7/22/4)
mystery (30) 26 16 23 28 28 (9/21/5)
openstacks-strips (30) 5 0 6 5 4 (0/5/0)
pathways (30) 5 4 27 5 5 (5/11/5)
pipesworld-notankage (50) 17 3 15 18 19 (1/2/1)
pipesworld-tankage (50) 10 2 13 9 10 (0/3/0)
psr-small (50) 50 50 50 50 50 (50/50/50)
rovers (40) 13 12 17 19 19 (10/14/9)
satellite (36) 6 6 8 8 9 (6/1/1)
tpp (30) 13 12 13 23 24 (20/6/6)
trucks-strips (30) 7 3 19 9 9 (0/30/0)
zenotravel (20) 13 8 13 13 13 (9/11/8)
Total (876) 491 427 577 546 548 (416/472/370)

Table 2: Number of solved tasks for Fast Downward (FD),
Bonet & Castillo (BC), Haslum et al. (HST), branch-and-
bound with all improvements (BnB) and IDA∗. Best results
in bold. The last column shows how often the initial lower
bound hLM-cut/initial upper bound hlst/both are perfect.

Conclusion
Using an incremental computation of LM-cut in a branch-
and-bound search, we were able to calculate optimal plans
for delete-free planning tasks. We used a search space where
an operator is never branched over more than once. Two
modifications that use a local Steiner tree improvement pro-
cedure to tighten the upper bound were discussed and shown
to be useful. An IDA∗ search showed similar results with ad-
vantages in different domains. One aspect we did not discuss
is that branch-and-bound is also very useful when optimality
is not mandatory, as it is an anytime algorithm.

Extending the incremental LM-cut computation to gen-
eral planning would also be possible, but in this case the
search space would have to be changed as well. This is one
direction we are planning to explore in future work.

Acknowledgments
This work was supported by DFG grant HE 5919/2-1.

366

References
Bacchus, F., and van Run, P. 1995. Dynamic variable order-
ing in CSPs. In Proceedings of the First International Con-
ference on Principles and Practice of Constraint Program-
ming (CP 1995), volume 976 of Lecture Notes in Computer
Science. 258–275.
Betz, C., and Helmert, M. 2009. Planning with h+ in theory
and practice. In KI 2009: Advances in Artificial Intelligence,
volume 5803 of Lecture Notes in Computer Science. 9–16.
Bonet, B., and Castillo, J. 2011. A complete algorithm for
generating landmarks. In Proceedings of the 21st Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2011), 315–318.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129:5–33.
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In Proceedings of the 19th Eu-
ropean Conference on Artificial Intelligence (ECAI 2010).
329–334.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artificial Intelligence 69:165–
204.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A ma-
chine program for theorem-proving. Communications of the
ACM 5:394–397.
Gefen, A., and Brafman, R. I. 2011. The minimal seed set
problem. In Proceedings of the 21st International Confer-
ence on Automated Planning and Scheduling (ICAPS 2011),
319–322.
Haslum, P.; Slaney, J.; and Thiébaux, S. 2012. Minimal
landmarks for optimal delete-free planning. In Proceedings
of the 22nd International Conference on Automated Plan-
ning and Scheduling (ICAPS 2012).
Haslum, P. 2012. Incremental lower bounds for additive cost
planning problems. In Proceedings of the 22nd International
Conference on Automated Planning and Scheduling (ICAPS
2012).
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS 2009), 162–169.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Karpas, E., and Domshlak, C. 2009. Cost-optimal plan-
ning with landmarks. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2009), 1728–1733.
Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Proceedings of the 18th Eu-
ropean Conference on Artificial Intelligence (ECAI 2008),
588–592.

Keyder, E., and Geffner, H. 2009. Trees of shortest paths
vs. Steiner trees: Understanding and improving delete re-
laxation heuristics. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI 2009),
1734–1739.
Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time
complexity of iterative-deepening-A∗. Artificial Intelligence
129:199–218.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Lawler, E. L., and Wood, D. E. 1966. Branch-and-bound
methods: A survey. Operations Research 14(4):699–719.
Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignoring
irrelevant facts and operators in plan generation. In Pro-
ceedings of the 4th European Conference on Planning (ECP
1997), 338–350.
Pommerening, F. 2011. Optimal planning for delete-free
tasks with incremental LM-cut. Master’s thesis, Albert-
Ludwigs-Universität Freiburg.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Proceedings
of the 19th International Conference on Automated Planning
and Scheduling (ICAPS 2009), 273–280.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proceedings of the 23rd AAAI Confer-
ence on Artificial Intelligence (AAAI 2008), 975–982.
Russell, S. J., and Norvig, P. 2010. Artificial Intelligence: A
Modern Approach. Prentice Hall Series in Artificial Intelli-
gence. Pearson Education, 3rd edition.

367

