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Abstract

The problem of automated planning is known to be
intractable in general. Moreover, it has been proven
that in some cases finding an optimal solution is much
harder than finding any solution. Existing techniques
have to compromise between speed of the planning pro-
cess and quality of solutions. For example, techniques
based on greedy search often are able to obtain solu-
tions quickly, but the quality of the solutions is usu-
ally low. Similarly, adding macro-operators to planning
domains often enables planning speed-up, but solution
sequences are typically longer. In this paper, we pro-
pose a method for optimizing plans with respect to their
length, by post-planning analysis. The method is based
on analyzing action dependencies and independencies
by which we are able to identify redundant actions or
non-optimal sub-plans. To evaluate the process we pro-
vide preliminary empirical evidence using benchmark
domains.

Introduction
Automated planning (Ghallab, Nau, and Traverso 2004)
even in its simplest form, classical planning, is intractable
(PSPACE-complete) (Bylander 1994). Despite the gen-
eral complexity results there are many classes of planning
problems that are tractable (i.e., solvable in polynomial
time) (Helmert 2003; 2006) but sometimes finding an op-
timal solution (in classical planning, the shortest solution)
is intractable (NP-hard). Fink and Yang (1992) showed that
plan optimization is NP-complete in general.

Existing planners must compromise between speed of the
planning process and quality of solutions. In some applica-
tions it is necessary to provide any solution as fast as possi-
ble to avoid imminent danger or damage to a physical agent.
A good example of fast but non-optimal planning techniques
is performing greedy search such as in LPG (Gerevini,
Saetti, and Serina 2004). Moreover, if macro-operators are
involved, then optimality might be affected even though we
use an optimal planner.

Approaches to plan optimization using genetic program-
ming are promising, though the relation between plan gener-
ation time and optimization time is unclear (Westerberg and
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Levine 2001). The most recent related work (Nakhost and
Müller 2010) proposes two approaches for plan optimiza-
tion. First, it tries to remove a pair of (dependent) actions.
If the rest of the plan remains valid then an action can be
removed. Second, it expands a limited number of nodes
around each state along the plan to a produce a Neighbor-
hood Graph and then, by applying Dijsktra’s algorithm, it
finds a shortest path within the neighborhood. This method
is restricted to local optimality, however, and does not ex-
ploit the information within the plan structure (e.g some ac-
tions might lie far from each other in a plan but can be adja-
cent in some permutation of the plan).

Redundant actions in a plan are those that do not con-
tribute to the rest of the plan, or are inverse actions reversing
each other’s effects. These inverse actions do not have to be
necessarily adjacent in (sequential) plans. In this paper, we
introduce a method which exploits plan structure, drawing
on Chrpa’s work on analysis of action dependencies and in-
dependencies (Chrpa 2010), to identify such redundant ac-
tions. Moreover, the method can detect a pair of actions
(also not necessarily adjacent in plans) that can be replaced
by a single action. We evaluate the method analytically, by
considering time complexity bounds, and empirically, using
benchmark domains. We postulate some promising direc-
tions for future work, for instance to investigate whether our
method (or an extension) could be used for optimal planning
with macro-operators.

Preliminaries
Classical planning (in state space) deals with finding a se-
quence of actions transforming the environment from some
initial state to a desired goal state. The environment is static,
deterministic and fully observable.

In the set-theoretic representation atoms, which describe
the environment, are propositions. States are defined as sets
of propositions. Actions are specified via sets of atoms spec-
ifying their preconditions, negative and positive effects (e.g.,
a = {pre(a), eff−(a), eff+(a)}). An action a is applicable
in a state s iff pre(a) ⊆ s. Application of a in s (if possible)
results in a state (s \ eff−(a)) ∪ eff+(a).

In the classical representation atoms are predicates. Plan-
ning operators are generalized actions, where precondi-
tions, negative and positive effects are sets of (unground)
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predicates. The set-theoretic representation can be obtained
from the classical representation by grounding.

A planning domain is specified via sets of predicates and
planning operators (alternatively propositions and actions).
A planning problem is specified via a planning domain, ini-
tial state and set of goal atoms. A plan is a sequence of ac-
tions. A plan is a solution of a planning problem if and only
if a consecutive application of the actions in the plan (start-
ing in the initial state) results in a state, where all the goal
atoms are satisfied.

Action Dependencies and Independencies
Naturally, actions influence each other. An action provides
atoms which are preconditions for some actions but on the
other hand ‘clobber’ atoms required by other actions (Chap-
man 1987). Having a sequence of actions we can identify
dependencies between the actions in terms of which actions
provide atoms to other actions that need them as their pre-
condition. The formal definition follows.
Definition 1. Let 〈a1, . . . , an〉 be an ordered sequence of
actions. An action aj is directly dependent on an ac-
tion ai (denoted as ai → aj) if and only if i < j,
(eff+(ai) ∩ pre(aj)) 6= ∅ and (eff+(ai) ∩ pre(aj)) 6⊆⋃j−1

t=i+1 eff+(at).
An action aj is dependent on an action ai if and only if
ai →∗ aj where→∗ is the reflexive transitive closure of the
relation→.
9 denotes that actions are not directly dependent and 9∗
denotes that actions are not dependent. �

The notion of action independence is motivated by the
possibility of swapping adjacent (independent) actions with-
out breaking plan validity (proven in (Chrpa and Barták
2008)). Note that action independence as known in paral-
lel planning (Blum and Furst 1997; Rintanen, Heljanko, and
Niemelä 2006) has slightly different meaning, i.e., it does
not depend on action ordering while in our case it does.

Actions ai and aj are independent (can be swapped if ad-
jacent) if aj is not dependent on ai, aj must not ‘clobber’
atoms from precondition of ai and ai must not ‘clobber’ any
positive effect of aj . Therefore, action independence is not
the complement of action dependence.
Definition 2. Let 〈a1, . . . , an〉 be an ordered sequence of
actions. Actions ai and aj (without loss of generality we as-
sume that i < j) are independent (denoted as ai ! aj)
if and only if ai 9∗ aj , pre(ai) ∩ eff−(aj) = ∅ and
eff+(aj) ∩ eff−(ai) = ∅.
6! denotes that actions are not independent (but not neces-
sarily dependent). �

To obtain a complete model of these relations in plans
(solutions of planning problems) we have to use two spe-
cial actions: a0 = {∅, ∅, I} (I is an initial state) and ag =
{G, ∅, ∅} (G is a set of goal atoms). Using the main property
of action independence we can shuffle actions in plans with-
out affecting their validity (for more insight regarding per-
mutation on plans, see (Fox and Long 1999)). This can be
useful for checking whether actions can be adjacent which
has been used for generating macro-operators (Chrpa 2010).

The check whether actions ai and aj can be adjacent is
achieved by iteration of any of the following steps, which
will attempt to reposition intermediate actions so that they
are no longer between ai and aj .

1. If ai! ai+1, then move ai+1 before ai.
2. If aj−1! aj , then move aj−1 after aj .
3. Let X = {x | ai 6! ax ∧ i < x < j} be a set of indices.

If X 6= ∅ select k as the largest element of X and if ∀l ∈
{k + 1, . . . , j} : ak ! al, then move ak after aj

4. Let X = {x | ax 6! aj ∧ i < x < j} be a set of indices.
If X 6= ∅ select k as the smallest element of X and if
∀l ∈ {i, . . . , k − 1} : al! ak, then move ak before ai

If ai and aj become adjacent (all intermediate actions have
been successfully repositioned), then we say that ai and aj
are weakly adjacent.

Relations of action dependence and independence can be
computed in O(n2) steps (n is a length of the plan) and de-
ciding weak adjacency can be done in at worst O(l2) steps
(l is the number of intermediate actions) (Chrpa 2010).

Optimizing Plans
Using the theoretical framework above we can identify some
redundant actions in plans. For instance, if the goal action
ag is not dependent on an action ai, then ai is redundant be-
cause it does not provide any atoms to actions (including ag)
that somehow support the goal. The formal proof follows.
Proposition 1. Let π = 〈a1, . . . , an〉 be a plan solving plan-
ning problem P and ag = {G, ∅, ∅} (G is a set of goal atoms
in P ) be an action. Let A− = {ai | ai ∈ π, ai 9∗ ag} be
a set of actions on which the goal is not dependent. Then
π′ = π \A− is also a solution of P .

Proof. Let A0 = {ai | ai ∈ π,∀j : aj ∈ π ∪ {ag},
ai 9 aj} be a set of actions such that no other action is
directly dependent on them. Obviously A0 ⊆ A−. Ac-
cording to Definition 1 we know that no action from π
and the goal action ag requires atoms provided by actions
from A0 thus actions from A0 can be removed from π. Let
A1 = {ai | ai ∈ π,∀j : aj ∈ (π ∪ {ag}) \ A0, ai 9 aj}
be a set of actions such that no other action from π \A0 and
ag is directly dependent on them. Obviously A1 ⊆ A−. If
actions from A0 are removed from π, then there is no longer
an action (directly) dependent on actions from A1. Using
the same principle we can remove A1 from π. We can con-
struct A2, . . . Ak analogously until Ak+1 = ∅ and show that
actions in these sets can be removed from π. It can be easily
observed from the acyclicity of the relation of direct depen-
dency that A− = A0 ∪A1 ∪ · · · ∪Ak and k ≤ n).

We say that action aj is inverse to ai if for every state s
a consecutive application of ai and aj results back in s or
ai is not applicable in s. Inverse actions, i.e. actions that
reverse effects of each other, are also redundant if they are
executed successively. These actions might not be necessar-
ily adjacent in plans but still redundant. If weakly adjacent
actions are inverse, then they can be removed. However,
checking weak adjacency might be quite expensive (at worst
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case O(n2), see (Chrpa 2010)). In the following proposition
we show that if aj is inverse to ai and there is no action
placed between ai and aj such that it is directly dependent
on ai or ‘clobbers’ any atom given back by aj , then ai and
aj can be removed.
Proposition 2. Let π = 〈a1, . . . , an〉 be a plan solving plan-
ning problem P . Let ai, aj ∈ π, i < j be actions such that
aj is inverse to ai. If there is no action ak (i < k < j)

such that ai → ak or eff−(ak) ∩ eff+(aj) 6= ∅, then
π′ = π \ {ai, aj} is also a solution of P .

Proof. From the assumption we know that aj deletes all pos-
itive effects produced by ai, therefore ai is not essential for
actions applied after aj . If there exists ak (i < k < j)
such that ai → ak, then according to Definition 1 remov-
ing ai causes inapplicability of ak thus the plan will no
longer be valid. Otherwise removing ai from π will not af-
fect the applicability of the other actions (except aj which is
removed as well). If there exists ak (i < k < j) such that
eff−(ak)∩eff+(aj) 6= ∅, then removing aj might cause inap-
plicability of actions after aj . From the definition of inverse
actions we know that all atoms from eff+(aj) are present in
the state before ai is applied. If no such ak removes any of
these atoms, then we do not need aj to produce them again
and aj (together with ai) can be removed from π.

Using the above proposition reduces the worst case com-
plexity of detecting redundancy of a pair of inverse actions
in plans to O(n) (if the number of intermediate actions is
close to the plan length). For all possible pairs it is O(n3).

Besides detecting redundant inverse actions in plans we
can also identify a pair of weakly adjacent actions that can
be replaced by a single action. In (Chrpa 2010) weakly ad-
jacent actions are used for generating macro-actions. Here
we do not need macro-actions but single actions which can
be used instead of pairs of actions used in plans. We say
that an action a is replaceable by an action a′ if pre(a′) ⊆
pre(a), eff−(a′) ⊆ eff−(a) and eff+(a′) ⊇ eff+(a). There-
fore our approach differs from (Chrpa 2010) in such a way
that instead of introducing a new macro-action which can be
used instead of a pair of weakly adjacent actions we look for
a single action such that the (potential) new macro-action is
replaceable by the (single) action. If so that we use the (sin-
gle) action instead of the pair of weakly adjacent actions. It
shortens the plan by one. The worst case complexity (for
one pair of actions) is O(n2) (if the number of intermediate
actions is close to the plan length). For all possible pairs it
is O(n4).

Plans can be optimized in the following steps:
1. Compute action dependencies. Remove all actions on

which the goal is not dependent (see Proposition 1).
2. Compute action dependencies. Identify and remove all

pairs of inverse actions if they follows Proposition 2. Re-
peat until no action is removed.

3. Compute action dependencies and independencies. Iden-
tify pairs of weakly adjacent actions which can be re-
placed by a single action (and replace if applicable). Con-
tinue with step 2 if any pair is replaced.

Note that repetition of steps 2 and 3 might be necessary
for identifying further non-optimalities. For instance, we
can reveal ‘nested’ inverse actions, i.e., if we have a se-
quence ai, ap, aq, aj , where aj is inverse to ai and aq is in-
verse to ap, then if ap (or aq) is directly dependent on ai,
then ai and aj cannot be removed at this stage. After ap
and aq are removed, then nothing prevents the removal of
actions ai and aj .

The above ideas can be applied to longer sequences of ac-
tions but the complexity will rise. If we deal with k-tuples,
then the number of these might be up to nk. Moreover, in
this case we have to look if we can replace these k-tuples of
actions with at most k−1-tuples of (different) actions which
can be done in O(|A|k−1) steps. Therefore, it seems to be
unrealistic to use an exhaustive approach (i.e., testing all the
possible k-tuples of actions). However, it might be appropri-
ate to have some sort of knowledge base pointing out where
to find non-optimalities and how to deal with them. How to
obtain such a knowledge base is a subject of ongoing work.

Case Studies
We have observed some positive aspects of our approach.
Many inverse actions are revealed and removed (including
‘nested’ inverse actions) despite being non-adjacent in plans.
For instance, in ‘BlockWorld’-like domains (e.g., Depots)
we are able to detect situations where we at first build a
tower of blocks and after that we tear down a part of it, which
is unnecessary. The detection is still possible even if we have
some interleaving actions in the plan that do not affect the
situation around the tower of blocks. Otherwise, the detec-
tion might not be possible (explained later). Another good
example, where our method works, is consecutive applica-
tion of the DRIVE operator on the same truck (Depots do-
main). If drive(t1, l1, l2) and drive(t1, l2, l3) are weakly
adjacent (i.e., no crate is loaded or unloaded from t1 in l2),
then we can replace them by drive(t1, l1, l3).

There is another positive aspect of using our method.
If we enhance domains by macro-operators (operators de-
fined as a normal planning operator but behaving as a se-
quence of primitive operators), then even an optimal plan-
ner may fail to find an optimal solution. This is because a
‘classical’ planner deals with macro-operators in the same
way as primitive operators even though the macro-operators
are more ‘expensive’ (consist of more primitive operators).
One possibility is to add an action cost where the cost of
macro-operators is a sum of costs of the primitive opera-
tors. However, this approach is more difficult for planners.
Our approach is able to detect some non-optimalities caused
by using macro-operators, for instance, if a planner uses
a sequence of macro-operators 〈LIFT-LOAD,UNLOAD-
DROP〉 rather than 〈LIFT,DROP〉 (these need not be in-
verses, e.g. if we drop a crate onto a different pallet than
that from which it was lifted), then we can see that both
sequences have the same length but if we unfold the first
one (e.g., replace macro-actions by corresponding primitive
ones), then the the first sequence is longer. After the first
sequence is unfolded we can see that LOAD and UNLOAD
are inverse and can be removed (by our method) and we ob-
tain 〈LIFT,DROP〉 which is optimal. In a hypothetical case
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Figure 1: Experimental results. The Depots domain on the left hand side, the Gold-Miner domain in the middle and the Storage
domain on the right hand side. x-axis refers to problems and y-axis refers to plan lengths.

where a planner uses a sequence 〈a, ai,j〉 (ai,j is a macro-
action assembled from ai and aj) but a sequence 〈a, ai〉 can
be replaced by an action a′, then our approach can detect it
and provide a sequence 〈a′, aj〉. However, optimal planning
with macro-operators is a subject of ongoing work.

Some examples are sufficient to show that our approach
does not guarantee optimality. E.g., if in the Depots domain
we build a tower of blocks, then use the same hoist for mov-
ing another block and after that we tear down a part of the
tower, then we are unable to detect inverse actions. This is
because there is a dependence between the action stacking
the last block on the tower and the action picking up the
other block (because the stack action frees the hoist which
is a precondition of the pick up action). This also holds for
the action stacking the other block and the action unstacking
the top block from the tower. The main reason why our ap-
proach does not work in this case is that we consider depen-
dencies (and independencies) between single actions and not
action sequences. Considering dependencies between action
sequences (in fact macro-actions) should handle this issue,
however, it may be harder (in terms of complexity). Our ap-
proach also cannot deal with situations where some subplan
longer than two is replaceable by another shorter subplan.
For instance, if we unload a crate from one truck and load
the crate on the second truck. It is clearly better to make an
extra drive with the first truck (one action) rather than move
the crate to the second truck (two actions).

Preliminary Experimental Evaluation
For our experiments we chose five benchmark domains
(typed STRIPS) and corresponding problems, namely De-
pots (all), Gold-Miner (target-typed 10 – 30), Satel-
lite (all), Zeno (all) and Storage (1-27), from the In-
ternational Planning Competition (IPC)1 and planners,
namely LPG-td (Gerevini, Saetti, and Serina 2004) and
GAMER (Edelkamp and Kissmann 2008), that successfully
participated in the IPC. LPG-td is based on using greedy lo-
cal search techniques on Planning Graph which often finds
solutions in a short time but they are of low quality. On
the other hand GAMER is based on exploring Binary De-
cision Diagrams and guarantees optimal solutions, however,
the running time is usually very high. Both the planners
were run on Intel i5 2.8 GHz, 8GB RAM, Ubuntu Linux.
Our method for plan optimization is written in C++ and was

1http://ipc.icaps-conference.org

run on the same machine but under Windows 7.
The results (see Figure 1) depict how our method affects

lengths of plans found by LPG in comparison with optimal
plans (the shortest plans) found by GAMER. GAMER was
able to solve only 4 problems in the Depots domain, 12 prob-
lems in the Gold-Miner domain and 15 problems in the Stor-
age domain2. In the Depots domain LPG produced plans in
a good quality though there were almost no space for op-
timization. On the other hand, in two cases the optimiza-
tion was quite significant. In the Gold-Miner our method
achieved very promising results (plans were shortened by
more than 16%) because in almost all cases it was able to
reduce plan lengths quite significantly and in several cases
the optimization process led towards optimal solutions. The
best results were achieved in the Storage domain, where the
plans were shortened by approximately 63% ! Especially,
solutions of harder problems (13-27) were optimized signif-
icantly. In the Zeno and Satellite domains (not graphically
depicted) our method shortened the plans found by LPG by
4-5% (similar to the Depots domain).

The running time of LPG-td (the speed option) was of the
order of tens of millisecond per problem. Even though our
implementation is not optimized for performance the run-
ning time of our method stays within the second per domain
range, only in the Storage domain the time exceeds three
seconds. It gives us approximately 20-50ms per problem.

Conclusions

We presented a method for plan optimization which is based
on investigating action dependencies and independencies.
The method is able to optimize plans in a little time thus it is
useful in combination with a fast but not very optimal plan-
ner (e.g. LPG). Though a tractable method for obtaining op-
timality in every case is impossible, our method performed
well in the preliminary empirical evaluation, and executed
in a time comparable to the time of initial plan generation.

In our future work we aim to investigate how the method
(or an extension of it) can shorten plans produced by plan-
ners using macro-operators. Moreover, we aim to investigate
techniques for forming knowledge bases that will help us to
detect common non-optimalities in plans (discussed above)
and how to fix them.

2time limit set as 15 minutes
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