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Abstract

Partial-order plans (POPs) are attractive because of their least
commitment nature, providing enhanced plan flexibility at
execution time relative to sequential plans. Despite the ap-
peal of POPs, most of the recent research on automated plan
generation has focused on sequential plans. In this paper we
examine the task of POP generation by relaxing or modify-
ing the action orderings of a plan to optimize for plan crite-
ria that promotes flexibility in the POP. Our approach relies
on a novel partial weighted MaxSAT encoding of a plan that
supports the minimization of deordering or reordering of ac-
tions. We further extend the classical least commitment crite-
rion for a POP to consider the number of actions in a solution,
and provide an encoding to achieve least commitment plans
with respect to this criterion. We compare the effectiveness
of our approach to a previous approach for POP generation
via sequential-plan relaxation. Our results show that while
the previous approach is proficient at heuristically finding the
optimal deordering of a plan, our approach gains greater flex-
ibility with the optimal reordering.

1 Introduction

Partial-order planning reflects a least commitment strategy
(Weld 1994). Unlike a sequential plan that specifies a set of
actions and a total order over those actions, a partial-order
plan (POP) only specifies those action orderings necessary
and sufficient to achieve the goal. In doing so, a POP em-
bodies a family of sequential plans – a set of linearizations
all sharing the same actions, but differing with respect to the
order of the actions. The flexibility afforded by POPs makes
them attractive for real-time execution, multi-agent taska-
bility, and a range of other applications (Veloso, Pollack,
and Cox 1998; Weld 1994). Nevertheless, in recent years
research on plan generation has shifted away from partial-
order planning towards sequential planning, primarily due to
the success of heuristic-based forward-search planners. To
regain the least commitment nature of POPs while leverag-
ing fast sequential plan generation, it is compelling to exam-
ine the computation of POPs via sequential planning tech-
nology. Indeed this approach has been realized in the plan-
ner POPF (Coles et al. 2010), which generates a POP by
searching in a heuristic-based forward-chaining manner.
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Another possibility for leveraging the strengths of sequen-
tial planning is to generate a sequential plan with a state-of-
the-art planner, and subsequently relax the plan. Removing
ordering constraints from the sequential plan, referred to as a
deordering, or allowing changes in the ordering constraints,
referred to as a reordering, are approaches that have been
theoretically investigated (Bäckström 1998). Unfortunately,
finding the optimal deordering or reordering is NP-hard, and
difficult to approximate within a constant factor.

We focus on the problem of computing the minimum
deordering and minimum reordering of a sequential plan
treated as a POP. These notions cover a natural aspect of
least commitment planning – minimizing the ordering con-
straints placed on a plan. We extend this characterization
to consider the number of actions in a plan. Our approach
is to use a family of novel encodings for partial weighted
MaxSAT whose solution corresponds to an optimal least
commitment plan. Unlike typical SAT-based planning tech-
niques, we represent an action occurrence once, giving us
a succinct representation. We empirically compare our ap-
proach to an existing algorithm for relaxing a sequential plan
due to Kambhampati and Kedar (1994). We find that the
existing algorithm is extremely proficient at computing the
minimum deordering, matching the optimal solution in ev-
ery problem tested. However, we find that the minimum re-
ordering is usually far more flexible than the minimum de-
ordering (having fewer ordering constraints and far more lin-
earizations). We further see a benefit in the flexibility of a
POP when we consider the number of actions. Our approach
gives us the first technique, to the best of our knowledge, for
computing the optimal reordering of a POP.

2 Least Commitment Criteria

Partial-Order Plans We restrict our attention to STRIPS
planning problems, and adopt the following notation:
PRE(a), ADD(a), DEL(a) to signify the preconditions,
add effects, and delete effects of the action a; adders(f )
(resp. deleters(f )) to signify the set of actions that add (resp.
delete) the fluent f ; aI (resp. aG) is a special action that
has the effect of the initial state (resp. the preconditions of
the goal state). A POP, P , is the tuple 〈A,O〉 where A is
the set of actions in the plan (including aI and aG), and O
is the set of ordering constraints over the actions A (e.g.,
(a1 ≺ a2) ∈ O), assumed to be transitively closed. We
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refer to a total ordering of the actions in A that respects O
as a linearization of P . A POP provides a compact repre-
sentation for multiple linearizations and it is valid iff every
linearization is an executable sequential plan (note that we
handle the goal through aG). An action ai supports action
aj if there is an ordering between them, and ai adds a fluent
that is in aj’s precondition list. A sufficient condition for
POP validity is that every action has support for all its pre-
conditions and no support is threatened by an intervening
action that could delete the precondition. For further details,
we refer the reader to (Russell and Norvig 2009).

Our aim of least commitment planning is to find flexi-
ble solutions that allow us to defer ordering decisions un-
til the execution of the plan. Considering only the order-
ing constraints of a POP, two appealing notions for least
commitment planning include deordering and reordering
(Bäckström 1998). A reordering of a POP P = 〈A,O〉

is any POP P ′ = 〈A
′

,O
′

〉 where A = A′. A deorder-

ing of a POP P is any reordering P ′ = 〈A
′

,O
′

〉 such
that O′ ⊆ O. Minimal deorderings (resp. reorderings) are
those where no proper subset of the ordering constraints is
also a deordering (resp. reordering). Minimum deorder-
ings (resp. reorderings) are those where no set of order-
ing constraints with smaller cardinality yields a valid POP.
Finding the minimum deordering or reordering is NP-hard,
and cannot be approximated within a constant factor unless
NP ∈ DTIME(npoly log n) (Bäckström 1998).

While the notion of a minimum deordering or reorder-
ing addresses the commitment to ordering constraints, in the
spirit of least commitment we would like to commit to as
few actions as possible. We provide an extended criterion of
what a least commitment POP (LCP) should satisfy:

Definition 1. Let P = 〈A,O〉 and Q = 〈A
′

,O
′

〉 be two
valid POPs. Q is a least commitment POP (LCP) of P iff
Q is the minimum reordering of itself and there is no valid

POP 〈A
′′

,O
′′

〉 such that A′′ ⊆ A and |A′′| < |A′|.

Intuitively, we can compute the LCP of an arbitrary POP
by first minimizing the number of actions, and then mini-
mizing the number of ordering constraints. It may turn out
that preferring fewer actions causes us to commit to more or-
dering constraints due to the interaction between the chosen
actions. However, in practice we usually place a greater em-
phasis on minimizing the number of actions, as every action
must be executed in the standard interpretation of a POP.

We evaluate the quality of a POP by the number of actions
and ordering constraints it contains, as these metrics give us
a direct measure of the least commitment nature of a POP.
Another property of interest is a POP’s flexibility; a measure
of the robustness inherent in the POP. We measure the flex-
ibility, whenever computationally feasible, as the number of
linearizations in the POP. The linearizations serve as a natu-
ral measure of the number of ways an agent can execute the
plan. Verifying a POP’s validity by way of the linearizations
is not always practical. As such, we do not attempt to com-
pute POPs that maximize the number of linearizations, but
rather compute POPs that adhere to one of the above criteria:
minimum deordering, minimum reordering, or LCP.

3 A Partial Weighted MaxSAT Encoding

We encode the task of finding a minimum deordering or re-
ordering as a partial weighted MaxSAT problem (Biere et
al. 2009). Solutions to the default encoding correspond to a
LCP. That is, no POP exists with a proper subset of the ac-
tions, or with a proper subset of the ordering constraints. We
add further clauses to produce encodings that correspond to
optimal deorderings or reorderings. In contrast to the typical
SAT encoding for a planning problem, we do not require the
actions to be placed in a particular layer. Instead, we rep-
resent each action only once and reason about the ordering
between actions. The actions in the encoding come from a
provided sequential plan.

We use three types of propositional variables: ∀a ∈
A, xa indicates a appears in the POP P ; ∀a1, a2 ∈ A,
κ(a1, a2) indicates a1 occurs before a2 in P ; ∀ai ∈ A, ∀p ∈
PRE(ai), ∀aj ∈ adders(p),Υ(aj , ai, p) indicates aj sup-
ports ai with the fluent p in P .

In a partial weighted MaxSAT encoding there is a distinc-
tion between hard and soft clauses. We first present the hard
clauses of the encoding, and then describe the soft clauses.
We define the formulae that ensures the POP generated is
acyclic, and the ordering constraints produced include the
transitive closure. Here, actions are universally quantified,
and for formula (4) we assume aI 6= ai 6= aG.

(¬κ(a, a)) (1)

(xaI
) ∧ (xaG

) (2)

κ(ai, aj) → xai
∧ xaj

(3)

xai
→ κ(aI , ai) ∧ κ(ai, aG) (4)

κ(ai, aj) ∧ κ(aj , ak) → κ(ai, ak) (5)

(1) ensures that there are no self-loops; (2) ensures that we
include the initial and goal actions; (3) ensures that if we use
an ordering variable, we include both actions in the POP; (4)
ensures that an action cannot appear before the initial action
or after the goal; and (5) enforces the transitive closure of
ordering constraints. Together, (1) and (5) ensure the POP
will be acyclic, while the remaining formulae connects the
action occurrence and ordering variables.

Finally, we use formulae to ensure that every action has its
preconditions met, and there are no threats in the solution:

Υ(aj , ai, p) →
∧

ak∈deleters(p)

xak
→ κ(ak, aj) ∨ κ(ai, ak) (6)

xai
→

∧

p∈PRE(ai)

∨

aj∈adders(p)

κ(aj , ai) ∧Υ(aj , ai, p) (7)

(6) ensures that if aj is the achiever of precondition p for
ai, then no deleter of p will be allowed to occur between
the actions aj and ai. (7) ensures that if we include action
ai in the POP, then every precondition p of ai (the con-
junction) must be satisfied by at least one achiever aj (the
disjunction). κ(aj , ai) orders the achievers correctly, while
Υ(aj, ai, p) removes threats.

To generate a POP that is least commitment, we prefer so-
lutions that first minimize the actions, and then minimize the
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ordering constraints. We achieve this by adding a soft unit
clause for the negation of every action and ordering variable
in our encoding. We weight the negated κ variables with a
cost of 1 and weight the negated action variables a ∈ A with
a cost of 1+ |A|2. A violation of any one of the unit clauses
means that the solution includes the action or ordering con-
straint corresponding to the violated clause’s variable.

An optimal solution corresponds to a LCP. Observe that
(1)-(7) make no mention of a sequential plan. If our sequen-
tial plan is [a0, · · · , ak], we introduce the following to com-
pute minimum deorderings or reorderings:

(xa) ∀a ∈ A (8)

(¬κ(aj , ai)) 0 ≤ i < j ≤ k (9)

(8) forces every action to be present, while (9) forces the or-
derings to agree with the original sequential plan. A solution
to formulae (1)-(8) corresponds to a reordering, while a so-
lution to formulae (1)-(9) corresponds to a deordering. We
refer to the soft constraints along with the encodings (1)-(7),
(1)-(8), and (1)-(9) as LCP, MR, and MD respectively.

4 Evaluation

We evaluate the effectiveness of using the partial weighted
MaxSAT solver, Sat4j (Le Berre and Parrain 2010), to op-
timally relax a plan using our proposed encodings. To
measure the quality of the POPs we generate, we consider
the number of actions, ordering constraints, and lineariza-
tions (whenever feasible to compute). Further, we investi-
gate the effectiveness of a method due to Kambhampati and
Kedar (1994) that produces a deordering of a plan in poly-
nomial time (denoted KK). For our analysis, we use six do-
mains from the International Planning Competition (IPC):
depots, driverlog (driver), logistics, tpp, rovers, and zeno-
travel (zeno). We chose domains that allow for partial order
solutions – many IPC domains are overly constrained and
only yield sequential plans (e.g., Sokoban). In such cases,
relaxation is not possible and the solver trivially finds the se-
quential plan we begin with. We conducted the experiments
on a Linux desktop with a 2.5GHz processor. Each run of
Sat4j was limited to 10 minutes and 2GB of memory. We
generated an initial sequential plan by using the FF planner
(Hoffmann and Nebel 2001) (we tried multiple planners and
found the results to be statistically no better than FF). In the
following evaluation, we only report on the problems where
FF was able to find a plan within a 30-minute timeout.

POP Quality We begin by examining the relative qual-
ity of the POPs produced with different optimization criteria
(LCP, MR, and MD), as well as KK. We report the number of
actions and ordering constraints in the transitive closure of
the generated POP. The number of actions for KK, MR, and
MD are equal to those in the sequential plan, so we report
the value only for KK and LCP. Table 1 shows the results for
all six domains on the problems for which every approach
succeeded (98 of the 130 successfully encoded problems).

There are a few items of interest to point out. First,
columns 4 and 5 coincide perfectly. Perhaps surprisingly,
KK is able to produce the optimal deordering in every case,

Domain
|A| |O|

KK LCP KK MD MR LCP

depots
34.9 31.0 473.4 473.4 430.9 341.5

(14/22)

driver
27.5 26.5 332.6 332.6 326.9 297.3

(15/16)

logistics
78.1 77.4 1490.6 1490.6 1462.5 1470.4

(30/35)

tpp
13.4 13.4 74.8 74.8 74.8 74.8

(5/30)

rovers
31.1 30.3 223.2 223.2 217.6 204.2

(18/20)

zeno
29.2 29.2 404.3 404.3 403.5 403.5

(16/20)

ALL
44.3 43.2 685.7 685.7 669.0 651.6

(98/143)

Table 1: Mean number of actions and ordering constraints
for the various approaches. Numbers next to the domain
indicate the number of instances solved by all methods (and
included in the mean).

even though it is not guaranteed to do so. Second, we see
the number of ordering constraints for the LCP approach is
greater than that for the MR approach (on average) in the
logistics domain. POPs in the logistics domain require more
ordering constraints for a solution with slightly fewer ac-
tions. Third, the low coverage in the tpp domain is due to
allowing reordering – MD succeeds in 20 problems while
LCP and MR succeed in only 5.

In general, the LCP has fewer actions and ordering con-
straints than the optimal reordering, which in turn has fewer
ordering constraints than the optimal deordering. If the LCP
has the same number of actions as the sequential plan, then
the LCP and minimum reordering coincide. We can see this
effect in tpp and zenotravel.

Encoding Difficulty To measure the difficulty of solving
the encoded problems, we show the number of problems
solved by Sat4j as a function of time (including encoding
phase) in Figure 1. Sat4j consistently produced a feasible
solution almost immediately. While we do not consider it
here, early solutions serve as approximations to the optimal
plan and are valid POPs (Sat4j finds the optimal solution
if given sufficient time and memory). For comparison, we
additionally include the aggregate time for KK. When Sat4j
had difficulty, it was due to the number of transitivity clauses
included (cubic in the number of actions).

We find that MD is generally easier to solve and the ma-
jority of the problems are readily handled by Sat4j: 62%
solved in under 5 seconds. Being a polynomial algorithm,
KK consistently finds a solution faster than any encoding.

Reordering Flexibility To further evaluate the flexibil-
ity of the optimal deordering, we compare the number of
linearizations it induces with the number of linearizations
the optimal reordering induces. We found that of the 78
problems we could successfully compute the linearizations
for, approximately 40% of the problems exhibited a differ-
ence between the optimal deordering and optimal reorder-
ing. Figure 2 shows the number of linearizations for the
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Figure 1: The number of problems solved by Sat4j if given
a limited amount of time per problem.

optimal reordering divided by the number of linearizations
for the optimal deordering. For readability, we omit the 47
instances where the linearizations matched.

The ratio of linearizations ranges from 0.9 (an anomaly
discussed below) to over two million. While KK is proficient
at finding the optimal deordering, there are still significant
gains in terms of flexibility by using the optimal reordering.

5 Discussion

The results paint an overall picture of how the optimization
criteria compare to one another. We find that the KK is ex-
tremely adept at finding the optimal deordering, despite its
lack of theoretical guarantee. In contrast, in many of the
domains we see gains in terms of the number of actions or
ordering constraints in the POP if we compute the optimal
reordering or a least commitment POP. The single ratio un-
der 1 in Figure 2 occurs due to the rare case in which two
valid POPs with an equal number of actions and ordering
constraints have a different number of linearizations.

The standard SAT-based planning encodings also produce
a POP, but a significant difference from our work is that we
avoid encoding an action for every layer in a planning graph
by appealing to the fact that we already know the (superset
of) actions in the solution. The core of our encoding is sim-
ilar to Variant-II of Robinson et al. (2010) and the causal
encodings of (Kautz, McAllester, and Selman 1996). We
similarly encode the ordering between any pair of actions
as a variable (κ(ai, aj)), but rather than encoding a relaxed
planning graph or every potential action occurrence, we en-
code the formulae that must hold for a valid POP on the
specific set of actions we start with. There are also simi-
larities between our work and that of Do and Kambhampati
(2003). In particular, the optimization criteria for minimiz-
ing the number of ordering constraints coincide, as does the
optional use of constraints to force a deordering. However,
while Do and Kambhampati focus on temporal relaxation in
the context of action ordering, we take the orthogonal view
of minimizing the number of actions.

It is natural to consider the impact that the choice of ini-
tial plan has on the final POP. We found that starting from
an existing POP from a planner such as POPF or Blackbox
had little impact on the quality of the optimally relaxed POP.

0 5 10 15 20 25 30
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100
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102
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104
105
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M
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Figure 2: Ratio of Linearizations. The y-axis represents the
number of linearizations induced by the POP for the optimal
reordering divided by the number of linearizations induced
by the POP for the optimal deordering. The x-axis ranges
over all problems where the number of linearizations dif-
fered (∼40%), and is sorted based on the y-axis value.

Our approach significantly improved the quality of the ini-
tial POP with respect to our proposed criteria, but the fi-
nal solution was quite similar to the optimal POP produced
with FF plans as input. The question remains open, how-
ever, on how to best compute an initial set of actions for
our encoding. We also hope to investigate versions of par-
tial weighted MaxSAT solvers tailored to problems in which
only unit clauses are soft (as is the case with our encoding).

6 Conclusion

In this paper we proposed a practical method for computing
the optimal deordering and reordering of a sequential plan.
Despite the theoretical complexity of computing the optimal
deordering or reordering, we are able to compute the opti-
mal solution by leveraging the power of modern MaxSAT
solvers. We further proposed an extension to the classical
least commitment criterion that considers the number of ac-
tions in a solution and demonstrated the added flexibility of
a POP that satisfies this criterion.

Our approach uses a family of novel encodings for partial
weighted MaxSAT where a solution corresponds to a POP
satisfying one of the three least commitment criteria. We
found that the majority of problems are readily handled by
the MaxSAT solver, Sat4j, but also found that two domains
presented a problem for the encoding phase of our approach.

We also investigated an existing polynomial algorithm for
deordering sequential plans, and discovered that it success-
fully computes the optimal deordering in every problem we
tested despite its lack of theoretical guarantee. Since the al-
gorithm is fast in practice, it is well suited for relaxing a POP
if we require a deordering. If a reordering or least commit-
ment POP is desired, then we can produce a far more flexible
POP by using one of the proposed encodings.
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