
Learning Portfolios of Automatically Tuned Planners

Jendrik Seipp
Manuel Braun

Johannes Garimort
Albert-Ludwigs-Universität Freiburg

Freiburg, Germany
{seipp,braun,garimort}@informatik.uni-freiburg.de

Malte Helmert
Universität Basel

Fachbereich Informatik
Bernoullistrasse 16

4056 Basel, Switzerland
malte.helmert@unibas.ch

Abstract

Portfolio planners and parameter tuning are two ideas that
have recently attracted significant attention in the domain-
independent planning community. We combine these two
ideas and present a portfolio planner that runs automatically
configured planners. We let the automatic parameter tun-
ing framework ParamILS find fast configurations of the Fast
Downward planning system for a number of planning do-
mains. Afterwards we learn a portfolio of those planner con-
figurations. Evaluation of our portfolio planner on the IPC
2011 domains shows that it has a significantly higher IPC
score than the winner of the sequential satisficing track.

Introduction
Planning domains are inherently different from one an-
other, and no planner outperforms all others on all domains
(Roberts and Howe 2009). Moreover, typical planners either
solve a problem quickly or not at all (Howe and Dahlman
2002; Helmert, Röger, and Karpas 2011). These observa-
tions motivate the idea of running multiple planners sequen-
tially – a sequential portfolio of planners – to achieve better
overall performance than any individual planner.

Portfolios have been successfully applied to a number
of combinatorial search domains, most notably the satisfi-
ability problem for propositional logic. Petrik and Zilber-
stein (2006) provide a good general discussion of the port-
folio learning problem, including sample complexity results.

One of the central questions in building portfolio plan-
ners is which planning systems to include in the portfolio.
Our hypothesis is that if we want a portfolio to general-
ize to unknown domains (i.e., domains not used for train-
ing the portfolio), diversity of components is critical. In
this work, we achieve this diversity by taking a number
of domains from previous planning competitions and find-
ing a good planner for each of them. Although in gen-
eral we could include completely different planners in the
search, we limit ourselves to the configuration space of the
Fast Downward planning system (Helmert 2006). This sys-
tem provides abundant search types and heuristics by it-
self, many of which are state-of-the-art mechanisms for au-
tomatic planning. For searching well-performing config-

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

urations we use the off-the-shelf parameter configuration
framework ParamILS (Hutter et al. 2009).

Our ideas are similar to the methods used in Helmert,
Röger, and Karpas (2011). There the authors handpick a set
of configurations for the Fast Downward planning system
and evaluate their performance on previous International
Planning Competition (IPC) domains. Afterwards they use
hill-climbing search to form a planner portfolio by assign-
ing each configuration a relative amount of time that it is al-
lowed to try solving the problem. A major difference to our
work is that we do not rely on the researcher to decide which
configurations to examine, but find them automatically by
tuning the planner’s parameters in different domains.

One of the first portfolio systems for planning is described
by Howe et al. (1999). The authors implemented a system
called BUS that runs six planners in a round-robin scheme
until one of them finds a solution. In the portfolio the plan-
ners are ordered based on a linear regression model of their
success and runtime. Contrary to our work the assigned time
slices may change during portfolio execution and a planner
may be restarted multiple times with different time slices.

Similarly Roberts and Howe (2006) let a decision tree
learn the success rates of 23 planners on 1839 problem in-
stances based on 57 domain and instance features. For each
new problem they form a portfolio of planners by ordering
them by decreasing probability of success and run them se-
quentially with increasing timeouts in each round until a so-
lution is found. The major difference between our work and
the two approaches above is that we learn our portfolio off-
line, i.e. the ordering and the time limits of the contained
planners are fixed before we encounter a new problem.

While the portfolio planners above are domain-
independent, Gerevini, Saetti, and Vallati (2009) introduced
PbP, a planner that learns a portfolio for a specific domain.
PbP incorporates seven planners it can choose from. It
lets them learn macro-actions for the domain and runs up
to three best-performing ones in round-robin fashion with
learned time slots. What differentiates our approach from
PbP, in addition to PbP being domain-specific, is the fact
that we allow using more planners in the portfolio (up to
21) and never start the same planner twice. Obviously our
domain-independent portfolio cannot use macro-actions.

Gerevini, Saetti, and Vallati (2011) recently implemented
PbP2 which extends PbP by adding the planners LAMA

368

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling

(Richter and Westphal 2010) and ParLPG (Vallati et al.
2011) to the set of available planners. This addition mixes
portfolios with parameter tuning, ParLPG being a frame-
work for automatically finding good parameters for LPG
(Gerevini and Serina 2002) given a planning domain.

ParLPG finds the LPG parameters using the ParamILS
framework (Hutter et al. 2009). The same technique has
also been applied to the Fast Downward planning system
(Fawcett et al. 2011). Both systems have been tuned once
for speed and once for plan quality, while tuning for the lat-
ter is apparently much harder, because the runtimes cannot
be capped as efficiently. We avoid this by tuning for speed
exclusively and improve on plan quality by running many
obtained fast planners sequentially.

A different approach to parameter configuration can be
found in the work of Vrakas et al. (2003). The authors ex-
tract a number of domain- and problem-dependent features
from a set of benchmark domains and learn a rule-based
classification model that decides about the parameter set-
tings for each problem based on the interaction of the fea-
tures and parameter values for some training problems.

The remainder of the paper is organized as follows. In the
next section we present the parameter tuning method and the
results on the training domains. Afterwards we explain our
portfolio generation methods and evaluate their performance
on the domains of the IPC 2011 sequential satisficing track.

Tuning Planners
We used the FocusedILS variant of ParamILS (Hutter et al.
2009) to tune the parameters of the Fast Downward planning
system separately for 21 domains from the IPC 1998–2006
challenges. If multiple equivalent formulations of the same
domain were available, we only picked one of them. IPC
2008 and 2011 domains were excluded, because these form
our distinct test set, on which we evaluate the portfolios in-
troduced in the next section.

Fast Downward consists of many highly parametrized
search algorithms and heuristics that can be combined in
potentially infinite ways. We therefore restricted the con-
figuration space to a smaller subset as described for FD-
Autotune.s in Fawcett et al. (2011). Even with this restric-
tion the parameter space includes 2.99×1013 configurations.

We tuned for speed rather than quality since we want to
run multiple fast planner configurations sequentially in the
same amount of time a single planner is given in the IPC.
Moreover, it is easier to tune for speed than quality as this
allows to cap inefficient configurations early during the pa-
rameter tuning process, which is not possible when tuning
for quality, because one always has to wait for the planner to
terminate before finding out the quality it will achieve. As
the objective measure for tuning we used mean runtime.

Although Fast Downward does not have a default config-
uration, ParamILS has to start its search in the configuration
space somewhere. We use the same initial configuration as
Fawcett et al. (2011).

For each domain we let the set of training instances be
the problems that the initial configuration solves in under 30
minutes and over 0.1 seconds. In order to speed up the tun-
ing process, we do not use harder problems and set a timeout

of 180 seconds for individual planner runs. Easier problems
are also excluded, because they can be solved by all config-
urations without any measurable difference in speed and are
therefore not useful for tuning.

The FocusedILS algorithm contains some randomization
allowing us to start multiple tunings (in our experiments
five) and compare the discovered configurations. We say
that a tuning converged when all tuning runs yield the same
best configuration, i.e. use the same heuristics and search
options and differ only in minor parameters.

The randomized FocusedILS tuning algorithm converged
after at most 40 CPU hours in all 21 domains. Details on the
configurations found in each domain are provided in a tech-
nical report (Seipp et al. 2012); noteworthy trends include:
• preferred operators are almost always used (20x)
• lazy search is almost always used (20x)
• most configurations use one (10x) or two (9x) heuristics
• five different heuristics are used: hFF (12x), landmarks

(11x), hcg (6x), hcea (4x), hadd (1x)
In order to validate the efficiency of our tuning, we ran

all new planner configurations on all 21 domains. Table 1
shows the number of solved problems in each domain for
each planner. In keeping with our assumptions, in almost
all domains the coverage is highest for the configuration that
was trained on the respective domain. For some domains the
performance of other configurations is similar or even bet-
ter. This indicates that planners tuned for one domain can
also perform well on others and that some domains share in-
herent problem structure. If all configurations failed on all
domains except the one they where tuned on, we probably
would not be able to build a portfolio that generalizes to un-
seen problems.

Portfolios
In this section we present seven different portfolio genera-
tion methods. We use them to build sequential portfolios
containing the domain-wise trained configurations from the
previous section. However, these methods could in general
be used for all kinds of planning algorithms or planner con-
figurations.

A portfolio generator requires a set of planning algorithms
A, a set of training instances I and the corresponding per-
formance measures. For each a ∈ A and i ∈ I we measure
the runtime t(a, i), the cost c(a, i) needed to solve i with a
and the quality q(a, i) of the calculated plan. We define the
quality analogously to the IPC 2011 settings:

q(a, i) =
mina′∈A c(a′, i)

c(a, i)

If algorithm a ∈ A cannot solve problem i ∈ I, we set
t(a, i) = ∞ and q(a, i) = 0. Moreover we need to spec-
ify a score s according to which the generator optimizes the
portfolio and a total time limit the portfolio is allowed to run.

Then a (sequential) portfolio is a mapping P : A → R+
0

which assigns a time limit to each algorithm. Time lim-
its of 0 imply that the portfolio does not contain the cor-
responding algorithms. The sum of all component time

369

ai
rp

or
t

de
po

t

dr
iv

er
lo

g

fr
ee

ce
ll

gr
id

lo
gi

st
ic

s0
0

m
ic

on
ic

-f
ul

l

m
pr

im
e

op
tic

al
-t

pa
th

w
ay

s

ph
ilo

so
ph

er
s

pi
pe

s-
nt

pi
pe

s-
t

ps
r-

la
rg

e

ro
ve

rs

sa
te

lli
te

sc
he

du
le

st
or

ag
e

tp
p

tr
uc

ks

ze
no

tr
av

el

airport (50) 47 42 48 25 42 40 35 42 37 44 26 36 35 37 46 26 43 27 47 34 28
depot (22) 18 19 18 12 18 17 19 19 16 16 13 19 19 14 17 12 18 17 16 15 12
driverlog (20) 20 20 20 16 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 18 18
freecell (80) 78 78 80 80 80 77 79 76 77 80 66 80 80 76 80 70 77 80 80 77 43
grid (5) 5 5 5 3 5 5 5 5 5 5 4 5 5 3 5 4 5 4 5 4 5
logistics00 (28) 28
miconic-full (150) 0 0 0 0 0 139 138 139 138 0 137 0 138 138 0 134 0 0 0 137 134
mprime (35) 35 35 35 21 35 35 35 35 35 35 35 35 35 34 34 35 35 35 34 35 35
optical-t (48) 0 0 0 0 0 4 2 4 21 0 2 0 3 1 0 1 0 0 0 2 2
pathways (30) 23 29 29 5 29 28 29 28 22 30 7 30 29 14 30 7 30 11 30 6 7
philosophers (48) 0 0 0 0 0 48 45 48 48 0 48 0 45 48 0 48 0 0 0 5 5
pipes-nt (50) 43 43 43 29 43 42 44 42 41 44 30 44 44 32 43 23 45 35 43 43 28
pipes-t (50) 25 37 30 17 40 34 41 33 26 39 21 40 42 20 38 17 38 17 38 38 20
psr-large (50) 0 0 0 0 0 31 15 31 26 0 33 0 20 36 0 33 0 0 0 19 31
rovers (40) 39 40 40 18 40 40 40 40 34 40 32 40 40 32 40 32 40 32 40 23 28
satellite (36) 36 36 36 11 36 36 36 36 36 36 36 34 36 36 36 36 36 36 36 35 27
schedule (150) 143 150 144 61 150 144 148 127 145 150 61 150 149 65 146 62 150 150 149 99 26
storage (30) 18 18 19 19 19 19 20 20 20 21 17 18 20 17 21 17 20 21 21 17 19
tpp (30) 25 28 30 10 30 29 30 26 24 30 27 30 30 26 30 26 30 26 30 8 10
trucks (30) 15 16 13 7 16 16 20 16 16 13 12 18 20 18 13 11 15 9 13 23 10
zenotravel (20) 20 20 20 15 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

Table 1: Coverage (number of solved problems) of all tuned planner configurations (columns) on all domains (rows). Best
values are highlighted in bold, diagonal entries are underlined.

limits,
∑

a∈A P (a) must be smaller or equal to the total
time limit of a portfolio P . P solves a problem i if i
can be solved by any algorithm within its time limit, i.e.
t(a, i) ≤ P (a) for any a. The according quality is the
maximum quality achieved by all algorithms solving i, i.e.
q(P, i) = max{q(a, i) | a ∈ A, t(a, i) ≤ P (a)}. These
definitions follow Helmert, Röger, and Karpas (2011).

Portfolio Generators
The generators get the following information:
• A consists of the 21 Fast Downward configurations we

found with the methods from the previous section.
• I = D1 ∪ . . . ∪D21 is the union of all 21 domains from

the last section (with each domain viewed as a set of prob-
lems) and consists of 1002 planning problems.

• Naturally, the score s should be based on solution quality.
However, due to the nature of our approach we have to
make two adjustments. To avoid favoring configurations
that excel in domains with many problems, we normalize
the scores by the number of tasks in a domain:

s(P) =
21∑
j=1

1

|Dj |
∑
i∈Dj

q(P, i)

Moreover, to ensure that the resulting portfolio general-
izes well to new domains, we only count the performance
of configurations on domains they have not been trained
on. This is achieved by setting q(a, i) = 0 if algorithm a
was trained on the domain to which problem i belongs.
• Following the rules of the IPC satisficing track the gener-

ated portfolios have a total time limit of 30 minutes.

Stone Soup. The Stone Soup portfolio generator
(Helmert, Röger, and Karpas 2011) tries to find portfolios
maximizing the score by hill-climbing. We include the al-
gorithm here to evaluate the impact of the domain tuning on
the portfolio performance.

The algorithm starts with a portfolio of total time 0 for
each configuration. Then in each iteration it generates a set
of possible successor portfolios: separately, the total time
of each configuration is increased by a small time portion g
resulting in one new portfolio per configuration. The succes-
sor with the maximum score is selected as the new portfolio.
The algorithm proceeds until the total time limit is reached.

Uniform. The uniform portfolio runs all 21 configura-
tions for

⌊ total time limit
21

⌋
= 85 seconds.

Selector. For each subset size {1, . . . , 21} this brute force
approach computes the best subset of configurations with
equal time limits

⌊ total time limit
subset size

⌋
and returns the one with the

highest score.

Cluster. We use the k-means clustering algorithm
(MacKay 2003, p. 284–289) to form k clusters of config-
urations with similar scores for the individual problems. Af-
terwards, from each cluster we select the configuration with
the best score and give it the runtime

⌊ total time limit
k

⌋
.

Increasing Time Limit. The generator iteratively in-
creases the portfolio time limit by t seconds. In each iter-
ation it chooses the problems that can be solved within the
time limit ignoring the problems the portfolio already solves.
If no such problems are found, it increases the time limit
and continues. Otherwise, the time limit of the configura-
tion maximizing the score for the selected problems is set to
the maximum runtime the configuration needs to solve the

370

Quality LAMA FD-Autotune FD Stone Soup Stone Soup Uniform Selector Cluster Inc. Time Limit DW RIS
2011 1 2 1 2 g=100 g=110 k=16 k=12 t=10s t=5s

Training Score – – – – – 19.39 19.39 19.22 19.28 19.18 19.17 18.73 18.74 19.07 19.49
barman (20) 17.62 13.23 5.40 6.31 5.60 17.06 18.27 19.02 18.96 17.05 19.14 19.02 19.01 18.88 19.08
elevators (20) 11.11 10.63 14.37 11.82 13.48 15.18 15.71 15.27 14.96 15.70 15.80 15.25 14.90 15.30 16.38
floortile (20) 4.81 6.56 8.87 5.87 6.37 5.93 5.80 5.93 6.01 5.93 5.63 5.18 5.22 5.20 5.95
nomystery (20) 10.81 10.38 16.52 12.33 12.51 18.77 18.75 17.73 17.76 18.75 17.76 16.65 16.65 16.67 18.82
openstacks (20) 18.71 12.99 17.06 12.48 12.35 11.11 11.26 16.33 10.72 16.76 15.36 15.29 14.49 14.14 11.41
parcprinter (20) 19.51 19.48 13.61 19.12 18.17 19.56 19.54 19.88 18.82 19.89 19.74 19.87 19.86 19.88 19.89
parking (20) 11.48 3.74 3.49 15.23 14.85 17.16 17.40 16.89 16.98 17.05 16.20 15.57 15.57 13.32 14.79
pegsol (20) 20.00 19.28 19.72 17.04 14.61 19.50 19.38 19.54 19.38 19.64 19.29 19.19 19.19 19.53 19.43
scanalyzer (20) 17.89 16.71 15.87 18.65 17.38 19.12 18.37 19.19 18.92 19.00 18.75 18.77 18.83 19.25 19.69
sokoban (20) 16.68 17.16 10.51 17.31 15.55 18.59 18.55 17.26 17.37 17.35 17.25 18.26 18.22 18.64 17.55
tidybot (20) 14.13 13.86 12.51 14.69 14.63 15.08 15.03 16.40 15.87 16.21 14.49 15.60 15.58 15.29 15.88
transport (20) 12.64 9.48 8.49 9.29 9.59 15.94 15.88 17.55 17.60 16.00 17.11 16.74 16.95 17.12 15.58
visitall (20) 15.55 1.71 3.29 3.98 0.92 19.90 19.90 19.90 19.90 19.90 19.90 19.90 19.90 19.90 19.90
woodworking (20) 14.65 14.72 10.25 19.99 18.43 15.92 15.82 15.94 15.88 15.92 15.71 15.80 15.79 15.77 15.91
Sum (280) 205.59 169.94 159.94 184.12 174.45 228.82 229.67 236.84 229.14 235.17 232.15 231.10 230.17 228.89 230.28

Table 2: The qualities of our portfolios (right) compared to IPC 2011 competitors (left) on the IPC 2011 sequential satisficing
track domains. Best planners in each domain are highlighted in bold. The first row show the training scores of our portfolios.

problems. The algorithm continues in this fashion until the
total time limit is reached or all problems are solved.

Domain-wise. Iteratively we retrieve the domain with the
highest improvement potential, i.e. the biggest difference be-
tween the currently achieved score and the score it could
reach if all configurations had the maximum time limit of
30 minutes. We add the configuration that improves the do-
main’s score the fastest to the portfolio and set its time limit
to the amount of time needed for the improvement. Prob-
lems solved by the current portfolio are ignored in later score
calculations. The iteration continues until the total time limit
is reached or no more domains can be improved.

Randomized Iterative Search. This generator can use
any existing portfolio as initialization and iteratively im-
proves it using a randomized local search method. At each
step it evaluates successors of the current portfolio in a ran-
dom order. If it finds a better successor, it instantly commits
to it and continues the iteration. As a successor it considers
any portfolio that can be obtained from the current one by
swapping a fixed runtime amount between two algorithms
or by taking an equal amount of runtime from all algorithms
and assigning it to a single one. We end the iteration when
the score does not increase for 20000 successor evaluations.

In our experiments we used the uniform portfolio as ini-
tialization. Starting with other portfolios did not improve
the training score and the variance of the achieved score was
very small across multiple runs.

Experiment
We evaluated all generated portfolios on the domains of the
IPC 2011 sequential satisficing track to investigate transfer-
ability to unseen domains. For comparison we also included
some of the best performers from the last IPC competition
in the experiment. We used a time limit of 30 minutes and a
memory limit of 2 GB. The results in Table 2 clearly show
that not only do we beat all versions of the other portfolio

planner Stone Soup (Helmert, Röger, and Karpas 2011) and
the tuned version of Fast Downward FD-Autotune (Fawcett
et al. 2011), but we even clearly outperform the competition
winner LAMA 2011 (Richter, Westphal, and Helmert 2011).

The most striking result however, is that the trivial uni-
form portfolio method performs best.1 This reinforces our
initial assumption that problems tend to be solved fast or
not at all, and diversity is key to building strong portfolios.
The technical report (Seipp et al. 2012) discusses additional
experiments with shorter timeouts, which show that the best
portfolios already outperform LAMA 2011 when only given
half as much time, and that with significantly shorter time-
outs the uniform portfolio is no longer the best choice.

Conclusions and Future Work
We have shown that it is very helpful to automatically find
diverse planners for a range of known domains to be able
to build portfolios that perform well on unknown domains.
Of course our idea is not limited to automated planning. We
think that portfolio approaches from all kinds of research
areas might benefit from automatically widening the scope
of algorithms the portfolios can choose from.

In the future we will try to use our approach for optimal
planning. Recent improvements in Fast Downward have in-
troduced many parameters for the optimizing configurations,
making our methods a natural fit in this area.

Additionally, we will experiment with adaptively select-
ing the next planner during portfolio execution.

We note that our work naturally benefits from improve-
ments in the underlying configurations. Furthermore, ex-
panding our set of available planners with planners from
other research teams would probably increase the number
of domains we can perform well on.

1The difference between the uniform portfolio and LAMA 2011
is highly statistically significant (p = 0.0002 with χ2 = 13.76
using McNemar’s test when comparing the set of tasks solved).

371

References
Fawcett, C.; Helmert, M.; Hoos, H.; Karpas, E.; Röger, G.;
and Seipp, J. 2011. FD-Autotune: Domain-specific config-
uration using Fast Downward. In ICAPS 2011 Workshop on
Planning and Learning, 13–17.
Gerevini, A., and Serina, I. 2002. LPG: A planner based on
local search for planning graphs with action costs. In Ghal-
lab, M.; Hertzberg, J.; and Traverso, P., eds., Proceedings of
the Sixth International Conference on Artificial Intelligence
Planning and Scheduling (AIPS 2002), 13–22. AAAI Press.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An auto-
matically configurable portfolio-based planner with macro-
actions: PbP. In Gerevini, A.; Howe, A.; Cesta, A.; and
Refanidis, I., eds., Proceedings of the Nineteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2009), 350–353. AAAI Press.
Gerevini, A.; Saetti, A.; and Vallati, M. 2011. PbP2: Auto-
matic configuration of a portfolio-based multi-planner. IPC
2011 planner abstracts.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast Down-
ward Stone Soup: A baseline for building planner portfolios.
In ICAPS 2011 Workshop on Planning and Learning, 28–35.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Howe, A. E., and Dahlman, E. 2002. A critical assessment
of benchmark comparison in planning. Journal of Artificial
Intelligence Research 17:1–33.
Howe, A. E.; Dahlman, E.; Hansen, C.; Scheetz, M.; and
von Mayrhauser, A. 1999. Exploiting competitive planner
performance. In Biundo, S., and Fox, M., eds., Recent Ad-
vances in AI Planning. 5th European Conference on Plan-
ning (ECP 1999), volume 1809 of Lecture Notes in Artificial
Intelligence, 62–72. Heidelberg: Springer-Verlag.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle,
T. 2009. ParamILS: an automatic algorithm configura-
tion framework. Journal of Artificial Intelligence Research
36:267–306.
MacKay, D. J. C. 2003. Information Theory, Inference, and
Learning Algorithms. Cambridge University Press.
Petrik, M., and Zilberstein, S. 2006. Learning parallel port-
folios of algorithms. Annals of Mathematics and Artificial
Intelligence 48:85–106.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA
2008 and 2011 (planner abstract). IPC 2011 planner ab-
stracts.
Roberts, M., and Howe, A. E. 2006. Directing a portfolio
with learning. In Ruml, W., and Hutter, F., eds., AAAI 2006
Workshop on Learning for Search, 129–135.
Roberts, M., and Howe, A. E. 2009. Learning from planner
performance. Artificial Intelligence 173:536–561.
Seipp, J.; Braun, M.; Garimort, J.; and Helmert, M. 2012.
Learning portfolios of automatically tuned planners: De-

tailed results. Technical Report 268, Albert-Ludwigs-
Universität Freiburg, Institut für Informatik.
Vallati, M.; Fawcett, C.; Gerevini, A.; Holger, H.; and Saetti,
A. 2011. ParLPG: Generating domain-specific planners
through automatic parameter configuration in LPG. IPC
2011 planner abstracts.
Vrakas, D.; Tsoumakas, G.; Bassiliades, N.; and Vlahavas,
I. P. 2003. Learning rules for adaptive planning. In
Giunchiglia, E.; Muscettola, N.; and Nau, D., eds., Pro-
ceedings of the Thirteenth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2003), 82–91.
AAAI Press.

372

