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Abstract

In CPP, we are given a set of actions (assumed determin-
istic in this paper), a distribution over initial states, a goal
condition, and a real value 0 < θ ≤ 1. We seek a plan π
such that following its execution, the goal probability is at
least θ. Motivated by the success of the translation-based ap-
proach for conformant planning, introduced by Palacios and
Geffner, we suggest a new compilation scheme from CPP to
classical planning. Our compilation scheme maps CPP into
cost-bounded classical planning, where the cost-bound rep-
resents the maximum allowed probability of failure. Empiri-
cally, this technique shows mixed, but promising results, per-
forming very well on some domains, and less so on others
when compared to the state of the art PFF planner. It is also
very flexible due to its generic nature, allowing us to exper-
iment with diverse search strategies developed for classical
planning. Our results show that compilation-based technique
offer a new viable approach to CPP and, possibly, more gen-
eral probabilistic planning problems.

Introduction
An important trend in research on planning under uncer-
tainty is the emergence of planners that utilize an underlying
classical, deterministic planner to solve more complex prob-
lems. Two highly influential examples are the replanning ap-
proach (Yoon, Fern, and Givan 2007) in which an underlying
classical planner is used to solve MDPs by repeatedly gen-
erating plans for a determinized version of the domain, and
the translation-based approach for conformant (Palacios and
Geffner 2009) and contingent planning (Albore, Palacios,
and Geffner 2009), where a problem featuring uncertainty
about the initial state is transformed into a classical prob-
lem on a richer domain. Both approaches have drawbacks:
replanning can yield bad results given dead-ends and low-
valued, less likely states. The translation-based approach can
blow-up in size given complex initial belief states and ac-
tions. In both cases, however, there are efforts to improve
these methods, and the reliance on fast, off-the-shelf, classi-
cal planners seem to be very useful.

This paper continues this trend, leveraging the translation-
based approach of Palacios and Geffner (Palacios and
Geffner 2009) to handle a version of conformant planning
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in which there is a probability distribution over the initial
state of the world. The task is to reach the goal with certain
minimal probability, rather than with certainty. In general,
conformant probabilistic planning (CPP) allows for stochas-
tic actions, but as in most earlier work, we focus on the sim-
pler case of deterministic actions. In earlier work (Brafman
and Taig 2011), we reduced CPP into Metric Planning. Here,
we offer a reduction into a more common variant of classical
planning – cost bounded planning.

The key to understanding our translation is the observa-
tion that a successful solution plan for a deterministic CPP
problem is a conformant plan w.r.t. a (probabilistically) suf-
ficiently large set of initial states. Hence, a possible solu-
tion method would be to ”guess” this subset, and then solve
the conformant planning problems it induces. Our method
generates a classical planning problem that manipulates the
knowledge state of the agent, but includes additional opera-
tors that allow the planner to select the set of states on which
it will ”plan” for and the set of states it will ”ignore”. To
capture the probabilistic aspect of the problem, our transla-
tion scheme uses action costs. Although most actions have
identical zero cost, the special actions that tell the planner to
”ignore” an initial state have positive cost. More specifically,
an action that ignores a state s costs Pr(s). Consequently,
the cost-optimal plan is a plan with the highest probability
of success – as it ignores the fewest possible initial states.

Given a problem with a conformant (probability 1) so-
lution, a cost-optimal planner applied to the transformed
CPP will return this conformant solution, even when it could
return a much shorter plan that achieves the desired suc-
cess probability, more quickly. Worse, a cost-optimal plan-
ner may get stuck trying to prove the optimality of a solution
even if it encounters a legal plan during search. Indeed, typ-
ically, existing cost-optimal classical planners cannot han-
dle the classical planning problem our compilation scheme
generates. For this reason, we use a cost-bounded classical
planner – i.e., a planner that seeks a classical plan with a
given cost bound (Stern, Puzis, and Felner 2011). In our set-
ting, the classical planner tries to find a plan with a cost no
greater than 1 − θ, which implies that the probability of the
initial states that are not ignored is at least θ. We also con-
sider a close variant of this translation scheme where the cost
bound is modeled as a single resource that, again, captures
the probability of states ignored. This variant performs well
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on a few domains, but is generally weaker, partially because
resource-bounded planners are not as well developed.

To assess our proposed translation scheme, we compare
our planner to PFF (Domshlak and Hoffmann 2007) and
our older PTP (Brafman and Taig 2011) planner, which are
the state of the art in CPP. The results are mixed, showing
no clear winner. On some classical domains, we are better,
whereas on others PFF is better. However, we have found
that PFF is quite sensitive to domain reformulation. For ex-
ample, it is well known that PFF depends on the order of
conditions in conditional effects. In addition, when domains
such as logistics are modified to require slightly more com-
plex or longer plan (for example, by splitting the load ac-
tion in logistics into a number of actions, such as: open-
cargo-door, load, close-cargo-door), PFF’s performance is
adversely affected, whereas our compilation method is not.
Overall, our results indicate that the translation approach
offers a useful technique for solving probabilistic planning
problems, worthy of additional attention.

Next, we give some required background and describe our
new proposed compilation scheme. Then, we discuss its the-
oretical properties and a few modifications required to make
it practical. We conclude with an empirical evaluation and a
discussion of our results and potential future work.

Background
Conformant Probabilistic Planning
The probabilistic planning framework we consider adds
probabilistic uncertainty to a subset of the classical ADL
language, namely (sequential) STRIPS with conditional ef-
fects. STRIPS planning tasks are defined over a set of propo-
sitions P . These fluents define a set of possible worlds,
the set of truth assignments over P . In addition, for nota-
tional convenience, we assume a distinguished world state
⊥ which represents the undefined state or failure. A STRIPS
planning task is a triple (A, I,G), corresponding to the ac-
tion set, initial world state, and goals. I and G are sets
of propositions, where I describes a concrete initial state
wI , while G describes the set of goal states w ⊇ G.
An action a is a pair (pre(a), E(a)) of the precondition
and the (conditional) effects. A conditional effect e is a
triple (con(e), add(e), del(e)) of (possibly empty) proposi-
tion sets, corresponding to the effect’s condition, add, and
delete lists, respectively. The precondition pre(a) is also a
proposition set, and an action a is applicable in a world state
w if w ⊇ pre(a). If a is not applicable in w, then the result
of applying a to w is ⊥. If a is applicable in w, then all
conditional effects e ∈ E(a) with w ⊇ con(e) occur. Oc-
currence of a conditional effect e in w results in the world
state w∪add(e)\del(e), which we denote by a(w). We will
use ā(w) to denote the state resulting from the sequence of
actions ā in world state w.

If an action a is applied to w, and there is a proposition q
such that q ∈ add(e)∩del(e′) for (possibly the same) effects
e, e′ ∈ E(a), the result of applying a in w is undefined.
Thus, actions cannot be self-contradictory, that is, for each
a ∈ A, and every e, e′ ∈ E(a), if there exists a world state
w ⊇ con(e) ∪ con(e′), then add(e) ∩ del(e′) = ∅. Finally,

an action sequence a is a plan if the world state that results
from iterative execution of a(wI) ⊇ G.

Conformant planning (A, bI , G) generalizes the above
framework, replacing the single initial state with an initial
belief state bI , where the initial belief state is simply the set
of states considered possible initially. Now, a plan is an ac-
tion sequence a such that a(wI) ⊇ G for every wI ∈ bI .

Conformant probabilistic planning farther extends this,
by quantifying the uncertainty regarding the initial state us-
ing a probability distribution bπI

. In its most general form,
CPP allows for stochastic actions, but we leave this to fu-
ture work. Thus, throughout this paper we assume determin-
istic actions only. Conformant probabilistic planning tasks
are 5-tuples (V,A, bπI

, G, θ), corresponding to the proposi-
tions set, action set, initial belief state, goals, and acceptable
goal satisfaction probability. As before, G is a conjunction
of propositions. bπI

denotes a probability distribution over
the world states, where bπI

(w) is the probability that w is
the true initial world state.

A note on notation and terminology. In the conformant
planning case, a belief state refers to a set of states, and the
initial belief state is denoted bI . In the case of CPP, the initial
belief state is a distribution over a set of states, and the initial
belief state is denoted bπI

. In both cases we use the term
belief state. Sometimes, in CPP we will use bI to denote
the set of states to which bπI

assigns a positive probability.
Note also that there is no change in the definition of actions
and their applications in states of the world. But since we
now work with belief states, actions can also be viewed as
transforming one belief state to another. We use the notation
[b, a] to denote the belief state obtained by applying a in
belief state b. The likelihood [b, a] (w′) of a world state w′
in the belief state [b, a], resulting from applying action a in
belief state b, is given by [b, a] (w′) =

∑
a(w)=w′ b(w).

We will also use the notation [b, a] (ϕ) to denote∑
a(w)=w′,w′|=ϕ b(w), and we somewhat abuse notation and

write [b, a] |= ϕ for the case where [b, a] (ϕ) = 1.
For any action sequence a ∈ A∗, and any belief state b, the

new belief state [b, a] resulting from applying a at b is given

by [b, a] =


b, a = 〈〉
[b, a] , a = 〈a〉, a ∈ A
[[b, a] , a′] , a = 〈a〉 · a′, a ∈ A, a′ 6= ∅

In many settings achieving G with certainty is impossi-
ble. CPP introduces the parameter θ, which specifies the re-
quired lower bound on the probability of achieving G. A
sequence of actions a is called a plan if we have ba(G) ≥ θ
for the belief state ba = [bπI

, a]. Because our actions are
deterministic, this is essentially saying that a is a plan if
Pr({w : a(w) |= G}) ≥ θ, i.e,. the weight of the initial
states from which the plan reaches the goal is at least θ.

Related Work
The best current probabilistic conformant planner is Proba-
bilistic FF (PFF) (Domshlak and Hoffmann 2007). The ba-
sic ideas underlying Probabilistic-FF are:

1. Define time-stamped Bayesian Networks (BN) describing
probabilistic belief states.
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2. Extend Conformant-FF’s belief state to model these BN.

3. In addition to the SAT reasoning used by Conformant-
FF (Hoffmann and Brafman 2006), use weighted model-
counting to determine whether the probability of the (un-
known) goals in a belief state is high enough.

4. Introduce approximate probabilistic reasoning into
Conformant-FF’s heuristic function.

In some domains, PFF’s results were improved by our older
PTP planner (Brafman and Taig 2011). This work is close
in spirit to PTP. PTP compiles CPP into a metric planning
problem in which the numeric variables represent the prob-
abilities of various propositions and actions update this in-
formation. For every variable p, PTP maintains a numeric
variable, Prp, that holds the probability of p in the current
state. PTP also maintains variables of the form p/t that cap-
ture conditional knowledge. If an action adds p/t, then the
value of Prt is increased by the probability of t. Similar in-
formation about the probability of the goal is updated with
a Prgoal variable, and the goal in this metric planning prob-
lem is: Prgoal ≥ θ. We compare our methods to PTP below.
The main a-priori advantage of our current approach is the
simpler translation it offers and the choice of target problem:
classical planning received much more attention than metric
planning, and many more heuristics are available.

An earlier attempt to deal with probabilities by reducing
it to action costs appears in (Jiménez et al. 2006) in the con-
text of probabilistic planning problems where actions have
probabilistic effects but there is no uncertainty about the ini-
tial state. The probabilistic problem is compiled into a (non-
equivalent) classical problem where each possible effect e is
represented by a unique action and the cost associated with
this action is set to be 1 − Pr(e). That value captures the
amount of risk the planner takes when choosing that action,
which equals the probability that the effect won’t take place
when the original action is executed. This value is then min-
imized by the cost-optimal planner. Our compilation scheme
uses related ideas but deals with uncertainty about the initial
state, and comes with correctness guarantees. In (Keyder and
Geffner 2008) the authors also observed the possibility to
integrate probabilistic information and original action costs
into a new cost function and used it in order to solve the re-
laxed underlying MDP of a probabilistic planning problem
and gain, by that, valuable heuristic information.

Closely related to our work is the CLG+ planner (Al-
bore and Geffner 2009). This planner attempts to solve con-
tingent planning problems in which goal achievement can-
not be guaranteed. This planner makes assumptions, gradu-
ally, that reduce the uncertainty, and allow it to plan. This
is achieved by adding special actions, much like ours, that
”drop” a tag, i.e., assume its value is impossible. These ac-
tions are associated with a high cost. The main difference is
that the cost we associate with assumption-making actions
reflects the probability of the states ruled out, allowing us to
model probabilistic planning problems as cost-optimal plan-
ning. Furthermore, our planner may decide (depending on
the search procedure used) to come up with a sub-optimal
plan, albeit one that meets the desired probabilistic thresh-
old, even when a full conformant plan exists. This flexibility

allows us to trade-off computational efficiency with proba-
bility of success.

Of similar flavor to the above is the assumption-based
planning approach introduced recently (Davis-Mendelow,
Baier, and McIlraith 2012). This work considers the problem
of solving conformant and contingent planning under vari-
ous assumptions, that may be selected according to various
preference criteria. However, it does not consider an explicit
probabilistic semantics that addresses CPP.

Cost bounded classical planning
In cost bounded classical planning, a classical planning
problem is extended with a constant parameter c ∈ R > 0.
The task is to find a plan with cost ≤ c as fast as possible.
In this setting the optimal plan cost and the distance of the
resulting plan from optimal does not matter, as opposed to
notions such as sub-optimal search. One way to solve this
problem is to use an optimal planner and then confirm that
the cost bound is met. Another method is to use an any-
time planner that gradually improves the plan cost until the
cost bound is met. However, these methods do not make real
use of the bound during the search, e.g., for pruning nodes
that cannot lead to a legal solution. Recently, a number of
algorithms that deal directly with this problem were sug-
gested (Stern, Puzis, and Felner 2011),(Thayer et al. 2012).
The common ground of all these algorithms is the consid-
eration of the bound c within the heuristic function. One
example is Potential Search. It uses heuristic estimates to
calculate the probability that a solution of cost no more than
c exists below a given node (Stern, Puzis, and Felner 2011).
This idea was extended by the Beeps algorithm (Thayer et
al. 2012) which chooses which node to expand next, based
on the node’s potential, which combines admissible and in-
admissible estimates of the node’s h value as well as an in-
admissible estimate of the number of actions left to the goal
(distance estimate). This algorithm is currently the state of
the art for this problem.

Resource constrained classical planning
Resource constrained planning is a well known extension
of classical planning that models problems in which ac-
tions consume resources, such as time and energy, and the
agent must achieve the goal using some initial amount of re-
sources. Here we follow the formulation of (Nakhost, Hoff-
mann, and Müller 2010) and (Haslum and Geffner 2001)
where a constrained resource planning task extends a simple
classical planning task with a set R of resource identifiers as
well as two functions:

• i : R→ R≥0, i(r) is the initial level of resource r ∈ R.

• u : (A × R) → R≥0, for each action a ∈ A and each
resource r ∈ R, u(a, r) is the amount of r consumed by
an execution of a.

A state s̄ is a pair (s, rem) where rem ∈ R≥0|R| holds
the remaining amount of each resource when reaching s. To
execute action a in s̄, its preconditions must hold in s, and
for every resource r, its value in remmust be at least as high
as the amount of this resource consumed by a.
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The Translation Approach
The idea behind the translation approach (Palacios and
Geffner 2009) to conformant planning, implemented in the
T0 planner, is to reason by cases. The different cases corre-
spond to different conditions on the initial state, or, equiva-
lently, different sets of initial states. These sets of states, or
conditions, are captured by tags. Each tag is identified with
a subset of bI . Below we use slightly different notation from
that of Palacios and Geffner, and we often abuse it, treating
a tag as the set of initial states it defines.

The translation approach associates a set of tags Tp with
every proposition p. Intuitively, these tags represent infor-
mation about the initial state that is sufficient to determine
the value of p at every point of time during the plan. The set
of propositions is augmented with new propositions of the
form p/t, where t is one of the possible tags for p. p/t holds
the current value of p given that the initial state satisfies the
condition t. The value of each proposition p/t in the initial
state is simply the value of p in the state(s) represented by t.
To understand this idea, it is best to equate tags with possible
initial states, although this is inefficient in practice. Then, it
is clear that what this transformation seeks to represent is
the belief state of the agent – if we know what is the current
value of each proposition for every initial world state, we
have a representation of the belief state of the agent. Thus,
the classical planning problem generated is one that emu-
lates planning in belief space.

To succeed, the plan must eventually reach a belief state
in which all states satisfy G. It is often said that in such a
state, the agent knows G. Thus, the classical planner state
must also represent the agent’s knowledge. For this purpose,
the translation method adds new variables of the form Kp
for every proposition p which represent the fact that p holds
in every currently possible world. Kp is initially true, if p is
true in all initial world states with positive probability.

The fact that the new variables are initialized correctly is
not sufficient to ensure a correct representation of the agent’s
knowledge state throughout the plan. For this purpose, the
actions used must be modified. If the original actions are
deterministic, then the change to the agent’s state of knowl-
edge following the execution of an action is also determin-
istic, and we can reflect it by altering the action description
appropriately. Thus, one replaces each original action with a
similar action that also correctly updates the value of the p/t
and Kp propositions using suitable conditional effects.

Intuitively, Kp should hold whenever p/t holds for all
possible tags t ∈ Tp, i.e., p is true now for every possible
initial world state. To ensure this, we must add special ”in-
ference” actions – actions that do not change the state of the
world, but rather deduce new information from existing in-
formation – called merge actions. To see why this is needed,
imagine that g/t holds for all tags t ∈ Tg except for some
t′, and that the last action finally achieved g/t′. Thus, now g
holds in all possible world states. With the current set of ac-
tions, this information is not reflected in the planner’s state,
i.e., Kg does not hold. Merge actions allow us to add (i.e.,
deduce)Kg in this case. The preconditions of such an action
are simply g/t for every t ∈ Tg , and the effect is Kg.

The resulting problem is a classical planning problem de-

fined on a larger set of variables which reflects the state of
the world as well as the state of information (belief state)
of the agent. The size of this set depends on the original
set of variables and the number of tags we need to add.
Hence, an efficient tag generation process is important. As
noted above, a trivial set of tags is one that contains one tag
for each possible initial state. This leads to an exponential
blowup in the number of propositions. However, we can of-
ten do much better, as the value of each proposition at the
current state depends only on a small number of proposi-
tions in the initial state. This allows us to use many fewer
tags (=cases). In fact, the current value of different proposi-
tions depends on different aspects of the initial state. Thus,
in practice, we select different tags for each proposition.

New Translation Scheme for CPP
The basic motivation for the method we present now is the
understanding that we can solve a CPP problem by identify-
ing a set b′ of initial states whose total probability is greater
or equal to θ, such that there exists a conformant plan for
b′. This plan is a solution to the CPP problem, too. This is
formalized in the following simple lemma whose proof is
immediate, but nevertheless underlies our ideas. Please re-
call that we consider deterministic actions only.

Lemma 1 A CPP CP = (V,A, bπI
, G, θ) is solvable iff

there exists a solvable conformant planning problem C =
(V,A, bI , G) such that Pr({w ∈ bI}) ≥ θ. Moreover, a is a
solution to CP iff it is a solution to P .

Proof: CP ⇒ C: Let a be a solution to CP . Choose
bI = {w ∈ bπI

|a(w) ⊇ G}.
C ⇒ CP: Let a be a solution to C. By definition,
Pr({w ∈ bI}) ≥ θ, and by definition of conformant plan
Pr({w ∈ bI |a(w) ⊇ G}) ≥ θ.�

Lemma 1 tells us that the task of finding a plan to a CPP
can be divided into the identification of a suitable initial be-
lief state bI , followed by finding a plan to the conformant
planning problem (V,A, bI , G). However, rather than take
this approach directly, we use a compilation-based method
in which we let the classical planner handle both parts. That
is, in the classical planning problem we generate the planner
decides which states to ignore, and also generates a confor-
mant plan for all other states. We must ensure that the total
probability of ignored states does not exceed 1 − θ. Tech-
nically, this is done by introducing special actions that es-
sentially tell the planner to ignore a state (or set of states).
The cost of each such action is equal to the probability of the
state(s) it allows us to ignore.

Technically, the effect of ignoring a state is to make it eas-
ier for the planner to obtain knowledge. Typically, we say
that the agent knows ϕ at a certain belief state, if ϕ holds
in all world states in this belief state. In the compilation ap-
proach such knowledge is added by applying merge actions.
Once a state has been ”ignored” by an ”ignore” action, the
merge actions effectively ignore it, and deduce the informa-
tion as if this state is not possible.
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Formal description
Let P = (V,A, bI , G, θ) be the input CPP. Let Tp be the set
of tags for each p ∈ V . (We discuss the tag computation
algorithm later – right now it is assumed to be given to the
compiler.) We use T to denote the entire set of tags (i.e.,
∪Tp). We will also assume a special distinguished tag, the
empty set. We now present our compilation methods for P .

Given P , we generate the following classical planning
with action costs problem P̃ = (Ṽ , Ã, Ĩ, G̃):
Variables: Ṽ = {p/t | p ∈ V, t ∈ Tp}∪{Dropt|t ∈ T}. The
first set of variables are as explained above. p/{}, which we
abbreviate as simply p, denotes the fact that p holds uncondi-
tionally, i.e., in all possible worlds. (Previous work denotes
this by Kp.) The second set of variables – Dropt – denotes
the fact that we can ignore tag t.
Initial State: Ĩ = {l/t | l is a literal, and t, I � l}. All valid
assumptions on the initial worlds captured by the special
variables. Note that all Dropt propositions are false.
Goal State : G̃ = G. The goal must hold for all initial states.
Recall that what we call knowledge is not real knowledge,
because we allow ourselves to overlook the ignored states.
Actions: Ã = Ã1 ∪ Ã2 ∪ Ã3 ∪ Ã4 where:

• Ã1 = {ã | a ∈ A}: Essentially, the original set of actions.
– pre(ã) = pre(a). That is, to apply an action, its pre-

conditions must be known.
– For every conditional effect (c → p) ∈ E(a) and for

every t ∈ T , ã contains: {c/t | c ∈ con} → {p/t}.
That is, for every possible tag t, if the condition holds
given t, so does the effect.

– cost(ã) = 0.

• Ã2 = {{p/t | t ∈ Tp} → p |p is a precondition of some
action a ∈ A or p ∈ G}. These are known as the merge
actions. They allow us to infer from conditional knowl-
edge about p, given certain sets of tags, absolute knowl-
edge about p. That is, if p holds given t, for an appropriate
set of tags, then p must hold everywhere, we set the cost
of all the merge actions to 0 as well.

• Ã3 = {Dropt | t ∈ T} where: pre(Dropt) =
{}, eff(Dropt) = {Dropt}, cost(Dropt) = PrI(t).
That is, the Dropt action let’s us drop tag t, making
Dropt true in the cost of t’s initial probability.

• Ã4 = {Assumep/t |p is a precondition of
some action a ∈ A or p ∈ G, t ∈ Tp}
pre(Assumep/t) = {Dropt}, eff(Assumep/t) =
{p/t}, cost(Assumep/t) = 0. That is, we can assume
whatever we want about what is true given a dropped tag.

Cost bound : The cost bound for the classical planning
problem is set to 1− θ.

Thus, using the Dropt action, the planner decides to
”pay” some probability for dropping all initial states that
correspond to this tag. Once it drops a tag, it can conclude
whatever it wants given this tag; in particular, that the goal
holds. A solution to P̃ will make assumptions whose cost
does not exceed the bound. Hence, it will work on a (proba-
bilistically) sufficiently large set of initial states.

Example
We illustrate the ideas behind our planner PCBP using an ex-
ample adapted from (Palacios and Geffner 2009) and (Braf-
man and Taig 2011). In this problem we need to move an
object from the origin to a destination on a linear grid of
size 4. There are two actions: pick(l) picks an object from
location l if the hand is empty and the object is in l. If the
hand is full, it drops the object being held in l. put(l) drops
the object at l if the object is being held. All effects are
conditional, and there are no preconditions. Formally, the
actions are as follows: pick(l) = ({}, {at(l) ∧ ¬hold →
hold ∧ ¬at(l), hold → ¬hold ∧ at(l)}), and put(l) =
({}, {hold → ¬hold ∧ at(l)}). Initially, the hand is empty,
and the object is at l1 with probability 0.2, or at l2 or l3 with
probability 0.4, each. It needs to be moved to l4 with a prob-
ability θ = 0.5. Thus, we can attain the desired probability
by considering two initial states only, whereas conformant
planning requires that we succeed on all three locations.

The tag sets we require are: TL = {at(l1), at(l2), at(l3)}
for L = at(l4). These tags are disjoint, deterministic, and
complete. (These notions are explained later). Given TL,
our algorithm generates the following bounded-cost plan-
ning task: P̂ = {V̂ , R̂, Â, Î, Ĝ} where V̂ = {L/t |
L ∈ {at(l), hold}, l ∈ {l1, l2, l3}} ∪ {DROPt | t ∈
{at(l1), at(l2), at(l3)}}. Î = {¬hold, {at(l)/at(l) | l ∈
{l1, l2, l3}}}. Â consists of three parts: modified original ac-
tions, merge actions, and drop and assume actions, some of
which we illustrate:

• Consider the conditional effect of pick(l),
(¬hold, at(l) → hold ∧ ¬at(l)), the output
consists of the following conditional effects:
{(¬hold, at(l) → hold), {(¬hold/at(l′), at(l)/at(l′) →
hold ∧ ¬at(l) ∧ hold/at(l′))|∀l′ ∈ {l1, l2, l3}}}.

• Consider the Mergeat(l4) action: it has one condi-
tional effect and no pre-conditions: at(l4)/at(l1) ∧
at(l4)/at(l2) ∧ at(l4)/at(l3)→ at(l4).

• Dropatl3 has no pre-conditions and a single effect
Dropatl3 . It cost equals the initial probability of atl3 : 0.4.
We need also to be able to transform Drop into ”knowl-
edge”. For example, Assumeatl4/atl3 with precondition
Dropatl3 and a single effect is atl4/atl3 .

A possible plan for P̂ is: π = 〈pick(l1),put(l4),pick(l2),
put(l4),Dropatl3 ,Assumeatl4/atl3 ,Mergeat(l4)〉. The cost
of π is 0.4 < 1 − θ = 0.5, so it is within the cost bound.
If we drop from π all non-original actions, we get a plan for
the original CPP.

Theoretical Guarantees
We now state some formal properties of this translation
scheme. We will focus on the (admittedly wasteful) com-
plete set of tags. That is, below, we assume that Tp = bI
for all propositions p, i.e., there is a tag for every initial
state with positive probability. These results essentially fol-
low from Lemma 1 and soundness and completeness claims
of Palacios and Geffner (Palacios and Geffner 2009).
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Theorem 2 The original CPP has a solution iff the cost-
bounded classical planning problem generated using the
above translation scheme has a solution. Moreover, every
solution to the CPP can be transformed into a solution to
the corresponding cost-bounded problem, and vice versa.
Proof: (sketch) The proof proceeds by explaining how a
plan for the CPP can be transformed to a plan for the cost-
bounded problem and vice versa. The transformation is sim-
ple. 1) For every initial world state w on which the CPP so-
lution plan does not achieve the goal, add a Dropw action
at the beginning of the plan. We call these states dropped
states. 2) Replace each action in the CPP solution with the
corresponding classical action generated by the translation
scheme. We call these regular actions. 3) Following each
regular action, insert all possible merge actions.

We claim that the resulting plan is a solution to the
cost-bounded planning problem generated by the translation
scheme. First, note that the probability of states on which
the CPP solution does not achieve the goal is no greater than
1 − θ, by definition. Hence, the cost of the Dropw actions
inserted is no greater than 1− θ. Since all other actions have
zero cost, the cost bound is met. Next, focusing only on tags
p/w wherew is not a dropped world state, we know from the
soundness and completeness results of Palacios and Geffner
that following each regular action a the value of p/w vari-
ables correctly reflects the current (post a) value of p if w
was the initial world state, and that following the application
of all merge actions inserted after a, p holds in the classical
planner state iff p holds in the post-a belief state during the
execution of the conformant plan. Taking into account our
modified merge actions, this implies that p holds after the
application of a iff p is true after the application of a in all
world states that are the result of applying the current plan
prefix on non-dropped initial world states. We know that G
holds on these states at the end of the conformant plan. Con-
sequently, G holds at the end of the classical plan.

For the other direction. Suppose we are given a plan for
the cost bounded classical planning problem. Imagine it has
the form of the classical plan discussed above (i.e., Drop ac-
tions at first, and all merge actions following every regular
action). In that case, we would get the result thanks to the
correspondence established above. However, observe that
we can add all merge actions as above following every regu-
lar action, and push all Drop actions to the start, and the plan
would remain a valid solution. First, the added actions have
zero cost, so the plan cost remains unchanged. Second, Drop
actions have no preconditions (so can appear anywhere we
like), nor do they have negative effects (hence will not de-
stroy a precondition), nor can they activate an inactive con-
ditional effect. Since we add no new Drop actions, the plan
cost does not change. Similarly, by adding merge actions, we
cannot harm the plan, as they can only lead to the conclusion
of more positive literals of the form Kp, which will not de-
stroy any preconditions of existing actions, nor will they lead
to the applicability of any new conditional effects.�

Safe plans
Here we note a subtle semantic point about CPP. Most pre-
vious authors consider a slightly different definition of a so-

lution plan for a CPP: a is a safe plan if Pr({w : a(w) |=
G}) ≥ θ and a(w) 6=⊥ for everyw ∈ bI . That is, a safe plan
is not only required to succeed on a sufficiently likely set of
initial states, but it must also be well defined on all other ini-
tial states. This latter requirement makes sense when apply-
ing an inapplicable action is a catastrophic event. But if all
we truly care about is the success probability, then the for-
mer definition appears more reasonable. Our methods and
our planner are able to generate both plans and safe plans.
Since the theoretical ideas are slightly easier to describe us-
ing the former semantics we used this formulation (note that
Lemma 1 is not true as stated if we seek safe plans). The
plan generated by our translation is not necessarily safe,
even if it appears that the preconditions of an action must
be known prior to its execution. The reason is that due to
the definition of the merge actions, we can conclude p/{}
even if p/t is not true for all tags. It is enough that p/t hold
given tags that were not dropped. To generate a safe plan,
we can, for instance, maintain two copies of each propo-
sition of the form p/{}, e.g., Kup and Ksp, representing
unsafe and safe knowledge, with appropriate merge actions
for each precondition. Perhaps surprisingly, safe plans are,
in some sense, computationally easier to generate using the
translation method. In unsafe plans, we have to be more sen-
sitive, and be able to realize that the preconditions were sat-
isfied with the desired probability. This results in larger sets
of relevant variables, and therefore, larger tag sets.

From theory to practice
The scheme presented above must address two main diffi-
culties to become practical:

1. The size of the classical problem outputted crucially de-
pends on tag sets sizes. Unfortunately, some techniques
used in conformant planning to minimize tag sets do not
work in CPP. We explain what can be done.

2. Cost-bounded planners’ performance is quite sensitive to
the properties of the planning problems. Thus, we must
adjust the planners to handle well problems generated by
the translation process.

Computing Tags Our tag generation process is motivated
by the Ki variant of the KT,M translation introduced by
Palacios and Geffner (Palacios and Geffner 2009), where i
is the conformant width of the problem. It slightly modifies
it to handle the special character of the probabilistic setting.

Recall that we equate tags with sets of initial states. We
seek a deterministic, complete and disjoint set of tags. We
say that Tp is deterministic if for every t ∈ Tp and any se-
quence of actions ā, the value of p is uniquely determined by
t, the initial belief state bI and ā. We say that Tp is complete
w.r.t. an initial belief state bI if bI ⊆

⋃
t∈Tp

t. That is, it
covers all possible relevant cases. We say that a set of tags is
disjoint when for every t 6= t′ ∈ Tp we have that t ∩ t′ = ∅.
We say that a set of tags is DCD if it is deterministic, com-
plete, and disjoint.

When tags are deterministic then p/t∨¬p/t is a tautology.
In this case, and assuming the tag set is complete, we know
in each step of the planning process exactly under what ini-
tial tags p is currently true. If, in addition, the set of tags is
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disjoint, then the probability that p holds now equals the sum
of probabilities of all tags t for which p/t currently holds.

Theorem 3 Theorem 2 holds when the set of tags bI is re-
placed by any DCD set of tags.

Proof: (Sketch) Following the results of Palacios and
Geffner, determinism and completeness are sufficient to
ensure accurate values to the p/t values. This is also easy to
see directly, as all states within a tag lead to the same value
of p at each point in time, and completeness just ensures
that we do not ”forget” any initial world state. Disjointness
is required to maintain the equivalence between plan cost
and probability of failure. If tags are not disjoint, then states
in the intersection of tags t, t′ are double counted if we
apply Dropt and Dropt′ . If tags are disjoint, then we do
not face this problem. However, it may appear that if we
use general tags, rather than states, we will not be able to
fine-tune the probability of dropped states. For example,
imagine that there are ten equally probable initial states, but
only two tags, each aggregating five states. Imagine that
θ = 0.6. It seems that by using two tags only, we are forced
to consider only success on all 10 states or success on fives
states only, and cannot, for example, seek success on six
states, as required here. However, the fact that a set of states
was aggregated into a tag, implies that all states in this tag
behave identically (with respect to the relevant proposition).
Thus, it is indeed the case that it is only possible to achieve
this proposition with probability of 0,0.5, or 1. Hence, there
is no loss in accuracy.�

A trivial example of a DCD set of tags is one in which
every state w ∈ bI is a tag. But of course, this leads to an
exponential blowup in the number of propositions. Instead,
we seek a DCD set of tags that is as small as possible. Thus,
if two states w,w′ differ only on the value of propositions
that do not impact the value of p, they should belong to the
same tag for p. Consequently, the tags generation process
for a predicate p is based on identifying which literals are
relevant to its value using the following recursive definition:

1. p ∈ rel(p).

2. If q appears (possibly negated) in an effect condition c for
action A such that c → r and r contains p or ¬p then
q ∈ rel(p)

3. If r ∈ rel(q) and q ∈ rel(p) then r ∈ rel(p).

We define the set of tags Cp to be: those truth assignments
π to rel(p) such that bI ∧ π is consistent. The set of initial
states that correspond to tag π ∈ Cp is {s ∈ bI |s |= π}.
Lemma 4 Cp is a DCD set of tags for p.

Proof: (sketch) Cp is complete and disjoint by definition.
To see that it is deterministic, let s, s′ ∈ bI be two possible
initial states. We claim that a(s) and a(s′) agree on p for
any action sequence a. The proof is immediate by mutual
induction on all variables. The induction is on the length of
a. The base case n = 0 follows from (1) above (p ∈ rel(p)).
The inductive step follows from conditions (2) & (3).�

In practice, checking the consistency of a large set of as-
signments may be expensive, and instead one can use the

tag computation scheme used by P&G to address this prob-
lem (Palacios and Geffner 2009) for the full definition of this
algorithm) which requires only examining the clauses of the
initial state, with the following important change: a non unit
clause ϕ ∈ bI is considered relevant to a proposition p if
∃q ∈ ϕ s.t q ∈ rel(p). Note that P&G consider ϕ relevant
to p only if all propositions of ϕ are in rel(p). The latter, of
course yields fewer relevant propositions, and hence smaller
tags. Unfortunately, CPP is more sensitive to initial state val-
ues, and so the stricter definition is required.

Searching for a Classical Plan Our goal is to find a so-
lution to the classical problem that satisfies the cost bound
as quickly as possible. Our first observation – well known in
the case of cost-optimal planning – is that cost-bounded and
cost-optimal planners have trouble dealing with zero-cost
actions. Consequently, our planner gives, in practice, each
zero-cost action a very small weight – smaller than the least
likely initial possible state. Our second observation is that
”real” planning from a possible initial state requires longer
plans, while shorter plans will contain the costly Drop ac-
tions. Ideally, we would like to direct the search process to-
wards as short as possible plan, reducing search depth, and
thereby reducing the number of nodes expanded. We can get
shorter plans by preferring states that appear to be closer to
the goal. Yet, such states will often be more expensive, and
may actually be dead-ends. To prune such states, we need
to consider real h values. We have found that what works
for us is using greedy search on h, breaking ties based on
distance estimate using inadmissible estimates. Ties among
promising states are then broken in favor of shorter plans
that suitably combine realistic solutions (i.e., ones that can
meet the cost bound) with as many Drop actions as possible.

An alternative compilation we considered is into resource
constrained classical planning. The resource is the amount
of probability we can ”waste” (i.e., 1 − θ). The Drops ac-
tion’s cost is replaced by an additional effect which con-
sumes PrI(s). All other details remains the same. Bounding
cost in this problem and bounding resource in the new prob-
lem are virtually the same, except the latter can be solved
by resource-aware planners. We found that current resource
constrained classical planners have difficulty handling com-
plex domains, although on simpler domains they fare better
than other methods (see empirical results).

Empirical Evaluation
We implemented the algorithms and experimented with
them on a variety of domains taken from PFF repository and
the 2006 IPPC, as well as slightly modified versions of these
domains. Our implementation combines our own tools with
a modified versions of the cf2cs program, which is a part of
the T-0 planner, used to generate the set of tags. We used
Metric-FF (Hoffmann 2003) as a resource constrained plan-
ner where resources are modeled as numeric variables and
suitable pre-conditions are added to actions which consume
resources to ensure resource level remain non-negative. We
refer to the resulting planner as PRP. For cost bounded
planning (resulted planner referred as PCBP) we used the
FD (Helmert 2006) based implementation of cost bounded
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θ = 0.25 θ = 0.5 θ = 0.75 θ = 1.0
Instance #actions/#facts/#states t/l t/l t/l t/l

PFF PTP PRP PCBP PFF PTP PRP PCBP PFF PTP PRP PCBP PFF PTP PRP PCBP

Safe-uni-70 70/71/140 2.65 /18 0.87/18 0.55/70 6.4/70 5.81/35 0.85/35 0.55/70 6.4/70 10.1/53 0.9/53 0.59/70 6.4/70 5.1/70 0.88/70 0.65/70 6.4/70
Safe-cub-70 70/70/138 0.88/5 0.9/5 0.55/70 5.3/70 1.7/12 0.94/12 0.55/70 5.3/70 3.24/21 0.95/21 0.55/70 5.3/70 4.80/70 0.96/70 0.55/70 5.3/70

H-Safe-uni-70 1080/53 – – 19/53 5min< – – 18.6/105 5min< – – 17.1/159 5min< – – 15.8/211
H-Safe-cub-70 250/15 – – 19.1/32 544/36 – – 18.2/73 10min< – – 25.8/123 5min< – – –

NC-Safe-uni-70 70/71/140 11.21/18 NT NT 3.37/18 11.41/35 NT NT 5.51/35 15.25/53 NT NT 7.4/53 NT NT NT

Cube-uni-corner-11 6/90/3375 4.25/26 2.4/33 0.8/30 16.5/30 6.35/34 2.49/45 0.84/34 14.3/34 9.20/38 2.65/50 0.7/38 12.6/38 31.2/42 2.65/50 0.73/42 12.7/42
Cube-cub-corner-11 6/90/3375 0.3/5 1.17/12 0.61/7 10.3/7 0.9/9 1.31/15 0.7/14 10.2/14 1.43/13 1.41/21 0.7/15 11.5/15 28.07/31 3.65 /36 1.1/31 8.9/31

Push-Cube-uni-15 – 150/50 – – 13.4/70 348/66 – – 11.5/84 647/74 – – 13.4/125 43.9/65 – – 14/132
Push-Cube-cub-15 – 24.5/14 – – 10.2/45 15.7/17 – – 10.2/45 16.7/18 – – 10.2/45 59/45 – – 10.2/45

Bomb-50-50 2550/200/> 2100 0.01/0 0.01/0 0.1/0 0.01/0 0.10/16 3.51/50 36.1/50 90/50 0.25/36 3.51/50 36.1/50 90/50 0.14/51 3.51/50 36.1/50 90/50
Bomb-50-10 510/120/> 260 0.01/0 0.01/0 0.1/0 0.1/0 0.89/22 1.41/90 2.05/66 8.4/90 4.04/62 1.41/90 2.8/42 8.4/90 1.74/90 1.46/90 1.45/90 8.4/90
Bomb-50-5 255/110/> 255 0.01/0 0.01/0 0.1/0 0.1/0 1.70/27 1.32/95 1.35/47 8.5/95 4.80/67 1.32/95 1.15/71 8.5/95 2.17/95 1.32/95 0.9/95 8.5/95
Bomb-50-1 51/102/> 251 0.01/0 0.01/0 0.1/0 0.1/0 2.12/31 0.64/99 0.85/50 5.6/49 6.19/71 0.64/99 0.7/74 4.7/74 2.58/99 0.64/99 0.7/99 21.3/99

H-Bomb-50-50 2550/200/> 2100 0.01/0 0.01/0 0.1/0 0.1/0 5min< – – 75/114.2 5min< – – 89/124 5min< – – 200/487.6
H-Bomb-50-10 510/120/> 260 0.01/0 0.01/0 0.1/0 0.1/0 5min< – – 90/19.9 5min< – – 142/22.8 5min< – – 240/23.2
H-Bomb-50-5 255/110/> 255 0.01/0 0.01/0 0.1/0 0.1/0 5min< – – 95/14.7 5min< – – 147/14.2 5min< – – 245/13.8
H-Bomb-50-1 51/102/> 251 0.01/0 0.01/0 0.1/0 0.1/0 5min< – – 99/18.2 5min< – – 151/13.9 5min< – – 249/8.9

10-Log-2 3440/1040 /> 2010 1.14/54 – – 51/70 5.29/62 – – 111.1/60 6.63/69 – – 110/73 2.14/78 – – 290/116
10-Log-3 3690/1260 /> 3010 2.85/64 – – 84.2/83 8.80/98 – – 112.15/114 4.60/99 – – – 4.14/105 – – –
10-Log-4 3960/1480/> 4010 2.46/75 – – – 8.77/81 – – – 6.20/95 – – – 8.26/107 – – –

8-H-Log-3 3690/1260 /> 3010 10min< – – 101.4/83 10min< – – 174.3/86 10min< – – 331.5/96 10min< – – 383/125
8-H-Log-4 3960/1480/> 4010 18min< – – 690/70 18min< – – 590.6/83 18min< – – 904.1/110 18min< – – 825.7/133

H-Rovers 393/97/> 63 ∗ 38 4.4/62 – – 8.3/66 5.8/63 – – 2.9/53 9.4/59 – – 7.1/71 3.2/68 – – 4.2/87

Table 1: Empirical results. t: time in seconds. l: plan length. Entries marked – means the search did not return after 30 minutes,
’k-min<’ means that after k minutes PFF declared it has reached it’s max plan length limit. ’NT’-not tested due to technical
issues.

search algorithms by (Thayer et al. 2012), slightly modified
to our search needs. Their algorithms require a cost estimate
as well as a distance estimate. We used FF (Hoffmann 2001)
as the search heuristic and a count of the number of actions
from the current state to the goal in the relaxed problem as
the distance to go function. Table 1 shows the results. On the
bomb, cube, and safe domains, PRP works as well or better
than PFF, with few exceptions, such as bomb-50-50, bomb-
50-10 and cube-11 for lower values of θ. On these domains,
PCBP is slower. NC-safe is a modification where no con-
formant plan exists, PCBP dominates PFF in this domain.
The H-safe and H-bomb domains are slight extensions of
the known benchmarks where additional actions are needed
in order to try a code on the safe (e.g. choose-code,type-
code) or for disarming a bomb (e.g. choose-bomb,prepare-
to-disarm). Longer plans are now needed so ’real’ plan-
ning from a possible initial state requires more actions than
choosing to ignore it. On these problems, PCBP clearly
dominates all other planners which fail to scale up and han-
dle these problems. The PUSH-CUBE domain is a version
of the known 15-CUBE domain. This domain describes a
game where the user doesn’t know the initial location of a
ball in the cube. The user can hit any of the 153 locations
and by that, if the ball is in that location he’ll be moving
to a neighboring location according to the direction of the
user chooses. The goal is to bring the ball into a specific
location in the cube. The results for this domain, which re-
quires many decisions by the solver, shows clear dominance
of PCBP. The m-logistics-n problem is the known logistics
domain with m packages and m cities of size n. Here the
resource-based method fails completely; PCBP is also slow
and often fails, as it seems the planner prefers to seek ”real”

plans rather than ignore states. However, on a natural exten-
sion of this domain (denoted H-logistics) where additional
actions are required before loading a package to a truck PFF
does not scale beyond 7 cities, whereas PCBP does much
better. H-ROVERS domain is a modification of the ROVERS
domain on two levels. First, taking an image requires addi-
tional set up actions, in the spirit of previous modifications.
Second, the amount of uncertainty in the initial state is re-
duced so problem width will become 1 as PCBP cannot han-
dle problems with width greater than 1 at present.

Conclusion
We described a new translation scheme for CPP into cost-
bounded classical planning that builds upon the techniques
of (Palacios and Geffner 2009) and their extension to
CPP (Brafman and Taig 2011). This is done by allowing
the planner to select certain states to ignore, as long as their
combined cost (= probability) is not greater than 1− θ.

In future work we intend to focus on two directions
which we believe will help our techniques scale better:
search technique and tag generation. Based on our current
experience, we believe that fine-tuning the cost-bounded
search parameters can have much impact on its ability to
deal with compiled planning problems. In addition, our tag
generation process is currently inefficient, and needs to be
improved to deal with problems whose conformant width is
greater than 1.
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