
Searching for Good Solutions in Goal-Dense Search Spaces

Amanda Coles and Andrew Coles
Department of Informatics,

King’s College London,
London, WC2R 2LS, UK

email: {amanda,andrew}.coles@kcl.ac.uk

Abstract

In this paper we explore the challenges surrounding search-
ing effectively in problems with preferences. These prob-
lems are characterized by a relative abundance of goal states:
at one extreme, if every goal is soft, every state is a goal
state. We present techniques for planning in such search
spaces, managing the sometimes-conflicting aims of intensi-
fying search around states on the open list that are heuris-
tically close to new, better goal states; and ensuring search
is sufficiently diverse to find new low-cost areas of the
search space, avoiding local minima. Our approach uses a
novel cost-bound-sensitive heuristic, based on finding several
heuristic distance-to-go estimates in each state, each satisfy-
ing a different subset of preferences. We present results com-
paring our new techniques to the current state-of-the-art and
demonstrating their effectiveness on a wide range of prob-
lems from recent International Planning Competitions.

1 Introduction
AI planning has traditionally been concerned with achieving
a fixed set of specified goals. More recently following work
by Smith (2004) and others, and the subsequent introduction
of PDDL3 in the 2006 International Planning Competition
(IPC2006), planning problems with preferences (soft con-
straints) have been considered. Adding more preferences to
a planning problem than can be achieved, with correspond-
ing violation costs, creates an over-subscription problem in
which the planner must decide which combination of pref-
erences to satisfy in order to find solutions of high quality.

Planning with preferences poses an important challenge.
Traditionally, planners use heuristic estimates of cost-to-go
or distance-to-go (number of actions), from each state, to a
goal state. In planning with preferences, however, goal states
are much more abundant; indeed in the case where there are
no hard goals, all states are goal states, and the distance-
to-go value is always zero. The planner therefore not only
needs guidance to reach a goal state but also to reach a
good goal state that satisfies as many preferences as possi-
ble. The current state-of-the-art in (non-temporal) planning
with preferences is LPRPG-P (Coles and Coles 2011), where
the distance-to-go is based on satisfying all reachable pref-
erences. This provides good overall guidance to reaching as

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

many preferences as possible; but fails to promote the expan-
sion of states that are just a few steps from a new goal state,
that is better than the best solution found so far. As argued in
the context of search based on cost-to-go, such states should
not be ignored in favour of those that lead to goal states that
are better, but much further away (Cushing et al. 2011).

In this paper we transform the notion of a heuristic value
when planning with preferences. Instead of maintaining just
a single heuristic distance-to-go, corresponding to reaching
all preferences; we generate several heuristic values for each
state, corresponding to the length of relaxed plans (Hoff-
mann and Nebel 2001) for achieving different subsets of
the reachable preferences. Each relaxed-plan length value is
paired with a cost-to-go value, reflecting the cost of violating
the excluded preferences. During search, these length–cost
pairs underpin a cost-bound-sensitive distance-to-go heuris-
tic: as the upper-bound on acceptable solution cost is tight-
ened, the requisite relaxed plan length is increased, to reflect
the higher quality now demanded.

We evaluate the use of this new heuristic alongside the
prior LPRPG-P heuristic, using it in dual open-list alterna-
tion search (Helmert 2006). The resulting planner is tested
on a range of domains, including all those relevant from the
International Planning Competition series: the Preferences
domains from 2006, and the Net Benefit domains from 2008.
Our results show that our approach improves upon the cur-
rent state-of-the-art in planning with preferences.

2 Background
In classical planning problems, the task is to find a sequence
of actions that, when executed, transform the initial state into
one in which some goals have been met: a goal state. An
important issue that arises is characterisation of good quality
plans: not all possible solutions to a problem are equal.

Within PDDL, the first steps to capturing plan costs were
made in version 2.1 (Fox and Long 2003). Here, a plan qual-
ity metric can be specified, with terms comprising the values
of numeric task variables, as measured at the end of the plan.
A convention, later standardised in PDDL 3.1, is to use a vari-
able (total-cost) to capture action costs, with each action a
incrementing this by some non-negative amount cost(a).

Motivated by work such as that of Smith (2004), the
notion of preferences was introduced into PDDL version
3.0 (Gerevini et al. 2009). These range from soft goals, or

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

37

EVioSatE−Sat

a

b ¬a

V

Figure 1: Automaton for (sometime-before a b)

precondition preferences on actions; to expressions over the
plan trajectory, written in a language capturing a subset of
linear temporal logic (LTL). In the case of soft goals, one
option is to use a compilation approach (Keyder and Geffner
2009), with dummy actions that collect or forgo each pref-
erence; with the latter carrying a cost. This compiled do-
main can then be used with any planner capable of find-
ing cost-effective plans in terms of action costs, such as
Lama (Richter and Westphal 2010).

For the broader class of preferences supported in PDDL3,
a range of domain-independent techniques have been devel-
oped for reasoning with preferences directly (Edelkamp et
al. 2006; Baier et al. 2007; Benton et al. 2009; Coles and
Coles 2011; Benton et al. 2012). These tailor their search
and heuristics to planning with preferences, in a variety of
ways. A common element used by many of these is a Finite
State Automaton model of preferences, where each planning
state records the current automata positions, and the update
of these is synchronised to the application of new actions:
each time a new state is reached, the automata are updated
accordingly. For instance, Figure 1 shows the automaton for
(sometime-before a b). It begins in the ‘Sat’ position, and
if a plan reaches a before earlier having reached b, the pref-
erence is eternally violated: it moves to ‘EVio’. This in-
creases the cost of the plan by the defined violation cost of
the preference, cost(p) for each preference p, specified in
problem as part of the PDDL metric function.

Beyond work on preferences, there is a rich body of
work on searching for good-quality solutions, combining
heuristic measures of distance-to-go and cost-to-go, from
each state to a goal state. One possibility, used in Lama in
the last International Planning Competition (Richter, West-
phal, and Helmert 2011; Richter and Westphal 2010) is
to run a number of searches in succession: first, guided
by distance-to-go; and then by cost-to-go, using Restarting
WA* (Richter, Thayer, and Ruml 2010). Explicit Estimation
Search (EES) (Thayer and Ruml 2011) and its various ex-
tensions (Thayer et al. 2012; Thayer, Benton, and Helmert
2012) integrate distance and cost measures more closely:
starting with WA* (Pohl 1973) guided by cost-to-go, they
add a focal list of ‘good enough’ nodes, sorting this focal
list by distance-to-go.

3 Relaxed Planning to Goal States
When extracting a relaxed plan to satisfy hard goals, all the
actions chosen are justifiable: they are added to the relaxed
plan to satisfy a hard goal, or precondition of some other
action in the relaxed plan. If we extend the relaxed plan-
ning graph and relaxed-plan extraction to also include pref-
erences, the actions are still justifiable — they satisfy a hard

goal, precondition, or preference — but are not necessarily
essential. That is, if we remove from the relaxed plan ac-
tions which serve only to support preferences, the relaxed
plan will still lead to a goal state (in the relaxed problem);
and with fewer actions, too.

This observation underlies a fundamental trade-off when
determining the heuristic value (relaxed plan length) when
planning with preferences. If we disregard preferences, and
obtain a relaxed-plan only for hard goals, we promote states
that are close to achieving the hard goals; but the heuris-
tic value reflects only the effort to reach a poor-quality goal
state, in terms of preference violations. Worse, in problems
with no hard goals, the heuristic value is universally zero.
On the other hand, if we find a relaxed plan to reach the hard
goals and as many preferences as possible (under the delete
relaxation), we promote states that are close to achieving all
of these; but the heuristic value may be far larger than the
number of actions necessary to reach the hard goals alone.

To address these issues, we propose producing multi-
ple heuristic values for each state: relaxed-plan length–cost
pairs, where higher lengths are paired with lower costs. Core
to our method for finding these is a relaxed plan where each
action is annotated with the reason it was added to the plan.
We first recap the production of a relaxed planning graph
for preferences, due to Coles & Coles (2011), upon which
we build, before introducing our novel technique for the ex-
traction of an annotated relaxed plan. We go on to present a
number of ways in which length–cost pairs can be obtained
from such a relaxed plan. Our approach supports all PDDL
3 non-temporal preferences with ADL conditions.

3.1 A Relaxed Planning Graph for Preferences
Starting with the classical case, a relaxed planning graph
(RPG) consists of alternate fact and action layers, where:

• fl(0), i.e. fact layer 0, is the state being evaluated;

• al(i), i.e. action layer i, contains actions whose precondi-
tions are true in fl(i-1);

• fl(i) contains all the facts in fl(i-1), plus those added by
any action in al(i).

The RPG can be constructed, iteratively, by beginning
with fl(0) and adding alternate action- and fact-layers.
Graph expansion terminates at either the first fact layer con-
taining the goals; or if the fix point is reached (no new facts
and hence actions are appearing), in which case the goals are
unreachable, and the state being evaluated is a dead-end.

When adding preferences to the RPG, we have the addi-
tional consideration of tracking their status as the RPG is
expanded. As discussed in Section 2, each preference can be
represented as a finite-state automaton, with labelled tran-
sitions. The appropriate treatment for these depends on the
automaton. The key details for our purposes are that:

• For (sometime F) or soft goals (F), it is desirable to make
F true. The termination criterion for graph expansion is
therefore modified to only terminate sooner than the fix
point if all such preferences are satisfied.

38

• In addition to their preconditions as prescribed in the
problem description, actions acquire ‘soft’ precondi-
tions to capture their interaction with preferences, with
soft pre(a, t) containing the soft preconditions attached
to action a in action layer t, as fact–preference pairs.
These arise from either:

– Precondition preferences. For a precondition prefer-
ence p with formula (F), if fl(t-1) satisfies F , then for
each fact f ∈ F , (f, p) ∈ soft pre(a, t).

– The interaction with (sometime-before F’ F) prefer-
ences (where F and F ′ are logical formulæ). For such a
preference p, if F has not yet been reached in the plan,
and the effects of a would satisfy F ′ regardless of the
state in which a was executed, then a risks violating
the preference. To account for this, if fl(t-1) satisfies
F , then for each fact f ∈ F , (f, p) ∈ soft pre(a, t).
This ensures F can be made true prior to the execution
of a, and hence making F ′ true is harmless.

• Each fact f is associated with a (possibly empty) set of
preferences that would be broken by the actions applied
to achieve the fact. These violations arise either directly
(an action achieves f but violates some preference), or in-
directly (achieving the preconditions of actions achieving
f necessitate violating some preference). The cost of such
a set of preferences is taken to be the sum of the violation
costs of its constituent preferences.

• As the RPG is expanded, these violation sets monoton-
ically reduce in cost: alternative achievers for facts be-
come available, and in the case of preferences such as
(sometime-before F’ F), some actions’ effects no longer
violate preferences. Thus, the cost of a fact is layer-
dependent. For a relaxed planning graph R, and time-
bound t′, we use low cost before(R, f, t′) to note the lat-
est (cheapest) fact layer fl(t) where f ∈ fl(t) and t < t′.

3.2 Extracting an Annotated Relaxed Plan
Having covered relaxed planning graph construction we can
now move on to our first contribution, and the first step to-
wards multiple relaxed plan extraction: a method for extract
annotated relaxed plans. As in the classical case, this is a
layer-wise process, regressing backwards from the goals.
The difference in our case is that we annotate the actions
with the reason they were added to the relaxed plan. These
annotations take the form of sets, containing preferences,
and/or a dummy preference H to denote hard goals. From
hereon, refer to such a set as an annotation. To track annota-
tions during relaxed solution extraction, we employ a queue
Q, where Q[t] contains the goals to be satisfied in fl(t). If
Q[t][g] is defined (i.e. g has been added as a goal at fl(t))
then Q[t][g] is an annotation, attached to g, explaining its
presence as an intermediate goal.

Algorithm 1 shows the extraction algorithm. From lines 2
to 10, we seed Q with the hard goals, and any goals in-
troduced by preferences (such as the soft-goals or sometime
preferences discussed earlier). Facts due to hard goals
are annotated with H, and facts due to preferences with
the identifier of the relevant preference p. The function

Algorithm 1: Annotated Relaxed Plan Extraction
Data: G: task goals, R: a relaxed planning graph
Result: Π = {〈a, s〉}: a relaxed plan
Q← [], Π← [];1
foreach g ∈ G do2

t← low cost before(R, g,∞);3
Q[t][g]← {H};4

foreach p ∈ prefs do5
G′ ← top-level goals in R to satisfy p;6
foreach g ∈ G′ do7

t← low cost before(R, g,∞);8
if defined Q[t][g] then Q[t][g]← Q[t][g]∪ {p};9
else Q[t][g]← {p};10

last ← last valid index of Q;11
foreach t ∈ [last . . . 1] do12

foreach g ∈ Q[t] do13
a← lowest-cost supporter of g in R, layer t-1;14
add 〈a,Q[t][g]〉 to front of Π;15
foreach f ∈ pre(a) do16

t′ ← low cost before(R, f, t-1);17
if defined Q[t′][f] then18

Q[t′][f]← Q[t′][f] ∪Q[t][g];19

else Q[t′][f]← Q[t][g];20

foreach (f, p) ∈ soft pre(a, t− 1) do21
t′ ← low cost before(R, f, t-1);22
if defined Q[t′][f] then23

Q[t′][f]← Q[t′][f] ∪Q[t][f] ∪ {p};24

else Q[t′][f]← Q[t][f] ∪ {p};25

return Π26

low cost before is used to choose the layer in which to in-
sert these as goals: by passing ∞ as the time upper-bound,
the goal can appear as late (hence as cheaply) as possible.

Once the goals have been added to Q, solution extraction
works backwards through the planning graph, choosing ac-
tions to meet the goals at each layer. The relevant loop is
from line 12 to line 25. In each layer, starting with the last,
it loops over the goals to be achieved, i.e. each g ∈ Q[t]. At
line 14, an action that supports (adds) g is chosen from layer
t-1. This is added to the relaxed plan, paired with the anno-
tations Q[t][g]. This ensures that the reason for the action’s
presence in the relaxed plan is noted.

Each of the preconditions, and any soft preconditions (due
to preferences), are then added as goals to be achieved at
earlier layers in the planning graph. Note that:

• low cost before(R, f, t-1) is used to choose the fact layer
at which to request f . As this has to be prior to al(t-1),
this has to be in fact layer fl(t-1), or earlier.

• The annotations attached to Q[t′][f] are cumulative: it in-
herits any annotations from Q[t][g], and – for soft precon-
ditions – the relevant preference p.

39

3.3 Deriving Length–Cost Pairs from Annotated
Relaxed Plans

With an annotated relaxed plan, we can now explore the
trade-off between the length of the relaxed plan, and the cost
of the goal state it reaches. Intuitively, from a relaxed plan
with actions to meet all the preferences, we can derive sev-
eral alternative relaxed plans by keeping just the actions that
are relevant to a subset of the preferences. As long as the ac-
tions that are relevant to the hard goals remain, it will still be
a relaxed plan, though one that satisfies fewer preferences.

As a baseline for this process, we partition the steps of the
relaxed plan into those that are due to hard goals, and those
that are relevant only to preferences. For this, we use make
use of the annotation set s that accompanies each action a in
the relaxed plan generated by Algorithm 1. The ‘hard’ and
‘soft’ steps in a relaxed plan Π are:

hard(Π) = [(a, s) | (a, s) ∈ Π ∧H ∈ s]

soft(Π) = [(a, s) | (a, s) ∈ Π ∧H 6∈ s]

Further, the set of preferences P that led to actions being
introduced into a relaxed plan Π are:

P (Π) = {p | ∃(a, s) ∈ Π s.t. p ∈ s}

...and the steps in a relaxed plan Π relevant to some pref-
erence p are:

relevant(Π, p) = [(a, s) | (a, s) ∈ Π ∧ p ∈ s]

Assuming all relevant(Π, p) must be included to satisfy
p, then we can derive a relaxed plan Π′ from Π in a two-stage
process:
• Choose a subset of preferences P ′ ⊆ P (soft(Π));
• Construct a relaxed plan Π′ containing the steps relevant

to any p ∈ P ′, alongside those for the hard goals:

Π′ = hard(Π) ∪ (
⋃

p∈P ′

relevant(soft(Π), p))

From Π′ we have a heuristic estimate of the length of the
relaxed plan needed to reach the hard goals and the prefer-
ences P ′. The key questions are now: what is the heuristic
cost associated with this? And how do we choose the subset
P ′?

For cost, we have two options. At the very least, we need
to account for the preferences whose actions have not been
included in the relaxed plan Π′:

omit(Π′,Π) = {p ∈ P (Π) | relevant(soft(Π), p) 6⊆ Π′}

Taking the sum of the violation costs of these preferences
yields a heuristic cost estimate:

pcost(Π′,Π) =
∑

p∈omit(Π′,Π)

cost(p)

Optionally, we also may wish to add to this the cost of the
actions in the relaxed plan itself, reflecting the net-benefit
of adding the actions to achieve the preferences (i.e. to min-
imise action cost plus preference violation cost). This is not
an admissible measure (Do and Kambhampati 2003), and

Algorithm 2: Length–Cost Set Approximation
Data: Π: a relaxed plan
Result: LC : a set of length–cost pairs derived from Π
Π′ ← hard(Π);1
LC ← {〈|Π′|, cost(Π′,Π)〉};2
prefs ← P (soft(Π));3
while prefs 6= ∅ do4

p← first from prefs;5
best ← Π′ ∪ relevant(soft(Π), p);6
foreach p′ ∈ (prefs \ {p}) do7

new ← Π′ ∪ relevant(soft(Π), p′);8
if new better than best then9

p← p′, best ← new ;10

Π ′ ← best ;11
prefs ← omit(Π′,Π);12
LC ← LC ∪ {〈|Π′|, cost(Π′,Π)〉};13

return LC14

the implementation we use only excludes actions from the
RPG if they are trivially too expensive to apply (Coles et
al. 2011). Nonetheless, it does incorporate some informa-
tion about action costs – rather than none at all – so has the
potential to be informative:

nbcost(Π′,Π) = pcost(omit(Π′,Π)) +
∑

(a,s)∈Π′

cost(a)

Taking cost to be whichever cost function is chosen from
these two options, the length–cost pair for Π′ is:

〈|Π′|, cost(Π′,Π)〉
Choosing subsets P ′ of P (soft(Π)) to produce these

length–cost pairs is more difficult. A naı̈ve approach is to
consider all possible P ′. The number of possible P ′ is ex-
ponential in the size of P (soft(Π))1, so this is unlikely to
scale; but it is of theoretical interest as it provides the Pareto
front of length–cost pairs that can be obtained from Π using
our approach. We say 〈l, c〉 dominates 〈l′, c′〉 if:

dominates(〈l, c〉, 〈l′, c′〉) = (l ≤ l′ ∧ c < c′)

For practical reasons, we focus on length–cost set approx-
imation algorithms, that consider only a small number of P ′.
Our greedy algorithm for this is shown in Algorithm 2, and
at worst it is quadratic (rather than exponential) in the size
of P (soft(Π)). Beginning with a relaxed plan Π′ containing
only the steps for the hard goals, the algorithm repeatedly
chooses some preference p, committing to adding the rel-
evant actions to Π′, and storing resulting length–cost pair.
The choice of whether to include preference p′ next, rather
than p, is made at line 9, by comparing the relaxed plans
obtained by including the relevant actions. There are several
options, and we propose (and will evaluate) two:
By length If |new | < |best |, then p′ is better than p. This

leads to the greedy selection of a preference that intro-
duces the (joint) smallest number of new actions into the
relaxed plan.
1P ′ is any member of the power-set P(P (soft(Π)))

40

0

5

10

15

20

25

30

0 20 40 60 80 100

L
en

g
th

 o
f

re
la

x
ed

 p
la

n

Cost of relaxed plan (using pcost)

Length-Cost Pairs (Initial state, Storage QP #10)

All subsets
Greedy by Length

Greedy by Cost

Figure 2: Length–Cost Pairs: All Subsets vs Greedy

By cost If cost(new ,Π) < cost(best ,Π), then p′ is better
than p. This leads to the greedy selection of a preference
that is (joint) best in terms of the cost of the resulting re-
laxed plan.

Note that in the case where two choices are tied accord-
ing to the chosen metric, the other metric is used as a tie-
breaker. For instance, if two preferences would lead to the
equal-length relaxed plans, the preference that leads to the
lower-cost relaxed plan is preferred. If the two options are
tied according to this secondary metric, the tie is broken ar-
bitrarily.

As an example of the length–cost pairs that can be ob-
tained during search, Figure 2 shows the length–cost pairs
for the initial state in problem 10 from the Storage Qual-
itative Preferences Domain, from IPC2006. The solid line
is the Pareto front found by considering all subsets of
P (soft(Π)), and the points denote using Algorithm 2 with
the length and cost criteria. Both approaches follow the gen-
eral trend of the Pareto front, with length doing particularly
well in this problem: it is finding Pareto-optimal length–cost
pairs towards the left- and right-edges of the graph.

4 Searching with Length–Cost Pairs
So far, we have discussed how length–cost pairs can be ob-
tained from a relaxed plan, providing estimates of the num-
ber of actions needed to reach goal states of varying costs.
In this section, we look at the issue of how to use these in
anytime search, where we have an upper-bound on solution
cost C, and are trying to find solutions better than this. In
tasks with hard goals, initially C = ∞; in those without
hard goals, C is the cost of preferences violated by the empty
plan. As new solutions are found, C progressively decreases.

4.1 Managing Multiple Heuristic Estimates
Anytime search has two objectives: to try to reach the
lowest cost goal states possible; and to reach goal states
with cost better than C. To reach the best possible goal
states, we have as a source of guidance the length of the
relaxed plan Π from a state s to the goals, as produced

Algorithm 3: Recalculating h<C(s) Values
Data: L: an open-list, a cost bound C
upper ← highest-index bucket in L;1
foreach i ∈ [upper . . . 0] do2

foreach s in L[i] do3
if h<C(s) > i then4

remove s from L[i];5
if h<C(s) 6=∞ then put s into L[h<C(s)];6

by Algorithm 1. As Π includes actions to reach as many
preferences as possible, hall(s) = |Π| is an estimate of
the number of actions needed to obtain the best possible
goal state reachable from s. To reach goal states better
than C, as observed in previous work (Thayer et al. 2012;
Thayer, Benton, and Helmert 2012), a promising approach is
to prioritize states that are heuristically close to a goal state
and appear to be low-cost enough to do better than C. In our
work here, rather than having a heuristic estimate of the cost
of reaching the goal and the length of the plan needed to do
so, we have several paired heuristic estimates of these. From
the length–cost pairs LC (s) for a state s, reached by a plan
of cost g(s), the relevant relaxed plan length is:

h<C(s) = min({l | (l, c) ∈ LC (s) ∧ c + g(s) < C}
∪ {∞})

The first of these two lines finds the smallest length which
leads to a low-enough-cost goal state. The second covers the
case where no such length exists, and hence the h value is
taken to be infinity. As the length–cost pairs may be derived
from non-admissible estimates of cost (e.g. the nbcost for-
mula in Section 3.3), this does not necessarily mean the state
should be pruned, just that h<C(s) is undefined.

As we now have multiple heuristic length estimates – hall

and h<C – the question is how to combine them. For this, we
take our inspiration from the approach taken in Fast Down-
ward (Helmert 2006), maintaining two open lists: one sorted
by hall(s), the other by h<C(s). Search then alternates be-
tween the two, expanding the state at the head of the open
list, and inserting the successors generated into both (remov-
ing them from both when expanded).

One crucial difference when using h<C(s) is that it is
cost-bound dependent: when C changes, h<C(s) might
change, also. This is reflected in Figure 2: each time the per-
missible cost of the relaxed plan is reduced by around 5,
due to a tightening of C, the necessary relaxed plan length
increases. To this end, each time C is reduced, we revisit
the open list sorted by h<C(s), and check whether states’
heuristic values have increased.

The algorithm to update this open list is shown in Algo-
rithm 3. We assume a conventional bucketed open-list, with
one bucket per h value, each containing a list of the states
with that h value. Starting with the highest-index bucket, the
algorithm checks whether the h values of any states in the
bucket have changed, due to the new bound C (line 4). In
the case where h<C(s) has increased, but is finite, s is re-
moved from the open-list and re-inserted into the appropri-

41

Soft Goals Simple Qualitative Complex
Planners driver elev- open path- rov- peg- SG stor- TPP trucks rovers stor- TPP trucks pathwa- TPP SQC Total

log ators* stacks* ways ers* sol Total sp sp sp qp ageqp qp qp ys-cnp cnp Total
GBL 11 11 30 27 13 30 122 10 14 14 12 10 9 10 16 3 98 220
GBC 11 10 30 27 12 30 120 5 14 14 12 8 12 10 21 3 99 219

Baseline 9 10 8 16 10 30 83 10 13 11 6 13 11 9 9 5 87 170
All Subsets 11 12 9 19 14 30 95 6 4 16 5 5 5 12 9 5 67 162

HPlan-P 11 - - 7 - 25 43 4 4 4 0 4 4 3 - - 23 66
Lama2011-K&G 5 30 3 11 17 30 96 - - - - - - - - - - -
Lama2008-K&G 8 6 2 13 11 30 70 - - - - - - - - - - -
Baseline-K&G 6 4 2 4 5 30 51 - - - - - - - - - - -

Table 1: Comparison of New Planner Configurations to LAMA and the Baseline.
Figures show the number of problems on which each produced a (joint) best solution.

ate higher-index bucket. If h<C(s) is infinite, it is removed
from this open list entirely – i.e. s will only then be expanded
if it is chosen from the open list sorted by hall(s).

4.2 Selective Use of Length–Cost Pairs
Finding and using h<C values as described has a range of
effects on search; but, likewise, has a number of side effects.
The most obvious is the time and memory overheads: the ad-
ditional computational effort of finding several length–cost
estimates, and the extra space needed to store them with each
state. To some extent, the overheads are lessened through
the use of a greedy algorithm that considers and produces
only a fraction of the possible length–cost pairs. Beyond
this, though, there is the issue of what effect the alternation
method described has on the states visited.

Taking as a starting approach searching with hall(s)
alone, the states that are chosen for expansion are those that
are heuristically closest to satisfying all hard goals and all
preferences. Adding alternation to this, when states from the
h<C open list are expanded, their successors are placed on
the hall open list (and vice versa). Thus, the states that would
have been expanded before – if hall alone had been used –
will only now be expanded if their h<C or hall values are not
undercut by the newly considered states. In effect, the h<C

open list introduces a systematic bias into the hall open list,
and into search in general.

Towards the start of search, such a bias is likely beneficial:
searching by h<C has the effect of promoting states that are
likely to lead to a reduction in C sooner than would be ob-
served otherwise. The side-effects in terms of memory usage
are also likely harmless: relatively few states and their asso-
ciated heuristic values need to be stored in memory. Later in
search, though, once C has tightened, h<C(s) approaches
hall(s), as good solutions need to satisfy more of the prefer-
ences. Thus, the heuristic guidance is almost the same, and
yet the computational and memory costs are higher.

To this end, we propose restarting search, reverting to
searching according to hall(s), half-way through the time al-
lowed for planning (empirically the results are fairly insensi-
tive to the restart time chosen). As in previous work (Richter,
Thayer, and Ruml 2010), the motivation is to eliminate the
open-list bias; but also, in our case, such a configuration is
not subject to the additional overheads of using h<C .

5 Evaluation
We have implemented our techniques in the planner OP-
TIC (Benton, Coles, and Coles 2012), a state-of-the-art net-
benefit planner that handles preferences natively. Since we
are not reasoning with temporal problems in this work, the
baseline configuration (standard OPTIC) can be thought of
as a net-benefit implementation of LPRPG-P (which we do
not use as it does not handle net-benefit domains), but with
some overheads due to the temporal origins of the planner. It
performs WA* search, with W=5, guided by hall . We evalu-
ated our planners on four different types of domains:
Soft-Goal Domains that can be solved by LAMA by us-

ing Keyder & Geffner’s compilation of soft goals into ac-
tion costs (2009). The domains used are those from the
Net Benefit track of IPC2008; the Rovers ‘Metric Simple
Preferences’ and ’Pathways Simple Preferences’ domains
from IPC2006; and a variant of the IPC2002 Driverlog
domain, where each package has two conflicting goal lo-
cations, with random costs. We compare to LAMA 2008
and 2011 on these domains.

Simple Preference Domains (soft goals and precondition
preferences) from IPC2006, for which compilations do
not exist: a fully automatic implementation of Keyder and
Geffner’s approach is not available, and many of the do-
mains use ADL, making manual translation impractical.

Qualitative Preference Domains (simple plus trajectory
preferences) from IPC2006: these cannot be compiled, re-
quiring a preference-aware planner. On these we compare
to the baseline, and show in our table as a point of ref-
erence HPlan-P, the best performing domain-independent
preference planner from IPC2006.2

Complex Preference Domains (allow numeric conditions)
from IPC2006 – Pathways and TPP – with time removed.
All experiments were run on a 3.4GHz Core i7 machine

running Linux, and were limited to 30 minutes of CPU time
and 4GB of memory.

2We chose HPlan-P over SGPlan because circumventing the
textual recognition of domains by SGPlan 6 (Hsu and Wah 2008)
has been shown to significantly impact the performance of both
SGPlan 5 and 6. When irrelevant textual changes are made HPlan-
P performs better overall (Coles and Coles 2011).

42

Soft Goal Simple Qualitative Complex Totals
Planners driver elev- open path- rov- peg- SG stor- TPP trucks rovers stor- TPP trucks pathwa- TPP SQC All

log ators* stacks* ways ers* sol Total sp sp sp qp ageqp qp qp ys-cnp cnp Total
GBL15-NB-B15 15 25 26 30 18 30 144 13 17 12 15 10 8 13 25 8 121 265

GBL15-NB-T-B15 15 24 19 30 15 30 133 10 17 16 13 15 9 14 23 9 126 259
GBL15-B15 15 15 19 30 16 30 125 13 17 12 15 10 8 13 25 8 121 246

GBL 15 17 19 30 16 30 127 9 10 12 12 7 9 10 1 1 71 198
Baseline 13 12 6 17 11 30 89 10 8 12 9 6 8 10 2 6 71 160
GBL-NA 15 12 11 11 15 28 92 5 6 3 9 5 5 2 2 3 40 132

Table 2: Comparison of Different Planner Configurations.
Figures show the number of problems on which each produced a (joint) best solution.

5.1 Length–Cost Set Approximation Algorithms
We first turn our attention to the algorithms for finding
length–cost pairs, as described in Section 3.3. For simplicity,
we start with a basic configuration of the planner: alternat-
ing between the hall and h<C open lists, with costs from
the pcost cost function (Section 3.3), and without restart-
ing after 15 minutes (Section 4.2). We compare three ways
to find length–cost pairs: considering All-Subsets of prefer-
ences; choosing preferences Greedily by the Length metric
(GBL); and choosing Greedily by Cost (GBC). We compare
these to the Baseline, and where possible, both International
Planning Competition versions of LAMA, with the Keyder
& Geffner compilation. As we devote a later section of this
evaluation to a comparison with LAMA, we focus first on
comparison to the baseline.

The data obtained from our experiments are summarised
in Table 1. The table shows the number of problems on
which each of the planners found the best solution (including
joint (equal) best solutions) in each domain. As expected the
overheads of finding length–cost pairs by considering All
Subsets of preferences is high. The exponential number of
subsets means that much time is spent in the heuristic cal-
culation, so the planner simply does not scale: it is unable
to explore as many states within the time limit. The one ex-
ception to this is the two Trucks variants where the prefer-
ences have a negligible effect on relaxed plan length, even in
larger problem instances, so enumerating the subsets of pref-
erences is in fact feasible. In general, the two Greedy con-
figurations are, however, the most successful: they have very
similar overall performance, and out-perform both All Sub-
sets and the Baseline. In some domains Greedy by Length
is more successful, whilst in others Greedy by Cost domi-
nates. The best planner for a given domain depends which
strategy finds length–cost pairs closer to the Pareto front, as
illustrated in Figure 2.

5.2 Search Configuration
Next we consider the effects of search configuration, rather
than heuristic configuration, on the planner’s performance.
Due to the number of possibilities, a full cross-evaluation is
not feasible. We therefore start with the best-so-far ‘Greedy
by Length’ configuration, and note the effect of configura-
tion changes on its performance. The relevant data are shown
in Table 2. (Note that since the figures in the Tables are de-
fined relative to the other planners listed in the table, data in

the Tables 1 and 2 cannot be meaningfully compared.)
First, we look at the effect of alternation in search (de-

scribed in Section 4.1). For this, we constructed a ‘no al-
ternation’ configuration that repeatedly expands nodes on
the h<C open list; and only once this is empty, considers
those on the hall open list. As can be seen in Table 2, ‘GBL-
NA’ – greedy-by-length, no alternation – performs consider-
ably worse than GBL – greedy-by-length (with alternation).
Moreover, it is, overall, worse than the baseline configura-
tion: it is better to search with hall values alone. This again
demonstrates the power of alternation: as in Fast Down-
ward (Helmert 2006), combining two heuristics in this way
offers far greater performance than either alone.

Next, we evaluate the restart mechanism proposed in
Section 4.2. For this, we run Greedy-by-Length for 15 min-
utes; then the baseline planner for 15 minutes. This is shown
in Table 2 as ‘GBL15-B15’. The results are neatly divided
according to the category of domain. In Soft Goal domains,
the effect is marginal: the performance is slightly worse in
Elevators. On the other domains, though, GBL15-B15 is
markedly better: it finds the best (or equal best) solution 48
more times than GBL.

Making use of the inadmissible net benefit cost (NB)
from the relaxed plan – the nbcost cost defined in Sec-
tion 3.3, rather than pcost – leads to a further improvement
in performance. Naturally this is only apparent in the do-
mains with action costs (marked * in Table 2), as other-
wise, nbcost ≡ pcost . We take the current best configura-
tion (GBL15-B15) and add net-benefit (GBL15-NB-B15).
The gains seen in the domains with action costs are impres-
sive, demonstrating that the planner can indeed benefit from
this inadmissible but informative measure.

The final configuration we tested, given we have multi-
ple heuristic values, was tie-break according to hall , when
inserting states into the h<C open list. In line with previ-
ous work using a preferredness mechanism to break ties be-
tween equal-h-valued states (Richter and Helmert 2009), this
tie-breaking favours states that are preferable according to
hall . We take the current best configuration (GBL15-NB-
B15) and add tie-breaking to it (GBL15-NB-T-B15), pre-
senting the results in Table 2. Unfortunately, the results here
are inconsistent: while there are gains in a number of Sim-
ple Preference and Qualitative Preference domains, there are
significant losses on Soft Goal domains with action costs.
With the exception of Rovers Qualitative Preferences this

43

60

80

100

120

140

160

180

200

0.1 1 10 100 1000
0

50

100

150

200

250

300

IP
C

 S
c
o
re

 (
S

o
ft

 G
o
a
l

D
o
m

a
in

s)

IP
C

 S
c
o
re

 (
A

ll
 D

o
m

a
in

s)

Time (s)

IPC Score Over Time

GBL15-NB-B15 (All Domains)
Baseline (All Domains)

GBL15-NB-B15 (Soft Goal Domains only)
Lama-2011 (SG)

Baseline (SG)
Lama-2008 (SG)

Figure 3: IPC score vs Time. The order of the legend
corresponds to the order in which the lines meet the y-axis.

suggests that heuristic tie-breaking is effective in domains
without action costs, but not in those with action costs. This
leaves an interesting question for future work: determining
whether an effective tie-breaking scheme can be found.

5.3 Comparison to Lama on Net-Benefit Domains
As noted in previous work, soft goals can be compiled
away (Keyder and Geffner 2009), and the resulting compila-
tion used with efficient, cost-minimising planners. In 2009,
this compilation, used with the then-latest version of Lama,
represented the state-of-the-art in planning with soft goals.
Lama 2011, the winner of the last International Planning
Competition, is equally suitable, and offers better perfor-
mance still. Contained within Table 1 is an interesting result,
found during our experiments: the Baseline planner – which
represents solely previous work – outperforms Lama 2011
with compiled-soft-goals in all but two domains.

Looking at where the differences lie, between Lama and
the baseline, Lama does well on domains with a strong net-
benefit component coming from action costs. The domains
with action costs are marked * in Table 1. When choos-
ing which states to expand during search, the baseline plan-
ner pays little attention to action costs: it is guided by hall ,
which estimates the number of actions needed to satisfy all
the preferences, regardless of action cost. The two domains
in which Lama produces better solutions than the Baseline
(or incidentally, the other configurations in both tables) are
the domains in which action costs are more important in de-
termining plan quality. Conversely, in the other domains, the
best quality plans are found by achieving the right combi-
nation of soft goals. The third domain with action costs –
Openstacks – is more suited the other planners as overall so-
lution cost is dominated by making the correct choice of soft
goals to achieve: action costs contribute only a small pro-
portion of the cost. The overall picture is that the domains in
which the planner has to make interesting trade-offs between
soft goals to achieve the best cost, rather than simply achiev-
ing as many as possible then minimising costs, are those in
which the other planners tested outperform Lama the most.

To determine how our new approach compares to
Lama we directly compared our current-best configuration
(GBL15-NB-B15) to Lama 2011, on the Soft Goal domains.
In this comparison, GBL15-NB-B15 found the best solution
56 times, and Lama found the best solution 21 times. On an-
other 71 problems, the solution costs were equal – mostly on
smaller problem instances, and in Pegsol where optimal so-
lutions are found by both approaches. This result shows that
native reasoning about soft-goals is a worthwhile endeavour
and can lead to performance improvements. (We note that
the result still holds if we exclude our soft-goal variant of
Driverlog, and use only pre-existing domains.)

As a further comparison, we took the domain and prob-
lem files used by Lama (Keyder & Geffner compilations),
and evaluated them using the Baseline planner. The resulting
performance is shown as ‘Baseline-K&G’ in Table 1. Ex-
cluding Pegsol (where it is comparatively easy to find opti-
mal solutions), it performs consistently worse than the other
planners. This confirms that the action-cost-optimisation
prowess of Lama is considerably better than our approach,
and that our strengths lie in reasoning with preferences ex-
plicitly. It also alludes to the relative implementation effi-
ciencies of the two planners: Lama 2011 is not a temporal-
planner-derivative, with the overheads that entails.

5.4 Anytime Behaviour
The final aspect of our algorithms that we consider is their
anytime behaviour: how the quality of solutions progresses
over time. To normalise for the different magnitudes of so-
lution costs in different domains, we use the quality metric
introduced in IPC2008. The score for planner p on task i at
time t is:

score(p, i, t) = best cost(i)÷ cost(p, i, t)

best cost(i) is the cost of the best solution found to i (by
any planner in < 30mins), and cost(p, i, t) is the cost of the
solution found by planner p by time t. To reward quality and
coverage, if p has not solved i by time t, score(p, i, t) = 0.
The cumulative IPC score by a planner p at time t is then:

score(p, t) =
∑

i∈benchmark tasks

score(p, i, t)

Figure 3 shows the anytime progression of IPC scores of
four planners: GBL15-NB-B15, Baseline, and Lama 2011
and 2008. To allow meaningful comparisons to be made, two
sets of results are shown. The bottom four lines correspond
to running these planners only on the Soft Goal domains, ac-
cessible to Lama. The top two lines correspond to running
GBL15-NB-B15 and Baseline on all domains. (Note the dif-
ferent y-axis scales for each of these).

It is interesting to note that initially (up to about 2 sec-
onds) the Baseline configuration performs very slightly bet-
ter than GBL15-NB-B15. This reflects the computational
costs of producing the initial heuristic values: in many tasks,
at first, applying just a few plan steps yields a better solution,
so the extra heuristic guidance does not pay off. This effect
though is soon reversed: after around 2 seconds, GBL15-
NB-B15 is always the better option. When using all do-
mains, there is a noticeable jump in score at around 900

44

seconds, where search restarts, with the final score reached
being 7% higher than the baseline. Consistent with Table 2,
restarting offers no benefits on Soft Goal domains. One fi-
nal observation is that although Lama 2011 outperforms the
Baseline configuration in terms of number of joint best solu-
tions found (Table 1), it performs very similarly in terms of
IPC score after 30 minutes.

6 Conclusion
In this paper, we considered the challenge of guiding search
through the goal-dense search spaces encountered in plan-
ning tasks with preferences. We presented a new cost-bound-
sensitive heuristic that promotes states that appear to be
close to a new-best goal state. Used in alternation with an ex-
isting distance-to-go measure based on achieving all reach-
able preferences, our heuristic leads to substantial improve-
ment in the quality of solutions found. In future work, we
will explore the use of our approach in combination with
cost-to-go heuristic measures, to improve performance in
domains with action costs.

References
Baier, J.; Bacchus, F.; and McIlraith, S. 2007. A heuris-
tic search approach to planning with temporally extended
preferences. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI).
Benton, J.; Coles, A. J.; and Coles, A. I. 2012. Tempo-
ral planning with preferences and time-dependent continu-
ous costs. In Proceedings of the Twenty Second Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).
Benton, J.; Do, M. B.; and Kambhampati, S. 2009. Anytime
heuristic search for partial satisfaction planning. Artificial
Intelligence 173:562–592.
Coles, A. J., and Coles, A. I. 2011. LPRPG-P: Relaxed Plan
Heuristics for Planning with Preferences. In Proceedings of
the 21st International Conference on Automated Planning
and Scheduling (ICAPS).
Coles, A. J.; Coles, A. I.; Clark, A.; and Gilmore, S. T.
2011. Cost-sensitive concurrent planning under duration un-
certainty for service level agreements. In Proceedings of the
21st International Conference on Automated Planning and
Scheduling (ICAPS).
Cushing, W.; Benton, J.; and Kambhampati, S. 2011. Cost-
based satisficing search considered harmful. In Proceedings
of the Third ICAPS Workshop on Heuristics for Domain-
independent Planning.
Do, M. B., and Kambhampati, S. 2003. Sapa: Multi-
objective Heuristic Metric Temporal Planner. Journal of Ar-
tificial Intelligence Research 20:155–194.
Edelkamp, S.; Jabbar, S.; and Nazih, M. 2006. Large-Scale
Optimal PDDL3 Planning with MIPS-XXL. In IPC Book-
let, ICAPS.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension of
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research 20:61–124.

Gerevini, A. E.; Long, D.; Haslum, P.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic Planning in the Fifth
International Planning Competition: PDDL3 and Experi-
mental Evaluation of the Planners. Artificial Intelligence
173:619–668.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hsu, C., and Wah, B. 2008. SGPlan 6 source code, http://ipc.
informatik.uni-freiburg.de/planners, file seq-sat-sgplan6/parser/
inst utils.c, lines 347–568. Accessed September 2010.
Keyder, E., and Geffner, H. 2009. Soft goals can be
compiled away. Journal of Artificial Intelligence Research
36:547–556.
Pohl, I. 1973. The avoidance of (relative) catastrophe,
heuristic competence, genuine dynamic weighting and com-
putation issues in heuristic problem solving. In Proceed-
ings of the International Joint Conference on Artificial In-
telligence (IJCAI).
Richter, S., and Helmert, M. 2009. Preferred Operators and
Deferred Evaluation in Satisficing Planning. In Proceedings
of the 19th International Conference on Automated Planning
and Scheduling (ICAPS).
Richter, S., and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research 39:127–177.
Richter, S.; Thayer, J. T.; and Ruml, W. 2010. The Joy
of Forgetting: Faster Anytime Search via Restarting. In Pro-
ceedings of the 20th International Conference on Automated
Planning and Scheduling (ICAPS).
Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA
2008 and 2011. In IPC Booklet, ICAPS.
Smith, D. E. 2004. Choosing objectives in over-subscription
planning. In Proceedings of the 14th International Confer-
ence on Automated Planning & Scheduling (ICAPS).
Thayer, J. T., and Ruml, W. 2011. Suboptimal Search: A
Direct Approach Using Inadmissible Estimates. In Proceed-
ings of the International Joint Conference on Artificial Intel-
ligence (IJCAI).
Thayer, J.; Benton, J.; and Helmert, M. 2012. Better
Parameter-free Anytime Search by Minimizing Time Be-
tween Solutions. In Proceedings of the Symposium on Com-
binatorial Search (SoCS).
Thayer, J. T.; Stern, R.; Felner, A.; and Ruml, W. 2012.
Faster Bounded-Cost Search Using Inadmissible Estimates.
In Proceedings of the 22nd International Conference on Au-
tomated Planning and Scheduling (ICAPS).

45

