
Optimally Scheduling Small Numbers of Identical Parallel Machines

Richard E. Korf and Ethan L. Schreiber
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

korf@cs.ucla.edu, ethan@cs.ucla.edu

Abstract
Given a set of n different jobs, each with an associated run-
ning time, and a set of k identical machines, our task is to
assign each job to a machine to minimize the time to com-
plete all jobs. In the OR literature, this is called identical
parallel machine scheduling, while in AI it is called number
partitioning. For eight or more machines, an OR approach
based on bin packing appears best, while for fewer machines,
a collection of AI search algorithms perform best. We focus
here on scheduling up to seven machines, and make several
new contributions. One is a new method that significantly re-
duces duplicate partitions for all values of k, including k = 2.
Another is a new version of the Complete-Karmarkar-Karp
(CKK) algorithm that minimizes the makespan. A surprising
negative result is that dynamic programming is not compet-
itive for this problem, even for k = 2. We also explore the
effect of precision of values on the choice of the best algo-
rithm. Despite the simplicity of this problem, a number of
different algorithms have been proposed, and the most effi-
cient algorithm depends on the number of jobs, the number
of machines, and the precision of the running times.

Introduction and Overview
Consider the following very simple scheduling problem.
Given a set of n different jobs, each with an associated run-
ning time, and a set of k identical parallel machines, such
as processor cores, assign each job to a machine in order
to minimize the makespan of the schedule, or the time to
complete all jobs. The running time of each machine is the
sum of the running times of the jobs assigned to it, and the
makespan is the maximum running time of the machines.
For example, given five jobs with running times 4, 5, 6, 7, 8,
and two machines, assigning 4, 5, 6 to one machine and 7, 8
to the other results in a running time of 15 for each machine.

This is perhaps the simplest non-trivial scheduling prob-
lem. It is NP-complete, even for two machines (Garey and
Johnson 1979). In operations research (OR), it is called
“identical parallel machine scheduling”, while in AI it is
called “number partitioning”.

Previous Work in Operations Research
In OR, the state-of-the-art is represented by (Dell’Amico et
al. 2008), and is based on the close relationship between

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

number partitioning and bin packing. Both problems start
with a set of integers. Number partitioning packs them into
a fixed number k of subsets or bins, so as to minimize the
largest subset sum. A bin packer packs them into as few bins
or subsets as possible, without exceeding a fixed bin capacity
C of any bin, corresponding to a maximum allowable subset
sum. The OR approach to number partitioning is to fix the
number of bins at k, and then perform a binary search over
different bin capacities C, solving a series of bin-packing
problems, until the smallest feasible C is found. To solve
the bin-packing problems, they use an integer programming
approach called branch-and-cut-and-price (BCP).

Gleb Belov graciously provided us with his state-of-the-
art BCP solver, and we compared its performance to our
RNP algorithm, described below. For eight or more subsets,
BCP is superior to RNP, but for seven or fewer subsets, RNP
is superior. For k=7, RNP is about twice as fast as BCP, for
k=6, RNP is 134 times faster, for k=5, RNP is 5,527 times
faster, for k =4, RNP is 78,302 times faster, and for k=3,
RNP is 589,721 times faster than BCP on the largest prob-
lems we could solve with BCP. Thus, we restrict our atten-
tion here to relatively few subsets. Many applications, such
as scheduling processor cores, have few machines.

Integer Precision and Perfect Partitions
An important issue that has been overlooked in the OR liter-
ature but not in the AI community (Korf 1998) is the num-
ber of bits used to represent the integers, and the presence of
perfect partitions. A perfect partition in one where all sub-
set sums are equal, as in the example above, or where they
differ by at most one, in those cases where the sum of all the
integers is not divisible by k. A perfect partition is always
optimal, and once found, search can terminate immediately.

If we fix the precision of the integers, and the number of
subsets k, and increase the number of integers n, the num-
ber of partitions grows exponentially as kn, but the number
of subset sums grows only linearly with n. Thus as n in-
creases, the likelihood of a perfect partition also increases,
eventually becoming almost certain. Problem instances with
perfect partitions are generally easier to solve, but the rela-
tive performance of different algorithms is different with and
without perfect partitions, as we will see.

Table 1 shows where perfect partitions occur. The
columns represent different numbers of subsets k, and the

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

144

rows different integer precisions p. The power of ten la-
belling each row is the maximum possible integer. The data
entries give the smallest value of n for which at least half
of a set of uniform random problem instances had a perfect
partition, determined experimentally. For example, the four
in the top position of column 2 means that when partitioning
4 integers uniformly chosen from 0 to 9 into two subsets, at
least half the problem instances had a perfect partition. Each
data point represents at least 100 trials.

p / k 2 3 4 5 6 7
101 4 7 9 11 13 16
102 9 11 14 17 19 22
103 12 16 18 22 25 28
104 15 20 25 28 31 35
105 18 24 29 33 38 42
106 22 28 34 39 44 49
107 26 33 39 45 50
108 29 37 44 51 57
109 33 41 49 57
1010 36 45 55 62
1011 39 50 59
1012 42 54

Table 1: The Approximate Sizes of the Hardest Problems

Problems of the size shown in Table 1 are among the most
difficult. The empty locations represent values for which the
hardest problems took too long to run. Note that the bottom
rows represent integers with very high precision in practice.
For example, if we use 12-digit integers to represent times
in seconds, we can represent over 31.7 thousand years!

A Note Regarding Choice of Benchmarks
All our experiments are based on uniform random problem
instances, rather than real-world problem instances. The rea-
son is that problem difficulty depends on the size n, the num-
ber of subsets k, and the precision p of the integers. Any
particular set of real-world instances are likely to fall within
a narrow range of these parameters, and hence not provide a
very comprehensive picture of the performance of the algo-
rithms. We choose the uniform distribution because it is the
simplest, and doesn’t require any additional parameters.

Overview of the Rest of This Paper
We first consider two-way partitioning, and briefly describe
five different existing algorithms for this problem. We then
introduce a new technique to improve the performance of
most of them. Next we experimentally compare their rela-
tive performance as a function of the precision p and prob-
lem size n. We then consider the case of multi-way parti-
tioning. We describe a new version of an existing algorithm
(CKK), and a significant improvement to another algorithm
(RNP). We then analyze their performance both with and
without perfect partitions. Finally we present our conclu-
sions and further work.

Two-Way Partitioning
We begin with two-way partitioning, corresponding to
scheduling two machines. This is equivalent to the subset-
sum problem of finding a subset of a set of integers whose
sum is closest to half the sum of all the integers. We next
describe five different optimal algorithms for this problem.

Complete Greedy Algorithm (CGA)
The simplest algorithm for this problem is the complete
greedy algorithm (CGA) (Korf 1998). It sorts the integers
in decreasing order, and searches a binary tree, assigning a
different integer at each level. The left branch of each node
assigns the next integer to the subset with the smaller sum
so far, and the right branch assigns it to the subset with the
larger sum. Thus, the first solution found is that returned by
the obvious greedy heuristic for this problem. CGA keeps
track of the larger subset sum of the best solution found so
far, and prunes a branch when the sum of either subset equals
or exceeds this value. Without perfect partitions, the time
complexity of CGA is slightly better than O(2n), with the
difference due to pruning. It’s space complexity is O(n).

Complete Karmarkar-Karp (CKK)
A better algorithm is based on a heuristic approxima-
tion originally called set differencing (Karmarkar and Karp
1982), but usually referred to as KK. KK sorts the integers
in decreasing order, and at each step replaces the two largest
integers with their difference. This is equivalent to sepa-
rating the two largest integers in different subsets, without
committing to their final placement. For example, placing 8
and 7 in different subsets is equivalent to placing a 1 in the
subset with the 8. The difference is then treated as another
integer to be assigned. The algorithm continues until there
is only one integer left, which is the difference between the
subset sums of the final two-way partition. Some additional
bookkeeping is needed to construct the actual partition. The
KK heuristic runs in O(n log n) time, and finds much better
solutions than the greedy heuristic.

The Complete Karmarkar-Karp algorithm (CKK) is a
complete optimal algorithm (Korf 1998). While KK always
places the two largest integers in different subsets, the only
other option is to place them in the same subset, by replac-
ing them with their sum. Thus, CKK searches a binary tree
where at each node the left branch replaces the two largest
integers by their difference, and the right branch replaces
them by their sum. The first solution found is the KK solu-
tion. If the largest integer equals or exceeds the sum of all
the remaining integers, we terminate the branch by placing
them in opposite subsets. Without perfect partitions, CKK
also runs slightly faster than O(2n), again due to pruning.
CKK also requires only O(n) space.

Horowitz and Sahni (HS)
The Horowitz and Sahni (HS) algorithm (Horowitz and
Sahni 1974) is a different approach to the subset sum prob-
lem. It divides the n integers into two “half” subsets a and
c, each of size n/2. Then it generates all subsets from each
half subset, including the empty set. The two lists of subsets

145

are sorted in order of their subset sums. Any subset of the
original integers consists of a subset of the a integers plus a
subset of the c integers. Next, it initializes a pointer to the
empty subset of the a list, and the complete subset of the c
list. If the subset sum pointed to by the a pointer, plus the
subset sum pointed to by the c pointer, is more than half the
sum of all the integers, the c pointer is decremented to the
subset with the next smaller sum. Alternatively, if the sum
of the subset sums pointed to by the two pointers is less than
half the total sum, the a pointer is incremented to the subset
with the next larger sum. If the sum of the two subset sums
equals half the total sum, it terminates with a perfect parti-
tion. Otherwise, HS continues until either list of subsets is
exhausted, returning the best solution found.

HS runs in O(2n/2(n/2)) time and O(2n/2) space. This
is much faster than CGA and CKK, but it’s memory require-
ment limits it to values of n up to about 50.

Schroeppel and Shamir (SS)
The SS algorithm (Schroeppel and Shamir 1981) is based
on HS, but uses much less space. Note that HS uses the
subsets from the a and c lists in order of their subset sums.
Rather than generating, storing, and sorting these subsets,
SS generates them dynamically in order of their subset sums.

SS divides the n integers into four sets a, b, c and d, each
of size n/4, generates all subsets from each set, and sorts
them in order of their sums. The subsets from the a and b
lists are combined in a min heap that generates all subsets
of elements from a and b in increasing order of their sums.
Each element of the heap consists of a subset of the a list,
and a subset of the b list. Initially, it contains all pairs com-
bining the empty set from the a list with each subset of the b
list. The top of the heap contains the pair whose subset sum
is the current smallest. Whenever a pair (ai, bj) is popped
off the top of the heap, it is replaced in the heap by a new
pair (ai+1, bj). Similarly, the subsets from the c and d lists
are combined in a max heap, which returns all subsets from
the c and d lists in decreasing order of their sums. SS uses
these heaps to generate the subset sums in sorted order, and
combines them as in the HS algorithm.

Similar to the HS algorithm, the SS algorithm runs in time
O(2n/2(n/4)), but its space complexity is only O(2n/4),
making it practical for values of n up to about 100.

A recent algorithm reduces this runtime to approximately
O(2n/3) (Howgrave-Graham and Joux 2010), but is proba-
bilistic, solving only the decision problem for a given subset
sum. It cannot prove there is no solution for a given sum,
and doesn’t return the subset sum closest to a target value.

Dynamic Programming (DP)
Finally, we consider the well-known dynamic programming
(DP) algorithm for subset sum (Garey and Johnson 1979).
DP allocates a two-dimensional bit array with n rows and t
columns, where t is the sum of all the integers. Eventually
this array will contain a one in row i and column j if it is
possible to construct a subset whose sum is j, from the first
i integers. The array is initialized to all zeros. In the first
row, corresponding to the integer x1, the bit whose index is

x1 is set to one, corresponding to the singleton set containing
x1. Then, for each row i, the previous row i− 1 is scanned.
Every one bit in the previous row is copied to the next row,
xi is added to its index, and the bit at that index is set to one
as well. This corresponds to excluding and including the
current integer xi in each subset of the previous integers. In
the complete array, the indices of the one bits in the last row
represent the possible subset sums of the original integers.

The time and space complexity of DP is O(t · n). Since
each row is computed from only the previous row, only one
row must be stored at a time, if the rows are scanned from the
largest to the smallest indices. This reduces the space com-
plexity to O(t), which limits its applicability to relatively
low precision integers. Processing the integers from largest
to smallest significantly speeds up the algorithm in the pres-
ence of perfect partitions, since including the largest integers
first reaches half the sum of all the integers quicker. In ad-
dition, keeping track of the first and last non-zero entries
reduces the number of zero entries that must be scanned.

Eliminating Half the Subsets
Our first contribution to two-way partitioning starts with the
simple observation that every subset has a unique comple-
ment subset, whose sum is t minus that of the original sub-
set. If we naively search over all subsets, each two-way par-
tition will be generated twice, once by generating the origi-
nal set, and again by generating its complement.

Eliminating this redundancy is obvious for some of the
above algorithms. In CGA, for example, we only put the
largest integer in one of the two subsets. This redundancy
does not appear in CKK. In the DP algorithm, we only al-
locate as many elements as half the sum of all the integers,
halving both the space and time complexity.

Removing this redundancy from HS or SS is not so ob-
vious, however. It is not mentioned in either of their pa-
pers, and eluded us until recently. We simply exclude one
of the original integers from the generated sets, such as the
largest one, and for each subset generated, consider both
it and its complement, augmented with the excluded inte-
ger. Since the time complexity of both these algorithms is
O(n2n/2), reducing n by one should produce a speedup of
slightly more than the square root of two, which is 1.414. In
our experiments with high precision integers without perfect
partitions, this optimization resulted in a speedup of about
1.45 for HS, and 1.53 for SS. All the experimental results
below are for versions of these algorithms with this opti-
mization included.

Experimental Results
Which is the fastest of the five different two-way partitioning
algorithms described above? The answer depends on the
number of integers n, and their precision p.

Conventional Wisdom We first consider asymptotic com-
plexity. These algorithms can be divided into three groups.
CGA and CKK search a binary tree, require O(n) space, and
slightly less than O(2n) time without perfect partitions. HS
and SS require O(2n/2) and O(2n/4) space, respectively,

146

and run in time O(2n/2(n/2)) and O(2n/2(n/4)) respec-
tively. Finally, DP requires O(t/2) space where t is the sum
of all the integers, and O(nt/2) time.

Given these time complexities, one would expect that
given sufficient memory to run them all, DP should be the
fastest, followed by HS and SS, and then CGA and CKK.

Most treatments of NP-complete problems describe the
DP algorithm for numerical problems, point out its low time
complexity for fixed precision integers, and imply that it is
the algorithm of choice if sufficient memory is available.
DP is referred to as a “pseudo-polynomial” time algorithm,
and problems without such an algorithm are referred to as
“strongly NP-complete”, suggesting that problems with a
DP solution are easier to solve because of it.

If there is insufficient memory to run DP, but enough
memory to run SS or even HS, they would be expected
to outperform CGA and CKK. For example, when I intro-
duced CKK (Korf 1998), I concluded that “For problems
with fewer than 100 numbers, or for problems where the
numbers have low precision, there exist more efficient al-
gorithms.” (pp. 202) referring to SS and DP, respectively.
Furthermore, since HS and SS have similar asymptotic time
complexity, but HS is much simpler, one would expect HS
to run faster than SS given sufficient memory to run both.

What we found experimentally is rather different. We first
consider high-precision integers without perfect partitions,
and then problems with perfect partitions.

High-Precision Integers Without Perfect Partitions To
eliminate perfect partitions, we used integers with 48 bits of
precision, which is over 14 decimal digits. The empirically
observed time complexity of CGA is about O(1.95n), while
for CKK it is about O(1.90n). By n = 40, CKK runs over
twice as fast as CGA, due to more efficient pruning. Prob-
lems of size 40 take CKK about 36 seconds to solve.

Comparing HS and SS, we were initially surprised to find
that in addition to using much less memory, SS runs about
twice as fast as HS. The dominant cost in HS is the time
to sort the 2n/2 subsets from each of the half lists by their
subset sums. This takes O(2n/2 log 2n/2) or O(2n/2(n/2))
time. The analogue of this sorting step in SS is the time to
sort the subsets in the four quarter lists, and to insert them
into their respective heaps. Since these lists and heaps are
only of size 2n/4, the sorting and heap insertion times are
the log of this value, for a running time of O(2n/2 log 2n/4)
or O(2n/2(n/4)). The ratio of these two running times is
the factor of two we observe experimentally.

This leaves SS and CKK as the undominated algorithms
for high-precision integers, since DP is not applicable to
such problems. Which is faster depends on the problem size
n. For n less than 12, CKK is faster, due to its lower over-
head per node. For larger values of n, SS is faster, due to its
lower asymptotic complexity. The ratio of the running time
of CKK to that of SS grows as n increases. For n = 40, for
example, SS is about 500 times faster than CKK. Further-
more, without perfect partitions, the time and space com-
plexities of both these algorithms depend only on n, and are
not affected by the precision, if we ignore the additional bits
needed to store high-precision values.

Fixed Precision Integers With Perfect Partitions To
evaluate DP, we need to limit the precision of the inte-
gers, introducing perfect partitions. Surprisingly, we found
that even our highly optimized DP is uniformly slower than
CKK. For integers up to ten, CKK is only slightly faster. As
the precision increases, however, the ratio of their running
times increases monotonically. For integers up to one mil-
lion, CKK is four orders of magnitude faster than DP.

With perfect partitions, which occur increasingly often
with fixed precision values as n increases, the relative per-
formance of SS and CKK is more complicated. The reason
is that CKK is good at finding perfect partitions quickly, but
SS is not. Consider the best case, where the first complete
two-way partition found by each algorithm is a perfect par-
tition. In that case, CKK runs in O(n log n) time. SS, how-
ever, has to generate and sort all the subsets of the quarter
sets, and initialize the two heaps, before generating even the
first complete partition. This takes O(2n/4 log 2n/4) time or
O(2n/4(n/4)). Thus, if we hold the precision fixed as n in-
creases, at some point CKK will run faster than SS, and the
ratio of their running times will increase without bound until
about n = 100, beyond which SS is no longer feasible, due
to its memory requirements.

Table 2 shows our experimental results. The top row rep-
resents the precision of the integers, in terms of number of
decimal digits, with the integers ranging from zero to the
power of ten in the top row. For n < 12, CKK is al-
ways faster than SS, regardless of the precision, due to less
overhead per node. The numbers in the second row are the
largest values of n for which SS is faster than CKK, for the
given precision. For integers up to 103, CKK is always faster
than SS. For integers up to 104, for example, CKK is faster
up to n = 12, then SS is faster up to n = 17, and then CKK
is faster for values larger than 17, due to the presence of per-
fect partitions. This pattern is repeated for each precision,
with CKK being fastest for n < 12, and for n greater than
the value in the table, while SS is fastest in the range be-
tween 12 and the table value. Note that when it is faster, SS
can be orders of magnitude faster than CKK, due to its lower
worst-case asymptotic complexity. Similarly, for large val-
ues of n, CKK can be orders of magnitude faster than SS,
due to its lower best-case asymptotic complexity in the pres-
ence of perfect partitions.

p 4 5 6 7 8 9 10 11 12
n 17 24 29 36 43 49 56 63 71

Table 2: Largest n for Which SS is Faster than CKK

This data contrasts sharply with my claim in (Korf 1998)
that SS is faster than CKK for all values of n < 100. Note
that CKK is extremely simple to implement, compared to
SS, and that it can be applied to arbitrarily large problems,
since its space complexity is only O(n). SS, on the other
hand, is limited to problems up to size n = 100.

In practice, two-way partitioning problems even with 48
bits of precision are easy to solve with the right algorithm.
Problems of size n = 50, about half of which have perfect

147

partitions, take SS only about 2.3 seconds to solve optimally.
Of course, by increasing the precision, we can always con-
struct more difficult two-way partitioning problems.

Multi-Way Partitioning
We now consider partitioning into more than two subsets,
corresponding to scheduling more than two machines. Nei-
ther HS nor SS generalize to multi-way partitioning, since
they only generate single sets. DP is not practical for k-way
partitioning it requires O((t/2)k−1) space. CGA general-
izes directly to k-way partitioning, searching a k-ary tree in
which each integer is alternately assigned to one of k sub-
sets, in increasing order of their subset sums.

We first present a new version of the CKK algorithm, de-
signed to minimize the makespan. We next describe an exist-
ing multi-way partitioning algorithm called recursive num-
ber partitioning (RNP). Then we describe a new technique to
limit the number of duplicate nodes in RNP, which general-
izes the technique described above for two-way partitioning.
Finally, we present our experimental results for multi-way
partitioning, both with and without perfect partitions.

A New CKK that Minimizes the Makespan
The original multi-way CKK algorithm (Korf 1998) was
designed to minimize the difference between the largest
and smallest subset sums. While for two-way partitioning
this is the same as minimizing the largest subset sum, for
multi-way partitioning, these are different objective func-
tions (Korf 2010). We describe here a new version of CKK
that minimizes the largest subset sum.

For simplicity, we consider three-way partitioning, but
the algorithm generalizes to arbitrary k-way partitioning.
Rather than maintaining a list of integers, it maintains a list
of ordered triples. Each element of a triple is either an orig-
inal integer, or the sum of two or more original integers. A
triple such as (x, y, z) represents a commitment to assign
x, y, and z to separate subsets in any final three-way par-
tition. Furthermore, whenever two or more original inte-
gers are combined into a single element of a triple, such as
x = i + j, i and j remain together in any subsequent parti-
tion. Each triple is ordered from largest to smallest values.

Initially, each integer is placed in its own triple, with zeros
for the other two values. The algorithm repeatedly combines
two triples together in all different ways, until only one triple
remains, representing the final three-way partition.

For example, if a and x are the two largest original inte-
gers, the two triples (a, 0, 0) and (x, 0, 0) will be combined
into one. There are only two different ways to do this, ei-
ther placing the a and x in different subsets, resulting in the
triple (a, x, 0), or placing them in the same subset, result-
ing in (a + x, 0, 0). The search will branch on these two
combinations, searching the first combination first.

In general, given two triples (a, b, c) and (x, y, z), there
are 3! or six different ways to combine them, resulting in
the triples (a + z, b + y, c + x), (a + z, b + x, c + y),
(a+y, b+z, c+x), (a+y, b+x, c+z), (a+x, b+z, c+y),
and (a+x, b+y, c+z). They are explored in this order, since
this approximates the order of increasing difference between

their largest and smallest values. At each node of the algo-
rithm, we combine the two triples with the largest difference
between their largest and smallest values, and replace them
by each possible combination, branching up to six ways.

This is a branch-and-bound algorithm that keeps track of
the largest subset sum in the best solution found so far. The
search tree is pruned as follows. Any combination that re-
sults in a triple in which any value equals or exceeds the
largest subset sum in the current best solution is pruned. Fur-
thermore, since all the triples will eventually be combined
into one, each value in any triple will eventually have added
to it at least one value from every other current triple. Thus,
each value must have added to it at least the smallest value
from every other triple. Let li be the largest value of some
triple, si be the smallest value of that same triple, sum be
the sum of the smallest values of all current triples including
triple i, and m be the largest subset sum in the best solution
found so far. We prune the search when li − si + sum ≥ m
for any triple i.

While this test may seem to require time linear in the num-
ber of triples, we can compute it incrementally in constant
time. The sum of the smallest values is maintained incre-
mentally, since each step combines just two triples into one.
To test for pruning, we only have to compute the inequal-
ity for the triple i with the largest value of li − si. This
is the triple with the largest difference between its largest
and smallest values, which is also maintained incrementally,
since it always participates in the next combination.

The first solution found by this algorithm is the KK ap-
proximation, and it eventually guarantees an optimal solu-
tion. The generalization to k-way partitioning is straight-
forward, with k-tuples replacing triples, and a maximum
branching factor at any node of k!. The space complexity
is O(kn), and it’s worst-case time complexity without per-
fect partitions or any pruning is O(kn/k!), the number of
unique k-way partitions, up to permutations of the subsets.

The main difference between the original CKK algorithm
and our new version, besides minimizing different objective
functions, is the new pruning rule described above. In ad-
dition, the original version maintained only k − 1 tuples for
k-way partitioning, normalizing each tuple by subtracting
the smallest value from each other value.

Recursive Number Partitioning
For small k and large n without perfect partitions, Recursive
Number Partitioning (RNP) (Korf 2009; 2011) is the best
existing algorithm. We first describe the algorithm for three-
way partitioning, and then show how to generalize it.

RNP first runs KK to get an approximate solution. For
three-way partitioning, it then generates each subset that
could be part of a better three-way partition. For each such
first subset, it optimally partitions the complement set two
ways to arrive at a three-way partition. This is based on the
observation that given any optimal solution to a k-way parti-
tioning problem, optimally partitioning the elements in any
subcollection of the k subsets will still result in an optimal
solution, since it can only reduce the maximum subset sum.

Let t be the sum of all the integers, and m be the largest
subset sum in the best solution so far. In order for a subset

148

to be part of a better three-way partition, its sum must be
less than m, and greater than or equal to t − 2(m − 1), so
that it’s complement could possibly be partitioned into two
sets both of whose sums are less than m. To generate these
first subsets, RNP uses an extension of the SS algorithm that
generates all subsets whose sum lies within a given range
(Korf 2011), rather than a single subset whose sum is clos-
est to a target value. RNP is a branch-and-bound algorithm
that continues to search for better solutions, until it finds and
verifies an optimal solution.

For four-way partitioning, at the top-level RNP partitions
the integers into two subsets, in all ways such that optimally
partitioning each subset two ways could result in four sub-
sets, each with a sum less than m. For five-way partitioning,
at the top level the integers are partitioned into two subsets,
one is optimally partitioned two ways, and the other is op-
timally partitioned three ways. In general, for k-way parti-
tioning, at the top level the integers are partitioned into two
subsets, then one subset is optimally partitioned bk/2cways,
and other subset is optimally partitioned dk/2e ways.

Reducing Duplicate Partitions
Unfortunately, RNP can generate duplicate partitions that
differ only by a permutation of the subsets. For exam-
ple, RNP could generate any given three-way partition three
different ways, by constructing each of the three subsets
first, and then optimally partitioning their complements two
ways. To reduce this redundancy, the original version of
RNP restricted the range of the first subset sum to be greater
than or equal to t/3, and less than m. This is complete,
because in any three-way partition, at least one subset sum
must equal or exceed t/3. This doesn’t eliminate the redun-
dancy however, since two of the three subsets in a three-way
partition could have sums greater than or equal to t/3, and
hence such partitions could be generated two different ways.

We introduce here an alternative method that eliminates
more duplicate partitions, and is a generalization of optimiz-
ing two-way partitioning by excluding one of the integers.
For three-way partitioning, we force the largest integer to be
included in the first subset. Since any given integer can only
appear in one subset of a partition, this guarantees that each
three-way partition can only be generated one way.

In principle, we could choose any integer to include. We
choose the largest integer because it has the biggest impact
on the bounds on the remaining subset sum, and reduces
the number of different subsets whose sum is in the correct
range, compared to including a smaller integer.

For four-way partitioning, we include the two largest in-
tegers in the same subset of all the top-level two-way parti-
tions. This is complete because the two largest integers can
be in at most two subsets in any four-way partition. Unfortu-
nately, this doesn’t eliminate all duplicate partitions. For ex-
ample, consider a four-way partition in which the two largest
integers are in the same subset. These four subsets could be
partitioned into two pairs of subsets at the top level in three
different ways, combinining the subset with the two largest
integers with each of the other three subsets.

In general, for k-way partitioning, at the top-level we par-
tition all the integers two ways, into a k1 subset that will

be optimally partitioned k1 ways, and a k2 subset that will
be optimally partitioned k2 ways, where k1 = bk/2c and
k2 = dk/2e. Note that by forcing certain integers to be in-
cluded, we can’t require the sum of the set containing those
integers to be larger or smaller than t/k, so the upper bound
on the k1 subset sum is k1(m − 1), and the lower bound is
t− k2(m− 1). Similarly, the upper bound on the k2 subset
sum is k2(m− 1) and the lower bound is t− k1(m− 1).

If k is even, there are two ways to apply this technique.
The first is to include the k/2 largest integers in the subset
generated in the top-level two-way partition, and the other is
to exclude them from the generated subset, which includes
them in the complement set. While these may seem to be
equivalent, the extended SS algorithm used to generate sub-
sets at the top level generates them in a different order than
it would generate their complements, resulting in different
performance for a branch-and-bound algorithm.

If k is odd, there are four different ways to apply this tech-
nique. One is to generate the k1 subsets while including the
k1 largest integers, and another is to generate the k1 subsets
while excluding the k2 largest integers. Alternatively, we
could generate the k2 subsets, either including the k2 largest
integers, or excluding the k1 largest integers. All four vari-
ations perform differently for odd k, but generating the k2
subset while excluding the k1 largest integers consistently
performed the best, over all k and n.

Another Optimization
RNP first partitions the integers into two subsets in all ways
that could possibly lead to a better k-way partition, and then
for each such top-level partition, optimally partitions each
subset. This is more work than is necessary. For example,
for three-way partitioning, if the first set has a sum of s, we
don’t need to find an optimal two-way partition of the com-
plement set, but only one where both subset sums are less
than or equal to s, since the largest of the three subset sums
cannot be less than s. Similarly, with four-way partitioning,
after partitioning one of subsets of the top-level partition two
ways with a larger subset sum of s, when partitioning the
other top-level subset two ways we can stop searching if we
find a partition where both subset sums are less than or equal
to s. In general, when constructing a k-way partition, if the
largest sum of the final subsets constructed so far is s, any
further recursive partitioning to complete that partition can
terminate whenever final subsets with a sum of s or less are
generated. The performance impact of this optimization is
relatively minor, however, since most candidate partitions
fail to improve on the best solution found so far.

Experimental Results
We now turn to experimental results for multi-way partition-
ing. As with two-way partitioning, the results are signifi-
cantly different depending on whether or not perfect parti-
tions exist, which depends on the precicion of the integers.
We start high-precision integers without perfect partitions.

High-Precision Numbers Without Perfect Partitions To
eliminate perfect partitions, we use 48-bit integers. Without

149

k 3-Way 4-Way 5-Way 6-Way 7-Way
n Old New R Old New R Old New R Old New R Old New R
25 .001 .000 1.37 .002 .001 2.07 .006 .002 3.30 .061 .006 9.48 .13 .02 6.22
26 .001 .001 1.55 .003 .001 1.96 .010 .003 3.84 .090 .010 8.80 .174 .015 11.9
27 .001 .001 1.37 .004 .002 2.15 .014 .003 4.24 .161 .018 9.08 .507 .034 14.7
28 .002 .001 1.64 .006 .003 2.23 .020 .005 3.70 .240 .027 8.79 .554 .045 12.2
29 .002 .002 1.33 .010 .004 2.43 .033 .008 4.27 .348 .040 8.81 1.03 .044 23.49
30 .003 .002 1.58 .016 .006 2.56 .050 .012 4.22 .606 .068 8.91 1.53 .077 19.84
31 .004 .003 1.30 .025 .009 2.79 .083 .018 4.71 .833 .101 8.27 2.39 .109 21.93
32 .007 .004 1.69 .042 .014 2.95 .129 .027 4.78 1.49 .166 8.98 4.08 .199 20.51
33 .009 .007 1.30 .063 .029 3.01 .195 .041 4.77 2.32 .248 9.36 6.04 .347 17.43
34 .014 .009 1.62 .092 .031 2.95 .335 .066 5.09 3.92 .456 8.60 10.6 .535 19.87
35 .018 .014 1.30 .132 .047 2.79 .478 .087 5.47 6.18 .740 8.35 17.6 1.04 16.93
36 .029 .017 1.66 .195 .070 2.77 .795 .138 5.76 9.86 1.15 8.57 29.4 1.42 20.76
37 .037 .029 1.26 .282 .103 2.74 1.55 .200 7.76 16.0 1.81 8.85 48.4 2.18 22.19
38 .058 .036 1.61 .431 .160 2.70 1.92 .317 6.07 26.0 3.14 8.92 80.0 3.51 22.78
39 .075 .059 1.26 .635 .234 2.71 2.95 .490 6.03 42.5 5.27 8.06 123 5.55 22.17
40 .125 .074 1.67 .978 .361 2.71 4.49 .756 5.94 73.9 8.72 8.50 228 9.64 23.62
41 .160 .125 1.28 1.40 .525 2.67 7.54 1.16 6.56 119 13.5 8.81 379 14.7 25.82
42 .251 .153 1.64 1.99 .800 2.48 11.9 1.72 6.91 202 24.8 8.12 698 26.6 26.22
43 .328 .253 1.30 3.05 1.22 2.51 18.1 2.65 6.84 315 41.0 7.68 1217 43.7 27.84
44 .528 .321 1.65 4.88 1.85 2.64 26.6 4.26 6.26 534 66.9 7.97 2197 77.0 29.70
45 .666 .529 1.26 6.68 2.64 2.53 41.9 6.30 6.65 850 104 8.21 3408 121 28.14
46 1.04 .685 1.52 10.8 4.34 2.50 65.4 9.99 6.55 1401 184 7.61 5573 208 26.85
47 1.34 1.05 1.28 16.0 6.26 2.55 110 15.8 6.94 2272 300 7.57 9878 373 26.46
48 2.22 1.36 1.63 24.1 9.42 2.55 162 24.8 6.52 4171 502 8.31 605
49 2.75 2.24 1.23 36.9 14.3 2.57 242 36.6 6.60 6717 771 8.71 963
50 4.33 2.81 1.54 61.0 23.3 2.62 470 59.8 8.28 10917 1384 7.89 1642

Table 4: Average Time in Seconds to Optimally Partition 48-bit Integers 3, 4, 5, 6, and 7 Ways

k 3 4 5 6 7 8 9 10
n 10 12 15 16 17 19 21 22

Table 3: Largest n for Which CGA is Faster than RNP

perfect partitions, the performance of all our algorithms, ex-
cept DP, is independent of the precision. The candidate algo-
rithms for multi-way partitioning are CGA, our new version
of CKK, and our improved version of RNP.

For multi-way partitioning without perfect partitions,
CGA outperforms CKK for all values of n and k > 2, since
it is much simpler and has a lower constant time per node.
For three-way partitioning, CGA is only 12% faster than
CKK, but for four-way partitioning it is about twice as fast,
and for five-way partitioning it is about three times faster.

For small values of n, CGA also outperforms RNP, again
due to its simplicity and lower overhead per node. Table 3
shows the largest value of n, as a function of k, for which
CGA is faster than RNP with our new duplicate pruning
method. Thus, to solve small recursive subproblems, RNP
calls CGA. For values of n larger than those in Table 3, RNP
outperforms CGA, and the ratio of their running times in-
creases without bound as n increases. The differences be-
tween Table 3 and the corresponding Table 1 of (Korf 2011)
reflect our improved version of RNP.

Table 4 shows the performance of RNP with our new du-
plicate pruning method, compared to our previous best ver-
sion, described in (Korf 2011). This data is based on 48-bit
integers, rather than the 31-bit integers used previously, to
eliminate perfect partitions. We only show results for par-
titioning three through seven ways, since beyond seven the
bin-packing approach described at the beginning of this pa-
per outperforms RNP. Each data point represents the average
over 100 instances of the time in seconds to solve a random
instance for a given value of k and n, where the integers are
uniformly distributed from zero to 248 − 1. Each group of
three columns represents a different value of k, and gives
the running time of our previous code (Old), our improved
version (New), and the ratio (R) of the two. The ratios don’t
always equal the ratios of the table values, since they are
based on the full precision of our data, which exceeds that
presented in the table. These experiments were run on an
Intel Xeon X5680 CPU running at 3.33GHz. There is rel-
atively little variation among the 100 instances in each set
of problems. The three empty entries for k = 7 represent
problems where our previous code took too long to run.

Our new version of RNP is significantly faster than our
previous version, and the difference increases with larger k.
For 3-way partitioning, our new version alternates between
about 1.25 and 1.5 times faster. For 4-way partitioning, it is
about 2.5 times faster, for 5-way it is about 7 times faster on

150

the larger problems, for 6-way it is about 8 times faster, and
for 7-way it is over 26 times faster on the larger problems.

Fixed-Precision Numbers With Perfect Partitions For
problems with perfect partitions, the relative performance of
our algorithms depends on problem size. For small values of
n, CGA is fastest, for intermediate values of n, RNP outper-
forms it, and for large values of n, our new CKK is fastest.

Consider three-way partitioning, for example. For inte-
gers up to 10, CGA dominates both CKK and RNP, which
perform similarly. For integers up to 100, CGA is fastest for
n up to 10. For n = 11 through n = 15, RNP is fastest.
For all values of n > 15, CKK is the fastest algorithm. For
values up to 1000, CGA is again fastest for n up to 10. For
n = 11 through n = 22, RNP is fastest, and for larger values
of n, CKK is fastest. For integers with four decimal digits,
RNP is fastest from n = 11 through n = 35, and CKK is
faster for larger values of n. For integers with five decimal
digits, RNP is fastest from n = 11 through n = 50, and
CKK is faster for larger values of n.

The reasons for these results are as follows. For multi-
way partitioning without perfect partitions, CGA outper-
forms CKK because of it’s simplicity and lower constant
factors. With perfect partitions, however, CKK outperforms
CGA because it finds better solutions and hence perfect par-
titions faster. The performance crossover between CGA and
CKK occurs at values of n for which RNP outperforms both
algorithms, however. For intermediate values of n, RNP is
faster than both CGA and CKK because it has lower asymp-
totic complexity. With many perfect partitions, however, it
must do O(2n/4(n/4)) work before generating even its first
partition, while CKK only has to do O(n log n) work before
generating complete partitions, and thus CKK performs best
for larger values of n. Note that since RNP uses the extended
SS algorithm, it is not feasible for n > 100. At that point,
without perfect partitions, CGA is the best algorithm avail-
able for multi-way partitioning, while with large numbers of
perfect partitions, CKK is the fastest algorithm.

Conclusions and Further Work
We have explored a very simple scheduling problem. For
two-way partitioning, we introduced a simple optimization
that eliminates half the nodes generated and speeds up the
HS and SS algorithms by a factor of about 1.5. We then
experimentally compared five different algorithms for this
problem, systematically varying the problem size and preci-
sion of the integers. We showed that CKK dominates CGA,
and SS dominates HS. If we hold the precision fixed and
increase the problem size n, we found that CKK performs
best for small problems and large problems, while SS per-
forms best for problems of intermediate size, with the spe-
cific cross-over point depending on the precision of the in-
tegers. Surprisingly, we found that the well-known dynamic
programming algorithm is dominated by CKK.

For multi-way partitioning, we introduced a new version
of CKK that minimizes the makespan, instead of the differ-
ence between the largest and smallest subset sums, and a
new pruning rule. We also introduced a new method to re-
duce the number of duplicate partitions generated by RNP.

For problems without perfect partitions, this improves the
performance of RNP for all numbers of subsets k, with the
improvement increasing with increasing k, with speedups of
over a factor of twenty-six for seven-way partitioning. Hold-
ing the precision and number of subsets fixed, while increas-
ing the problem size n increases the number of perfect par-
titions. In that case, CGA performs best for small values of
n, RNP is the best choice for intermediate values of n, and
CKK performs best for large values of n.

A natural question to ask is where are the hardest prob-
lems? First, it depends on the algorithm, since the hardest
problems for one algorithm are not the hardest for another.
In general, the more perfect partitions there are of, the eas-
ier the problem instance is, since a perfect partition can be
returned immediately as optimal. The lower the precision
of the integers, the more common perfect partitions become,
making the problems easier. To eliminate perfect partitions,
we can always increase the precision of the integers. Thus,
even hard two-way instances can be constructed by making
the precision high enough. If there are no perfect partitions,
however, then increasing the precision has no effect on the
performance of any of these algorithms, except for dynamic
programming, which we showed is not competitive. If we
hold the precision p and number of subsets k fixed, and in-
crease the problem size n, then problems get harder until
perfect partitions appear, and then they get easier. Table 1
shows the values of n, as a function of p and k, where ap-
proximately half the problems have perfect partitions. In
general, for fixed p and fixed n, problems with larger k are
more difficult, until k begins to approach n, at which point
they get easier again.

One of the surprising results of this work is that in spite
of the simplicity of the problem, particularly two-way parti-
tioning, the choice of the best algorithm for finding optimal
solutions is rather complex, and significant progress is still
being made. There are several undominated algorithms, and
the best choice depends on n, k, and the precision p of the in-
tegers. Since most real scheduling problems are much more
involved, and many of them contain this problem as a special
case, it is likely that designing the best algorithms for those
problems will be at least as complex. In particular, this work
highlights the important role that precision may play in any
combinatorial problem involving numerical quantities.

Since the submission of this paper, we have been explor-
ing the bin-packing approach to this problem, using im-
provements to an alternative bin-packing algorithm called
bin-completion (Korf 2002; 2003). Our preliminary results
indicate that this outperforms RNP for k = 7 and k = 6,
but is more than an order of magnitude slower than RNP for
k = 5, and orders of magnitude slower for smaller values of
k. This work will be described in a forthcoming paper.

Acknowledgments

This work was supported by NSF grant IIS-0713178.
Thanks to Gleb Belov for providing his BCP code to us and
for other valuable assistance.

151

References
Dell’Amico, M.; Iori, M.; Martello, S.; and Monaci, M.
2008. Heuristic and exact algorithms for the identical par-
allel machine scheduling problem. INFORMS Journal on
Computing 20(23):333–344.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York, NY: W. H. Freeman.
Horowitz, E., and Sahni, S. 1974. Computing partitions with
applications to the knapsack problem. Journal of the ACM
21(2):277–292.
Howgrave-Graham, N., and Joux, A. 2010. New generic
algorithms for hard knapsacks. In Proceedings of EURO-
CRYPT 2010, 235–256. LNCS 6110.
Karmarkar, N., and Karp, R. M. 1982. The differencing
method of set partitioning. Technical Report UCB/CSD
82/113, C.S. Division, University of California, Berkeley.
Korf, R. E. 1998. A complete anytime algorithm for number
partitioning. Artificial Intelligence 106(2):181–203.
Korf, R. E. 2002. A new algorithm for optimal bin pack-
ing. In Proceedings of the National Conference on Artificial
Intelligence (AAAI-02), 731–736.
Korf, R. E. 2003. An improved algorithm for optimal bin
packing. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI-03), 1252–1258.
Korf, R. E. 2009. Multi-way number partitioning. In Pro-
ceedings of the International Joint Conference on Artificial
Intelligence (IJCAI-09), 538–543.
Korf, R. E. 2010. Objective functions for multi-way number
partitioning. In Proc. of the Symposium on Combinatorial
Search (SOCS-10).
Korf, R. E. 2011. A hybrid recursive multi-way number
partitioning algorithm. In Proc. of IJCAI-11, 591–596.
Schroeppel, R., and Shamir, A. 1981. A T = O(2n/2), S =
O(2n/4) algorithm for certain NP-complete problems. SIAM
Journal of Computing 10(3):456–464.

152

