
Behavior Composition as Fully Observable
Non-Deterministic Planning

Miquel Ramirez, Nitin Yadav and Sebastian Sardina∗

School of Computer Science and IT
RMIT University

Melbourne, Australia
{miquel.ramirez,nitin.yadav,sebastian.sardina}@rmit.edu.au

Abstract
The behavior composition problem involves the automatic
synthesis of a controller able to “realize” (i.e., implement)
a target behavior module by suitably coordinating a collec-
tion of partially controllable available behaviors. In this pa-
per, we show that the existence of a composition solution
amounts to finding a strong cyclic plan for a special non-
deterministic planning problem, thus establishing the formal
link between the two synthesis tasks. Importantly, our re-
sults support the use of non-deterministic planing systems
for solving composition problems in an off-the-shelf manner.
We then empirically evaluate three state-of-the-art synthesis
systems (a domain-independent automated planner and two
game solvers based on model checking techniques) on vari-
ous non-trivial composition instances. Our experiments show
that while behavior composition is EXPTIME-complete, the
current technology is already able to handle instances of sig-
nificant complexity. Our work is, as far as we know, the first
serious experimental work on behavior composition.

Introduction
The problem of composing (i.e., coordinating) a collection
of available behavior modules to implement a desired com-
plex, but non-existent, target behavior module has recently
received substantial attention in the literature. The prob-
lem, in its various forms, has been studied in many areas
of Computer Science, including (web) services (Berardi et
al. 2008; Balbiani, Cheikh, and Feuillade 2008), AI reason-
ing about action (Sardina, Patrizi, and De Giacomo 2008;
Stroeder and Pagnucco 2009; De Giacomo, Patrizi, and Sar-
dina 2013), verification (Lustig and Vardi 2009), and even
robotics (Bordignon et al. 2007). From a general AI per-
spective, a behavior refers to the abstract operational model
of a device or program, and is generally represented as a
non-deterministic transition system. In a smart building set-
ting, for instance, one may look for a so-called controller
that is able to coordinate the execution of a set of devices
installed in a house—e.g., automatic blinds and lights, audio
and screen devices, video cameras, etc.—such that it appears
as if a complex entertainment system was actually being run.
A solution to the problem is called a composition.

∗We acknowledge the support of the Australian Research Coun-
cil under a Discovery Project (grant DP120100332).
Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The literature in the topic has shown how the compo-
sition problem can be effectively solved—that is how to
check for composition existence—by relying on various
techniques, such as PDL satisfiability (De Giacomo and Sar-
dina 2007), direct search (Stroeder and Pagnucco 2009),
LTL/ATL synthesis (Lustig and Vardi 2009; De Giacomo
and Felli 2010), and computation of special kind of sim-
ulation relations (Sardina, Patrizi, and De Giacomo 2008;
Berardi et al. 2008). However, all such proposals have re-
mained, so far, at the “proof-of-concept” level and hence no
thorough empirical evaluation has been performed to date.

In this paper, we present what is, up to our knowledge,
the first in-depth experimental work on behavior composi-
tion that provides insights on the practical limits of some of
the state-of-the-art synthesis techniques available to date. In
particular, we shall focus on two competitive approaches to
synthesis, namely, automated planning and model checking
based game solvers. The contributions are twofold.

First, to be able to resort to planning technology, we
prove formally Sardina, Patrizi, and De Giacomo (2008)’s
observation that the composition problem—being a synthe-
sis tasks—is closely related to planning under incomplete
information (Daniele, Traverso, and Vardi 2000). More
concretely, we show that solving a composition problem
amounts to finding a strong-cyclic plan for a special fully-
observable non-deterministic (FOND) planning problem. In
doing so, a major challenge arises: the composition prob-
lem is intrinsically a generalized type of planning for safety-
goals of the form “maintain φ,” (De Giacomo and Felli
2010; De Giacomo, Patrizi, and Sardina 2013), whereas
most of the work on non-deterministic planning has consid-
ered reachability goals, that is, goals of the form “achieve
φ.” Furthermore, such safety-goals will generally be evalu-
ated over infinite runs of the underlying system, as the tar-
get module may encode control processes that may repeat
infinitely (e.g., elevator controllers, smart house embedded
systems, etc). To address this mismatch, we rely on the re-
cent work of Patrizi et al. (2011), who proposed a novel tech-
nique that allows a classical planner to dynamically define a
reachability goal whose achievement guarantees the possi-
bility of looping over a finite plan infinitely many times. By
adapting such technique to our non-deterministic setting, our
encoding enables the use of existing planners off-the-shelf,
that is, without requiring any modification or extension.

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

180

The second contribution of this paper involves an em-
pirical evaluation of three existing state-of-the-art systems
that are able to synthesize such type of non-classical plans,
namely, one automatic FOND planner and two model check-
ing based game solver systems. In particular, we evaluate
our encoding proposal using state-of-the-art FOND plan-
ner PRP (Muise, McIlraith, and Beck 2012) and compare it
with two competitive game solver verification frameworks,
namely, McMAS (Lomuscio, Qu, and Raimondi 2009) and
NuGaT (based on NuSMV (Cimatti et al. 2000)),1 on various
non-trivial classes of composition instances. Interestingly,
the results obtained suggest that, despite the high computa-
tional complexity of the task at hand, the existing tools can
already handle realistically sized composition instances.

The rest of the paper is organized as follows. In the next
section, we provide a quick overview on behavior composi-
tion and planning under fully-observable non-deterministic
domains. After that, we show how to encode a behavior
composition problem into a FOND planning problem and
prove the soundness and completeness of such encoding. We
then report on our empirical evaluation of three state-of-the-
art synthesis tools in five different classes of composition
instances. We close the paper with a discussion of our find-
ings and future work.

Preliminaries
The Behavior Composition Framework
Informally, the composition task involves the automatic syn-
thesis of a controller that is able to suitably delegate each
action request, compatible with a desired virtual target be-
havior module, to one of the available partially control-
lable behavior modules. All behaviors are modelled using
finite, possibly non-deterministic, transition systems. We
follow the framework in (De Giacomo and Sardina 2007;
Stroeder and Pagnucco 2009; De Giacomo, Patrizi, and Sar-
dina 2013), except that we shall ignore, wlog, the shared en-
vironment space where behaviors are meant to execute and
interact with.

A behavior stands for the operational model of a program
or device. For example, in a smart house scenario, behav-
iors can represent video cameras, automatic blinds, vacuum
cleaners, or web browsers. Similarly, in a factory setting,
a behavior may stand for a gripper arm, a paint machine, a
moving robot, or a laser device. In general, behaviors pro-
vide, step by step, the user a set of actions that it can perform
(relative to its specification). At each step, the behavior can
be instructed to execute one of the legal actions, causing the
behavior to transition to a successor state, and thereby pro-
viding a new set of applicable actions.

Formally, a behavior is a tuple B = 〈B,A, b0, %〉, where:

• B is the finite set of behavior’s states;

• A is a set of actions;

• b0 ∈ B is the initial state;

1http://es.fbk.eu/tools/nugat/

a0 a1

a2

a3

movie
game

web

stop

web
reset

GAME DEVICE BG

b0 b1 b2
music
movie

radio

stop

AUDIO DEVICE BA

d0 d1

lightOn

lightOff
LIGHT DEVICE BL

t0 t1

t2

t4 t5t3
lightOn

movie game

stop

lightOff

music radio

TARGET TENT

Figure 1: A smart house with three available behaviors.

• % ⊆ B×A×B is the transition relation, where 〈b, a, b′〉 ∈
%, or b a−→ b′ in B, denotes that action a executed in state
b may lead the behavior to successor state b′.
Note that we allow behaviors to be non-deterministic: one

cannot know beforehand what actions will be available to
execute after an action is performed, as the next set of appli-
cable actions would depend on the successor state in which
the behavior happens to be in. Hence, we say that non-
deterministic behaviors are only partially controllable. A
deterministic behavior is one where there is no state b ∈ B
and action a ∈ A for which there exist two transitions
b

a−→ b′ and b a−→ b′′ in B with b′ 6= b′′. A determinis-
tic behavior is fully controllable.

An system is a collection of behaviors at disposal (e.g., all
devices installed in a smart house, aircraft, or factory) Tech-
nically, an available system is a tuple S = 〈B1, . . . ,Bn〉,
where Bi = 〈Bi,Ai, bi0, %i〉, for i ∈ {1, . . . , n}, is a be-
havior, called an available behavior in the system. Finally,
a target behavior T = 〈T,AT , t0, %T 〉 is a deterministic be-
havior that represents the desired—though not available—
functionality, that is, the module that one would like to have
but is not readily accessible. For the sake of legibility and
easier notation, we shall assume, wlog, that targets are non-
blocking that is, they do not have any terminating state with
no outgoing transition.2

Figure 1 depicts a universal home entertainment system
in a smart house scenario. Target TENT encapsulates the
desired functionality, which involves first switching on the
lights when entering the room, then providing various enter-
tainment options (e.g., listening to music, watching a movie,
playing a video game, etc.), and finally stopping active mod-
ules and switching off the lights. There are three available
devices installed in the house that can be used to bring about
such desired behavior, namely, a game device BG, an audio
deviceBA, and a lightBL. Note that action web in the device
BG is non-deterministic: if the device happens to evolve to
state a3, then the device needs to be reset to start function-
ing again. It can be shown that the desired target module

2As customary, e.g., in LTL verification, this can be easily
achieved by introducing “fake” loop transitions.

181

TENT can indeed be fully “realized,” that is, implemented,
by intelligently coordinating the three available devices.

Informally, the behavior composition task is stated as fol-
lows: Given a system S and a target behavior T , is it pos-
sible to (partially) control the available behaviors in S in a
step-by-step manner—by instructing them on which action
to execute next and observing, afterwards, the outcome in
the behavior used—so as to “realize” the desired target be-
havior? In other words, by adequately controlling the sys-
tem, it appears as if one was actually executing the target
module.

To define a solution to the behavior composition problem,
we consider the notion of a controller as a component able to
activate, stop, and resume any of the available behaviors, and
to instruct them to execute an (allowed) action. Note that the
controller has full observability on the available behaviors.
Formally, a controller for target T on system S is a partial
function C : HS ×A 7→ {1, . . . , n}, which, given a history
h ∈ HS of the available system (where HS is, basically,
the set of all finite traces of the asynchronous product of
the available behaviors) and a requested (target-compatible)
action, returns the index of an available behavior to which
the action in question is delegated for execution.

Intuitively, a controller (fully) realizes a target behavior if
for every trace (i.e., run) of the target, at every step, the con-
troller returns the index of an available behavior that can per-
form the requested action. Formally, one first defines when
a controller C realizes a trace of the target T . Though not
required for this paper, the reader is referred to (De Giacomo
and Sardina 2007) for details on how to formally character-
ize trace realization. Then, a controller C realizes the target
behavior T iff it realizes all its traces. In that case, C is said
to be an exact composition for target T on system S.

Fully Observable Non–Deterministic Planning
Let F be a set of propositions and LF = F ∪ {¬p | p ∈ F}
the set of literals over F . The complement of a literal l is
denoted by l; this notation trivially extends to sets of literals.
A state s is a consistent subset of LF such that |s| = |F |.

A fully-observable non-deterministic (FOND) planning
problem is a tuple P = 〈F, I,A,G〉, where F is a set of
propositional atoms (i.e., fluents), I is a conjunction of flu-
ents p ∈ F which are true initially, and G is a (consistent)
conjunction of literals l ∈ LF which are required to be
made true by selecting actions a ∈ A (Daniele, Traverso,
and Vardi 2000). An action a ∈ A is a pair 〈Prea,Eff a〉
where Prea is a DNF formula defined over LF and Eff a is a
conjunction of conditional (non-deterministic) effects (An-
derson, Smith, and Weld 1998) of the form C → E, where
C is a conjunction of literals fromLF andE = e1⊕· · ·⊕en,
where n ≥ 1 and each ei is a conjunction over LF , rep-
resenting all the possible (exclusive) effects of the action
when C holds true—exactly one-of the n effects must ap-
ply (Bonet and Givan 2005). When n = 1, we say that
action a is deterministic; otherwise, a is non-deterministic.
For legibility, we compactly denote conditional effects of the
form > → E by just E.

The semantics of the a FOND problem P as above

is given by a non-deterministic state model ΠP =
〈S, s0, SG, A,A(s), δ(a, s)〉, where:

• S ⊆ 2F is the finite set of states of ΠP ;

• s0 ∈ S is the (single) initial state corresponding exactly
to I , such that s0 |= I

∧
p∈ICWA

¬p, where ICWA is the set
of propositions not in I, that is, ICWA = {p ∈ F | I 6|= p}.
Note the closed world semantics in defining s0;

• SG = {s ∈ S | s |= G} is the set of goal states;

• A(s) = {a | s |= Prea} is the applicability relation stat-
ing what actions are feasible (for execution) in state s; and

• δ(a, s) = {s′ | for all C →
⊕n

`=1 e` ∈ Eff a s.t. s |=C,
there is i ≤ n s.t. s′ = (s \ {l | l ∈ ei}) ∪ {l | l ∈ ei}} is
the non-deterministic transition function denoting all pos-
sible states s′ resulting from executing action a on state s.
Basically, for every conditional effect of the action when
condition C holds, exactly one-of the n possible effects
ensue.

Solutions to FOND planning problems are policies π :
S 7→ A, with the intended meaning that action π(s) is to
be performed in state s, that are guaranteed to transform the
initial state s0 into some goal state sg ∈ SG. A policy is
closed w.r.t. a state s if and only if the set of reachable states
from s using π, denoted Sπ(s), is a subset of the domain of
π, that is, Sπ(s) ⊆ Dom(π). A policy is deemed proper
w.r.t. a state s if goal states can be reached using π from all
π-reachable states s′ ∈ Sπ(s). A policy π is acyclic if for
all possible executions τ = s0s1s2 · · · of π from s0, it holds
that si 6= sj , for any i 6= j.

Finally, a policy π is a valid solution for a FOND plan-
ning problem iff π is both closed and proper w.r.t. the initial
state s0. In turn, valid policies π can be further classified
as either strong or strong–cyclic plans (Daniele, Traverso,
and Vardi 2000), depending on whether π is acyclic or not,
respectively.

Compiling Behavior Composition into
Non–Deterministic Planning

The link between behavior composition and planning is not
a novel idea. In fact, it was first suggested by Sardina, Pa-
trizi, and De Giacomo (2008), noting that the task in both
problems consists in deriving a control function. In plan-
ning, this control function maps world states onto actions,
while in behavior composition, the control function maps
system histories and actions onto components that actually
execute actions. In this section, we formalize this connec-
tion by proposing a scheme to map behavior composition
problems into FOND planning tasks.

From now on, let S = 〈B1, . . . ,Bn〉 be an available sys-
tem, where Bi = 〈Bi,Ai, bi0, %i〉, for i ∈ {1, . . . , n}, and
T = 〈T,AT , t0, %T 〉 be a target module. We define the non-
deterministic planning domain D〈S,T 〉 = 〈F, I,A〉 as fol-
lows. The set of F is built from the following fluents:

• tgt(t), for each t ∈ T , denoting that target T is in state t;
• beh(i, b), for each i ∈ {1, . . . , n} and b ∈ Bi, denoting

that behavior Bi is in state b;

182

• req(a) and srv(a), for each a ∈ AT , denoting that action
a has been requested and served, respectively;

• ready, denoting that the target T is ready to issue a new
action request.
The initial state I encodes the starting configuration of all

available behaviors as well as the target module:

I = ready ∧ tgt(t0) ∧
∧

1≤i≤n

beh(i, bi0).

The set of actions A is made up of three distinguished
action schemas modeling the dynamics of S and T and
designed to execute in a fixed sequence as follows. First,
the target module issues a valid action request (via action
generate(t)). Then, a delegation of such action to some be-
havior is performed (via action delegate(i, a)). Finally, the
target evolves and becomes ready to issue a new request (via
action progress(t, a)). We formally define these next.

Action generate(t) non-deterministically selects what ac-
tion is requested next when the target is in state t. To issue
a request from state t, the target needs to be “ready” and
in state t. The effect states that one-of the possible request
from state twill ensue and the target is not “ready” anymore:

generate(t) = 〈ready ∧ tgt(t),
⊕

a∈R(T ,t)

(req(a) ∧ ¬ready)〉,

where R(B, s) = {a | s a−→ s′ in B} stands for the actions
that can be performed by behavior B in state s. Note the
non-determinism on which action is selected.

To delegate an action to a behavior Bi, the action has to
be “pending” (that is, currently requested) and the behavior
in question able to perform it from its current state. When
that happens, the action is considered just “served” (that is,
fulfilled) and not requested anymore, and the corresponding
behavior evolved as per its transition model. Formally, ac-
tion delegate(i, a) = 〈Predel,Eff del〉, where:

Predel =
∨

(b,a,b′)∈%i(beh(i, b) ∧ req(a));

Eff del = srv(a) ∧ ¬req(a) ∧
⊕

(b,a,b′)∈%i

trans(b, a, b′),

where trans(b, a, b′) .
= (beh(i, b′)∧¬beh(i, b)) when b 6= b′,

and trans(b, a, b′) .
= beh(i, b), otherwise.

The final step involves updating the target module via the
execution of action progress(t, a), defined for each t ∈ T
and a ∈ R(T , t) as follows:

progress(t, a) =

〈srv(a) ∧ tgt(t), ready ∧ ¬srv(a) ∧
⊕

(t,a,t′)∈%T

trans(t, a, t′)〉,

where trans(t, a, t′) .
= (tgt(t′) ∧ ¬tgt(t)) when t 6= t′, and

trans(t, a, t′) .
= tgt(t), otherwise.

Looking at the preconditions of the three actions, it is easy
to see that execution of the domain will involve sequences of
the form generate(t) ·delegate(i, a) ·progress(t, a), express-
ing a complete action-request and delegation cycle.

While the above encoding of the dynamics behind a be-
havior composition problem is relatively straightforward

and intuitive, it is still not expressive enough to support the
synthesis of composition controllers (i.e., policies) for tar-
get behaviors containing loops. The fact is that when it
comes to behavior composition, one does not plan for an
achievement goal, as standard in FOND planning, but for a
safety property: “always satisfy request.” Nonetheless, com-
puting finite plans which satisfy certain safety constraints
using classical planners has received considerable atten-
tion in the last years (Baier, Bacchus, and McIlraith 2009;
Bauer and Haslum 2010). However, none of these ap-
proaches deal with the general problem of computing finite
plans that are meant to be executed infinitely many times, as
required in many control scenarios (e.g., elevator controllers,
smart houses, etc). It is precisely those type of plans that are
required in order to handle target modules containing loops
that may yield infinite execution runs.

To be able to deal with safety goals over infinite runs
of the target module, we resort to the recent novel tech-
nique proposed in (Patrizi et al. 2011) and adapt it for our
non-deterministic safety-goal synthesis scenario. Roughly
speaking, the idea is to find a classical finite plan encoding a
so-called lasso. Namely, a sequence of actions π1, mapping
the initial state of a system into some state s, is followed by
a second action sequence π2 that maps s into itself, which
is assumed to be repeated infinitely often. Their technique,
then, amounts to non-deterministically selecting the current
state of the system as “start looping” configuration, and then
trying to reach the exact same configuration a second time.
This allows the authors to synthesize finite plans for tempo-
rally extended goals over infinite runs using classical plan-
ners. In our case, we are dealing with a non-deterministic
domain. Nonetheless, the same idea generalizes to the set of
executions of a strong cyclic plan π, where there may be a
(possibly empty) prefix of the execution of π achieving the
state s where the loop starts, and subsequent actions in the
execution lead to a terminal state that can be mapped into s.

So, we further extend D〈S,T 〉 above with auxiliary flu-
ents and actions and obtain the following non-deterministic
planning problem P〈S,T 〉 = 〈F ′, I ′, A′, G〉. First, let F̂ =
{beh(i, b) | i ∈ {1, . . . , n}, b ∈ Bi} ∪ {tgt(t) | t ∈ T} be
the subset of F containing all the fluents used to keep track
of the state of all behaviors. The set of fluents is defined as:

F ′ = F ∪{rec(p), clsd(p) | p ∈ F̂}∪{Linit, Lend, canEnd},

where rec(p) and clsd(p)—p is recorded and closed—
are (auxiliary) fluents that will be used by the planner to
“record” the underlying composition configuration to which
we aim to return after executing a lasso-type plan/policy. In
turn, fluents Linit and Lend denote that the (search for the)
lasso loop has already been initiated (and is yet active) and
completed, respectively, whereas fluent canEnd is used to
rule out empty lasso-loops with no action delegation.

To better understand the new fluents, we next explain
the two new actions—loop and end—used to “guess” the
lasso in the policy. The action loop = 〈Preloop,Eff loop〉 is
used to commit to a particular configuration of 〈S, T 〉 as the

183

achievement goal to be bring about—the start of the lasso:

Preloop = ¬Linit ∧ ready;

Eff loop =Linit∧¬canEnd ∧
∧
p∈F̂

[p→ (rec(p) ∧ ¬clsd(p))].

That is, a loop can be “started” if it has not yet started and
the overall system is in a “ready” state where a new action-
request and delegation cycle is about to start. The effects of
loop includes “recording” each true fluent p into rec(p) and
marking them as not “closed”—they need to be eventually
re-instantiated. In addition, it makes Linit true to signal the
start of the loop synthesis and canEnd false to avoid “empty”
loops (see end action next).

Second, the action end = 〈Preend,Eff end〉 is used to mark,
or more precisely “guess,” the end of the lasso loop. The
loop can be ended if it has already started and is legal to end
it. The action causes the closure of every proposition that
was previously recorded—via a loop action—and has been
re-instantiated:

Preend = Linit ∧ canEnd;

Eff end =¬ready ∧ ¬Linit ∧ Lend ∧
∧
p∈F̂

p ∧ rec(p)→ clsd(p).

To be able to guess the end of the lasso, at least one action-
request and delegation cycle must ensue after the start of
the lasso loop, that is, we do not allow end to follow right
after loop as this will imply an “empty” loop. To achieve
this, we just add proposition canEnd to the effects of action
progress(t, a), and define A′ = A ∪ {loop, end}

The initial state of P〈S,T 〉 extends that of D〈S,T 〉 to ac-
count for the fact that no commitment has been made on
any particular configuration, that is, I ′ = I ∧

∧
p∈F̂ clsd(p).

Observe that under I ′, propositions canEnd, Linit, Lend, and
rec(p), for all p ∈ FS , do not hold initially.

Finally, the goal encodes the requirement of being in a
state where the lasso loop has ended and every proposition
previously recorded has been re-instantiated (i.e., they are
not “open” anymore). Formally:

G = Lend ∧
∧
p∈F̂

clsd(p).

Note that due to the encoding, the fact that all opened flu-
ents have been closed is enough to guarantee that the state
of the behavior composition domain has come back to that
where the loop action was executed before. This is because
the propositions encoding the state of each behavior are mu-
tually exclusive. Also, observe that once action end is exe-
cuted, no more actions are applicable. Therefore, end results
in a non-goal terminal state, whenever the state where action
end is done cannot be mapped into the state where loop was
done.

The main result shows that there is a one-to-one relation-
ship between strong cyclic solution plans π for P〈S,T 〉 and
controllers C that are an composition solutions for target T
on available system S:
Theorem 1. Let 〈S, T 〉 be a behavior composition problem
instance and P〈S,T 〉 the resulting FOND planning problem

obtained from the above encoding. Then, there exists a com-
position solution C for 〈S, T 〉 if and only if there exists a
strong cyclic plan solution π for P〈S,T 〉.

Proof sketch. We start by recalling that a controller C is
a composition solution for T on system S if for all the
traces of T , C selects, at each step, a behavior Bi able
to execute the corresponding requested action. We then
observe that there exists an exact correspondence between
steps s

a,i−→ s′ in histories h ∈ HS of the enacted system
ES (De Giacomo, Patrizi, and Sardina 2013) and the start
and end planning states in a sequence of planning actions
generate(t) · delegate(i, a) · progress(t, a). Next, if a strong
cyclic solution plan π exists for P〈S,T 〉, then the paths in
the execution structure K (Cimatti et al. 2003) induced by π
correspond to the histories h ofHS , and moreover the valu-
ation of F̂ in terminal P〈S,T 〉 states of K encodes some pre-
vious (composition) state in h, yielding thus the lasso loop.
Finally, we demonstrate how all infinite traces of T can be
(finitely) accounted by putting together these “looping” his-
tories h encoded in K.

We observe that π is encoding a memory-less controller
C, which are known to suffice for behavior composition
problems (De Giacomo, Patrizi, and Sardina 2013).

Strong cyclic plans formalize the notion of acceptable
“trial and error” strategies. Such strategies are encoded by
plans whose partial executions, possibly containing an un-
determined number of cycles of unbounded length, can al-
ways be extended to reach the goal (Cimatti et al. 2003).
Nonetheless, strong cyclic policies can yield executions that
loop forever when an action always fails to produce some of
its outcomes. There are two actions with non-deterministic
outcomes in our compilation, namely, generate(t) and
delegate(i, a). Built into the compilation, yet not on the def-
inition of behavior composition problems, is the assumption
that both of these actions are “fair,” that is, all of their out-
comes eventually occur. This assumption is needed in order
to produce controllers that can account for any (legal) target
request and available behaviors’ evolutions.

Importantly, our compilation scheme accounts for targets
with any number of nested loops, as strong cyclic plans al-
low executions to feature an arbitrary number of cycles of
any length. For simplicity in the presentation, it does not
however account for targets T with finite traces, for instance,
when T is a chain. Nonetheless, it is straightforward to ac-
count for these cases, by adding dummy no-op looping re-
quests, as is standard in verification.

We close this section by noting that the encoding de-
veloped above is optimal w.r.t. computational complexity.
Since FOND planning is EXP-complete and the encoding is
polynomial on the size of the composition problem, it fol-
lows that checking the existence of a solution for P〈S,T 〉 is
EXP-complete, thus matching the complexity of the behav-
ior composition (De Giacomo and Sardina 2007).

184

0

a

B1

0 1

a

a

B2

0 1

2

a, b

c

db

c
B3

0

1

...

4

20

...

23

· · ·
a

c

b

e

a

d

ac

T1

0

1

2

...

5

9

...

12

· · ·

...

8

...

15

a

b
c

d

e

a

b

c

d

b

d

b a

b

e

T2

Figure 2: Structure of behaviors used in the benchmarks.
Actions requested by targets and implemented by behaviors
are denoted as lower case letters.

Experimental Evaluation
In order to assess the performance of the state-of-the-art
FOND planners on composition planning tasks P〈S,T 〉 we
have designed five different synthetic benchmarks,3 identi-
fied with the letters A, C, AU , R1 and R2. Each benchmark
contains behavior composition instances made up of behav-
ior and target modules with specific structural features, as
shown in Figure 2:

A & C Available behaviors of type B1 and targets of type
T1 and T2, respectively. Both solvable and unsolvable in-
stances are generated.

AU Like benchmark A, but for every behavior of type B1,
we included several behaviors of type B2, as “noise.”
Problems in this benchmark are all solvable and account
for scenarios where the composition solver has to deal
with a mix of reliable behaviors (B1) and unreliable be-
haviors (B2). Note that type B2 behaviors may become
useless at any point, if they evolve to state 1.

R1 & R2 Available (deterministic) behaviors are generated
randomly with up to five states, resulting in modules like
B3 with intricate structures, and target modules of type T1
and T2, respectively.

Benchmarks A, C, R1 and R2 feature between 10 and
60 available behaviors (i.e., devices), while we allowed for
much larger (up to 120) set of behaviors in benchmark AU .

3Unfortunately, as far as we know, there are no readily available
benchmarks for behavior composition.

As such, the number of behaviors is large enough to pre-
clude any manual composition. See that the various exam-
ples in the literature, e.g., (De Giacomo and Sardina 2007;
Stroeder and Pagnucco 2009; Yadav and Sardina 2012),
never contain more than three available behaviors and are
still not trivial to solve manually. When it comes to the struc-
ture of behaviors, target modules of type T1 and T2 capture,
intuitively, sets and trees of (repeating) processes that the
target user may request. In turn, available behaviors B1 and
B2 stand for one action actuators, while behaviors of type
B3 with up to five states are able to model simple though
concrete devices like switches, automatic blinds and lights,
vacuum cleaners, and microwaves, among others. In addi-
tion, in benchmarks R1 and R2, the various B3 type devices
may overlap in their functionalities (i.e., actions). One could
then argue that the number and structures of behaviors used
in our benchmarks are enough to capture some real-world
settings, such as smart house rooms equipped with a few
dozen (simple) devices.

The structure of behaviors in benchmarks A, C and AU
was deliberately made simple to highlight the power of the
domain-independent strategy at the heart of state-of-the-art
FOND planners (Yoon, Fern, and Givan 2007). This strategy
amounts to first finding a weak plan (Cimatti et al. 2003)
for P〈S,T 〉, by using a classical planner on an automatically
derived deterministic relaxation of P〈S,T 〉, and then using
such plan to guide the search for strong cyclic plans over the
original FOND problem P〈S,T 〉. Concretely, actions that are
not part of a weak plan are ruled out, as they will never be
part of any strong cyclic plan. In benchmarks R1 and R2,
the structure of the problems generated is more complex,
leading to a greater variety of interaction between behaviors’
internal states and target requests.

We have evaluated4 the performance of state-of-the-art
FOND planner PRP over the five benchmarks described
above. We chose PRP over other FOND planners such as
FIP (Fu et al. 2011), since PRP has been shown to clearly
outperform FIP over the International Planning Competi-
tion FOND benchmark (Muise, McIlraith, and Beck 2012).
Behavior Composition problems can be also mapped into
safety games (De Giacomo and Felli 2010), which are then
solved with game solvers typically using model checking
techniques. In order to get a better picture of the feasibil-
ity of our mapping of behavior composition problems into
FOND problems, we compared PRP performance with that
of two state-of-the-art verification frameworks, McMAS (Lo-
muscio, Qu, and Raimondi 2009) and NuGaT, a two-player
safety game solver implemented on top of NuSMV (Cimatti
et al. 2000). We did not modify in any way the source code
of any of the software systems used, and relied on the de-
fault options suggested by the software authors, with the ex-
ception of NuGaT, where we found that allowing it to use
dynamic variable ordering during BDD construction had a
critical effect on its performance performance (see discus-
sion below).

4Experiments were run on a dual-processor Intel E8500,
3.2GHz CPUs, 8 GB of RAM, with processes being allowed to run
for a max of 30 minutes and use up to 2 GB of physical memory.

185

NuGaT McMAS PRP
#I #S #T AT #S #T AT #S #T #M AT

A 144 144 0 0.13 90 54 112 144 0 0 0.16
C 252 252 0 0.12 171 81 85 252 0 0 0.6
AU 192 192 0 11.9 12 180 197.4 192 0 0 0.9
R1 56 31 25 98.75 4 52 195.5 18 7 31 95
R2 55 29 26 218 3 52 1104 10 8 37 63.3

Table 1: Performance of NuGaT, McMAS and PRP on the
proposed set of benchmarks (see details in the text).

The results of our experimental evaluation are summarize
in Table 1. For each of the benchmarks, we report the num-
ber of composition instances (column #I), the number of
problems for which each solver finished and did not finish
its execution within the allotted time (columns #S and #T,
resp.), and, lastly, the average run-time in seconds reported
for each solver (column AT). For PRP, we also report the
number of problems that exhausted the memory limit (col-
umn #M); neither NuGaT nor McMAS ever exhausted the
available memory resources. The proportion of problems
in benchmarks A and C for which there does not exist a
composition solution is about 50% (65 out of 144 in bench-
mark A; 135 out of 252 in benchmark C). In these bench-
marks, there was no significant difference between the aver-
age times for problems which had a solution and those which
did not.

We note the remarkable performance of both NuGaT and
PRP on benchmarkA: both solve all the problems within 30
minutes and show similar run-times. In comparison, McMAS
can only solve 60% of the problems in the benchmark,
with run-times several orders of magnitude bigger than both
NuGaT and PRP. The performance of McMAS is indeed in
line with previously observations on the performance of ver-
ification tools on classical planning domains (Patrizi et al.
2011), or the performance of FOND planners with embed-
ded classical planners such as NDP (Kuter and Nau 2008) or
FIP (Fu et al. 2011) compared to FOND planners that rely
on a verification framework like MBP (Cimatti et al. 2003).
Indeed, the size of the OBDD formula reported by McMAS,
when it solves a problem, are already in the billions of nodes
for |S| = 30.

The outstanding performance of NuGaT is explained by
the usage of dynamic variable ordering on the BDD formu-
las denoting set of states of the fully combined system S×T
when performing the strong reachability analysis required to
solve a safety-game. While the construction of BDD using
dynamic variable ordering may be slower, their size is also
reduced, and on the particular class of formulas conveyed
by the problems in our benchmarks, the speedup of the
fixed-point computation performed by NuGaT fully amor-
tizes the overhead associated with the dynamic variable or-
dering scheme. When we ran NuGaT over this same bench-
mark without enabling dynamic variable ordering, NuGaT
performance was similar to that of McMAS.

PRP outperforms NuGaT on benchmark AU . In Figure 3,
we can see that as |S| grows, PRP advantage over NuGaT
becomes apparent, finding solutions up to two order of mag-

0 50 100 150 200 250 300 350

10−1

100

101

102

No. of available behaviors (i.e., |S|)

Ti
m

e
(s

ec
s.

)

NuGaT
PRP

Figure 3: Run-time comparison on benchmark AU . Each
data point is the average of the run-times for all 12 problems
with the same number of available behaviors.

nitudes faster than NuGaT. In comparison, McMAS is only
able to handle the smallest set of problems in the benchmark,
which feature 15 behavior modules.

On the other hand, PRP performance degrades on bench-
marks C, R1, and R2. In benchmark C, both NuGaT and
PRP are able to solve all the problems within 30 minutes
but, as shown in Figure 4, PRP becomes orders of magni-
tude slower than NuGaT as the level of non-determinism in
the planning task P〈S,T 〉 increases. When the target module
T can request several actions in each target state, as is indeed
the case with target type T2 depicted in Figure 2, the num-
ber of possible executions of a policy π becomes bounded
by O(bd), where b is the maximum number of possible re-
quests per target state and d the length of the maximal loop
induced by T . The strong cyclic plans for planning tasks
in benchmark A and AU have, in contrast, a linear number
of executions. This is made evident in benchmarks R1 and
R2, where for smaller problems—in terms of number of flu-
ents and actions—than the largest on benchmark AU , PRP
is either running out of time or, interestingly, out of memory
well before the 30 minutes time limit. When increasing the
time allowed from 30 minutes to 4 hours we observe that
for benchmark R1, 2 more tasks are solved by PRP, run-
ning out of memory in 8 additional tasks. On benchmark
R2, the effect of increasing the time limit similarly removes
the time outs, PRP solving 5 additional tasks, and running
out of memory in 3 more tasks. NuGaT performance profile
is not affected by the increase in CPU time on benchmarks
R1, yet it solves 5 more tasks onR2. Although NuGaT lacks
the heuristic machinery that guides PRP policy search so ef-
fectively in benchmarks A, C and AU , it still shows a robust
performance profile. At the same time, when the structure
of the behavior composition problems is not exploited by
PRP domain-independent heuristics, the blind search per-
formed by NuGaT on a more succint search space pays off,
and NuGaT performance is clearly better than that of PRP.

186

5 10 15 20 25 30

10−1

100

No. of target traces

Ti
m

e
(s

ec
s.

)
NuGaT

PRP

Figure 4: Runtime comparison over benchmark C. Each
data point is the average of the runtimes for all problems
with the same number of possible target traces.

Conclusions
In this paper we have provided, as far as we are aware,
the first empirical analysis on solving behavior composi-
tion problems with state-of-the-art synthesis techniques and
tools. In particular, we have used automated planning and
model checking based techniques to synthesize controllers
able to bring about a (virtual) target desired module by
suitably coordinating a set of available modules. To that
end, we first showed how behavior composition can be for-
mally related to finding strong-cyclic solutions for a non-
deterministic planning problem, thus finally providing the
link between behavior composition and planning. Then, we
performed an empirical evaluation of three synthesis tools—
one FOND planner and two game solvers—to solve be-
havior composition instances over five different type of in-
stances.

Our findings suggest that despite the high computational
complexity of the problem at hand, current tools can han-
dle non-trivial instances that are arguably of sizes expected
in many real-world settings, such as smart houses, web-
services, or manufacturing environments. For example, a
couple of dozen behaviors with three to five states would be
enough to account for smart spaces with a plethora of sim-
ple devices like automatic lights and blinds, video cameras,
TVs, vacuum cleaners, among others.

When it comes to reducing behavior composition to a
planning task, our encoding relies on two main ingredients.
First, we transform a safety (i.e., maintenance) goal of the
form “always delegate pending requests”, or equivalently
“never fail delegating requests,” into a standard reachabil-
ity goal compatible with the planning paradigm. It should
be noted that computing finite plans which satisfy certain
safety constraints using classical planners has in fact re-
ceived considerable attention in the last years (Mattmüller
and Rintanen 2007; Baier, Bacchus, and McIlraith 2009;
Bauer and Haslum 2010). However, none of these ap-

proaches deal with the general problem of computing finite
plans that are meant to be executed infinitely many times,
as required in many control scenarios (e.g., elevator con-
trollers, web-services, smart houses, etc.). This is indeed
the case with behavior composition when the target mod-
ule contains loops encoding non-terminating processes—
sequences of requests are to be served an unbounded, or
possibly infinite, number of times. In order to address this,
the second ingredient of our encoding involves adapting Pa-
trizi et al. (2011)’s novel technique so as to force poli-
cies to generate delegation executions that always include
lasso loops (over the composition domain state model), thus
allowing the infinite repetition of finite delegation strate-
gies. We note that the work in (Pistore and Traverso 2001;
Bertoli, Pistore, and Traverso 2010) addresses this as well,
by integrating CTL model checking facilities into the pio-
neering planner MBP. We argue, though, that while CTL
does indeed capture well our requirements, it is actually far
more expressive than strictly necessary. More importantly,
we are interested here in using existing FOND planning sys-
tems without modifications or extensions of any kind.

The results reported in this paper demonstrate that using
state-of-the-art FOND planners off-the-shelf is an effective
approach to solve behavior composition instances. However,
it is clear that in order to outperform systems such as NuGaT,
based on model checking technology, one needs to do sig-
nificant changes into existing planners. First and simplest,
one needs to change the classical planner embedded in PRP
in order to strengthen the planning heuristic. Recent work
in classical planning (Keyder, Hoffman, and Haslum 2012)
shows how to obtain very strong non-admissible heuristics
by keeping track a suitable set of critical conjunctions while
approximating the delete-relaxation (no other components
of the planner, such as the search, are modified). While
identifying this set of conjunctions could be difficult in gen-
eral, it is fairly easy, in our context, to identify good candi-
dates for such conjunctions as part of the process of building
composition planning tasks P〈S,T 〉. The empirical results
also make us curious about NuGaT’s fixed-point computa-
tion algorithm and compressed representation of the non-
deterministic state model underlying 〈S, T 〉, so as to wonder
whether state-of-the-art planners can be pushed forward by
looking at model checking based synthesis techniques. We
plan to pursue these ideas in our future work.

References
Anderson, C.; Smith, D.; and Weld, D. 1998. Conditional
effects in graphplan. In Proc. of the International Confer-
ence on AI Planning & Scheduling (AIPS), 44–53.
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences. Artificial Intelligence 1(173):593–618.
Balbiani, P.; Cheikh, F.; and Feuillade, G. 2008. Composi-
tion of interactive web services based on controller synthe-
sis. In Proc. of the IEEE Congress on Services (SERVICES),
521–528.
Bauer, A., and Haslum, P. 2010. LTL goal specifications

187

revisited. In Proc. of the European Conference in Artificial
Intelligence (ECAI), 881–886.
Berardi, D.; Cheikh, F.; De Giacomo, G.; and Patrizi, F.
2008. Automatic service composition via simulation. In-
ternational Journal of Foundations of Computer Science
19(2):429–452.
Bertoli, P.; Pistore, M.; and Traverso, P. 2010. Automated
composition of web services via planning in asynchronous
domains. Artificial Intelligence Journal 174(3-4):316–361.
Bonet, B., and Givan, R. 2005. 5th international planning
competition: Non-deterministic track. call for participation.
Technical report.
Bordignon, M.; Rashid, J.; Broxvall, M.; and Saffiotti, A.
2007. Seamless integration of robots and tiny embedded de-
vices in a PEIS-ecology. In Proc. of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
3101–3106.
Cimatti, A.; Clarke, E. M.; Giunchiglia, F.; and Roveri, M.
2000. NUSMV: A new symbolic model checker. Interna-
tional Journal on Software Tools for Technology Transfer
(STTT) 2(4):410–425.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. Weak, strong, and strong cyclic planning via sym-
bolic model checking. Artificial Intelligence 147(1):35–84.
Daniele, M.; Traverso, P.; and Vardi, M. 2000. Strong cyclic
planning revisited. Recent Advances in AI Planning 35–48.
De Giacomo, G., and Felli, P. 2010. Agent composition
synthesis based on ATL. In Proc. of Autonomous Agents
and Multi-Agent Systems (AAMAS), 499–506.
De Giacomo, G., and Sardina, S. 2007. Automatic synthesis
of new behaviors from a library of available behaviors. In
Veloso, M. M., ed., Proc. of the International Joint Confer-
ence on Artificial Intelligence (IJCAI), 1866–1871.
De Giacomo, G.; Patrizi, F.; and Sardina, S. 2013. Auto-
matic behavior composition synthesis. Artificial Intelligence
Journal 196:106–142.
Fu, J.; Ng, V.; Bastani, F. B.; and Yen, I.-L. 2011. Sim-
ple and fast strong cyclic planning for fully-observable non-
deterministic planning problems. In Proc. of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
1949–1954.
Keyder, E.; Hoffman, J.; and Haslum, P. 2012. Semi-relaxed
plan heuristics. In Proc. of the International Conference on
Automated Planning and Scheduling (ICAPS), 128–136.
Kuter, U., and Nau, D. 2008. Using classical planners
to solve non-deterministic planning problems. In Proc. of
the International Conference on Automated Planning and
Scheduling (ICAPS), 513–518.
Lomuscio, A.; Qu, H.; and Raimondi, F. 2009. MCMAS:
A model checker for the verification of multi-agent systems.
In Proc. of the International Conference on Computer Aided
Verification (CAV), 682–688.
Lustig, Y., and Vardi, M. Y. 2009. Synthesis from compo-
nent libraries. In Proc. of the International Conference on
Foundations of Software Science and Computational Struc-
tures (FOSSACS), 395–409.

Mattmüller, R., and Rintanen, J. 2007. Planning for tempo-
rally extended goals as propositional satisfiability. In Proc.
of the International Joint Conference on Artificial Intelli-
gence (IJCAI), 1966–1971.
Muise, C.; McIlraith, S. A.; and Beck, J. C. 2012. Improved
non-deterministic planning by exploiting state relevance. In
Proc. of the International Conference on Automated Plan-
ning and Scheduling (ICAPS), 172–180.
Patrizi, F.; Lipovetzky, N.; Giacomo, G. D.; and Geffner, H.
2011. Computing infinite plans for LTL goals using a clas-
sical planner. In Proc. of the International Joint Conference
on Artificial Intelligence (IJCAI).
Pistore, M., and Traverso, P. 2001. Planning as model
checking for extended goals in non-deterministic domains.
In Proc. of the International Joint Conference on Artificial
Intelligence (IJCAI), 479–486.
Sardina, S.; Patrizi, F.; and De Giacomo, G. 2008. Behavior
composition in the presence of failure. In Brewka, G., and
Lang, J., eds., Proc. of Principles of Knowledge Representa-
tion and Reasoning (KR), 640–650.
Stroeder, T., and Pagnucco, M. 2009. Realising determin-
istic behaviour from multiple non-deterministic behaviours.
In Proc. of the International Joint Conference on Artificial
Intelligence (IJCAI), 936–941.
Yadav, N., and Sardina, S. 2012. Qualitative approximate
behavior composition. In Proc. of the European Conference
on Logics in Artificial Intelligence (JELIA), volume 7519
of Lecture Notes in Computer Science (LNCS), 450–462.
Springer.
Yoon, S.; Fern, A.; and Givan, R. 2007. FF-Replan: A
baseline for probabilistic planning. In Proc. of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), volume 7, 352–359.

188

