
Who Said We Need to Relax All Variables?

Michael Katz and Jörg Hoffmann
Saarland University

Saarbrücken, Germany
{katz, hoffmann}@cs.uni-saarland.de

Carmel Domshlak
Technion

Haifa, Israel
dcarmel@ie.technion.ac.il

Abstract

Despite its success in both satisficing and optimal planning,
the delete relaxation has significant pitfalls in many important
classes of planning domains, and it has been a challenge from
the outset to devise heuristics that take some deletes into ac-
count. We herein devise an elegant and simple method for
doing just that. In the context of finite-domain state vari-
ables, we define red variables to take the relaxed semantics,
in which they accumulate their values rather than switching
between them, as opposed to black variables that take the reg-
ular semantics. Red-black planning then interpolates between
relaxed planning and regular planning simply by allowing
a subset of variables to be painted red. Of course, this re-
laxation is useful as a basis for devising heuristic functions
only if the resulting red-black planning task is polynomial-
time solvable. We herein investigate the tractability region
of red-black planning, extending Chen and Gimenez’ charac-
terization theorems for regular planning to the more general
red-black setting. In particular, we identify significant islands
of tractable red-black planning, opening the road to the effi-
cient computation of very powerful heuristics.

Introduction
Monotonic, or delete, relaxation played a key role in ad-
vances of planning systems over the last decade. State vari-
ables in the monotonic relaxation accumulate their values,
rather than switching between them. While regular planning
is PSPACE-complete even for simple formalisms, mono-
tonic planning is polynomial-time (Bylander 1994). De-
spite this, plans for the monotonic relaxation often yield
very useful search guidance. Starting with the HSP (Bonet
and Geffner 2001) and FF (Hoffmann and Nebel 2001) plan-
ners, exploitation of the monotonic relaxation became a key
ingredient of many competitive planning systems.

While some of the most effective heuristics to date are ob-
tained as the estimated cost of the monotonic relaxation of
the original planning task, this relaxation has significant pit-
falls. A prime example is planning with non-replenishable
resources, whose consumption is completely ignored within
the relaxation. More generally, the monotonic relaxation
seriously under-estimates goal distances whenever planning
decisions have non-local implications, where the effect of

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

some action may be detrimental for the ability to execute
other parts of the plan later on.

Numerous works have designed heuristics that take some
deletes into account, e. g. (Fox and Long 2001; Gerevini,
Saetti, and Serina 2003; Helmert 2004; Helmert and Geffner
2008; Keyder and Geffner 2008; Cai, Hoffmann, and
Helmert 2009). It has proved daunting, however, to de-
vise frameworks that actually allow to do so systematically,
interpolating all the way between real planning and mono-
tonic planning. The first approach of this kind was put for-
ward only very recently, enriching the monotonic relaxation
with an explicitly represented set of fact conjunctions, forc-
ing the heuristic to become perfect as that set becomes large
(Haslum 2012; Keyder, Hoffmann, and Haslum 2012). We
herein devise a much simpler method enabling the same kind
of interpolation: we relax only some of the state variables.

Our investigation was initiated by a very simple question:
Does planning remain polynomial-time if all state variables
except a single binary-valued variable v0 have monotonic
(value-accumulating) semantics, while v0 keeps the regular
(value-switching) semantics? When, somewhat surprisingly,
the answer to this question turned out to be “yes”, we broad-
ened our investigation into what we baptize red-black plan-
ning. Some state variables, called red, take the relaxed se-
mantics accumulating their values, while all other variables,
called black, keep their regular semantics.1 This frame-
work is relevant because, as we show, red-black planning
gives rise to several interesting fragments of polynomial-
time planning, and thus has the potential to allow the effi-
cient computation of very powerful heuristic functions. Ex-
ploiting the complexity characterization theorems of Chen
and Giménez (2010), we draw a sharp borderline for the
identified islands of tractability. Finally, considering several
IPC benchmark domains, we provide theoretical evidence
that these tractability islands may yield highly informative
heuristic functions in practice.

We provide the background, then introduce red-black
planning. We examine how Chen and Gimenez’ character-
ization theorems extend to this more general setting. We
describe our findings in IPC benchmarks, and conclude.

1Earlier attempts applied a special treatment, half-way between
red and black planning, to restricted subsets of variables (Fox and
Long 2001; Keyder and Geffner 2008). We get back to this later,
once we formally introduced our framework.

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

126

Background
A finite-domain representation (FDR) planning task is
given by a quadruple Π = 〈V,A, I,G〉. V is a set of state
variables, where each v ∈ V is associated with a finite do-
main D(v). A complete assignment to V is called a state.
I is the initial state, and the goal G is a partial assignment
to V . A is a finite set of actions. Each action a is a pair
〈pre(a), eff(a)〉 of partial assignments to V called precondi-
tion and effect, respectively. If a has a precondition on v but
does not change it, we say that a is prevailed by v.

The semantics of FDR tasks is as follows. For a partial as-
signment p, V(p) ⊆ V denotes the subset of state variables
instantiated by p. In turn, for any V ′ ⊆ V(p), by p[V ′] we
denote the value of V ′ in p. An action a is applicable in a
state s iff s[V(pre(a))] = pre(a), i. e., iff s[v] = pre(a)[v]
for all v ∈ V(pre(a)). Applying a in state s changes the
value of v ∈ V(eff(a)) to eff(a)[v]; the resulting state is
denoted by sJaK. By sJ〈a1, . . . , ak〉K we denote the state
obtained from sequential application of the (respectively ap-
plicable) actions a1, . . . , ak starting at state s. Such an ac-
tion sequence is an s-plan if sJ〈a1, . . . , ak〉K[V(G)] = G,
and it is an optimal s-plan if its length is minimal among all
s-plans. The computational task of (optimal) planning is
finding an (optimal) I-plan.

Figure 1 (a) illustrates an example that we use throughout
the paper. The example is akin to the GRID benchmark. We
encode it in FDR via 5 state variables: R, the robot position
in {1, . . . , 7}; A, the key A position in {R, 1, . . . , 7}; B,
the key B position in {R, 1, . . . , 7}; F , a Boolean encoding
whether or not the robot hand is free;O, a Boolean encoding
whether or not the lock is open. The actions move the robot
provided either the target position is 6= 4 or the lock is open,
take a key provided the hand is free, drop a key, or open
the lock provided the robot is at position 3 or at position 5
and holds key A. The goal is for key B to be at position 1.
An optimal plan moves to position 2, takes key A, moves to
position 3, opens the lock, moves to position 7, drops key A
and takes key B, moves back to position 1 and drops key B.

A monotonic finite-domain representation (MFDR)
planning task is given by a quadruple Π = 〈V,A, I,G〉 ex-
actly as for FDR tasks, but the semantics is different. Infor-
mally, in MFDR tasks the state variables accumulate their
values, rather than switching between them. More specif-
ically, an MFDR state s is a function that assigns each
v ∈ V a non-empty subset s[v] ⊆ D(v) of its domain.
An action a is applicable in state s iff pre(a)[v] ∈ s[v]
for all v ∈ V(pre(a)), and applying it in s changes the
value of v ∈ V(eff(a)) to s[v] ∪ eff(a)[v]. An action se-
quence 〈a1, . . . , ak〉 applicable in state s is an s-plan if
G[v] ∈ sJ〈a1, . . . , ak〉K[v] for all v ∈ V(G). In all other
respects, the semantics of MFDR is identical to that of FDR.

While FDR planning is PSPACE-complete even for
propositional state variables, planning for MFDR tasks
is polynomial time (Bylander 1994). Starting with the
HSP (Bonet and Geffner 2001) and FF (Hoffmann and Nebel
2001) planning systems, exploiting this attractive property
of MFDR for deriving heuristic estimates became a key in-
gredient of many modern planning systems, via the notion
of monotonic, or delete, relaxation. Given an FDR plan-

R

F BA

O

(a) (b)

Figure 1: Our running example (a), and its causal graph (b).

ning task Π = 〈V,A, I,G〉, the monotonic relaxation of
Π is the MFDR task Π+ = Π. The optimal delete relax-
ation heuristic h+(Π) is defined as the length of an optimal
plan for Π+. For arbitrary states s, h+(s) is defined via the
MFDR task 〈V,A, s,G〉. If π+ is a plan for Π+, then π+ is
referred to as a relaxed plan for Π. For a state s and appli-
cable action sequence π in Π, we sometimes use sJπ+K to
denote the outcome of executing π in the same state of Π+.

A relaxed plan for our running example takes key A,
opens the lock, and moves over to position 7. It then takes
key B (without having to first drop key A), and it drops key
B at position 1 (without having to first move back there).

For each of FDR and MFDR, we sometimes distinguish
between planning tasks in terms of a pair of standard graph-
ical structures induced by them. The causal graph CGΠ of
a planning task Π is a digraph over vertices V . An arc (v, v′)
is in CGΠ iff v 6= v′ and there exists an action a ∈ A such
that (v, v′) ∈ [V(eff(a)) ∪ V(pre(a))]× V(eff(a)). The do-
main transition graph DTGΠ(v) of a variable v ∈ V is an
arc-labeled digraph over the vertices D(v) such that an arc
(d, d′) labeled with pre(a)[V \ {v}] belongs to the graph iff
eff(a)[v] = d′, and either pre(a)[v] = d or v 6∈ V(pre(a)).

Figure 1 (b) illustrates the definition of causal graphs. R is
a prerequisite for changing every other variable. Each key is
interdependent with F because taking/dropping them affects
both. Key A influences O, which influences R.

Red-Black Relaxation
FDR and MFDR can be viewed as two extremes in
which all state variables adopt value-switching and value-
accumulating semantics, respectively. It is then obvious that
there is an entire spectrum of possibilities in between the two
extremes, choosing the semantics on a variable-by-variable
basis. We baptize this approach “red-black planning”.

A red-black finite-domain representation (RB) plan-
ning task is given by a quintuple Π = 〈V B, V R, A, I,G〉
where V B is a set of black state variables, V R is a set of red
state variables, and everything else is exactly as for FDR
and MFDR tasks. The semantics is defined as follows:

(i) A state s assigns each v ∈ V B∪V R a non-empty subset
s[v] ⊆ D(v), where |s[v]| = 1 for all v ∈ V B.

(ii) An action a is applicable in state s iff pre(a)[v] ∈ s[v]
for all v ∈ V(pre(a)).

(iii) Applying an action a in state s changes the value of
v ∈ VB(eff(a)) to {eff(a)[v]}, and changes the value
of v ∈ VR(eff(a)) to s[v] ∪ eff(a)[v].

(iv) An action sequence 〈a1, . . . , ak〉 applicable in s is an
s-plan if G[v] ∈ sJ〈a1, . . . , ak〉K[v] for all v ∈ V(G).

In our running example, if we paint variables R,A,B,O
red but paint F black, then the robot needs to drop key A
before taking key B. If R is also black, then the robot needs
to move back to position 1 before dropping key B.

127

RB is probably the most direct and intuitive generalization
of both FDR and MFDR: Given an FDR task 〈V,A, I,G〉,
we obtain an identical RB task as 〈V, ∅, A, I,G〉, and given
an MFDR task 〈V,A, I,G〉, we obtain an identical RB task
as 〈∅, V, A, I,G〉. In other words:

Proposition 1 RB generalizes both FDR and MFDR.

We will sometimes refer to the monotonic relaxation of
an RB task Π = 〈V B, V R, A, I,G〉, defined as the MFDR
task Π+ = 〈V B ∪ V R, A, I,G〉.

The main operation we will use RB tasks for is to (par-
tially) relax FDR tasks. Given an FDR planning task Π =
〈V,A, I,G〉 and a subset V R ⊆ V of its variables, the
red-black relaxation of Π relative to V R is the RB task
Π∗+V R = 〈V \ V R, V R, A, I,G〉. The optimal red-black re-
laxation heuristic h∗+V R(I) of Π relative to V R is defined as
the length of an optimal plan for Π∗+V R . For arbitrary states
s, h∗+V R(s) is defined via the RB task 〈V \ V R, V R, A, s,G〉.
If π∗+ is a plan for Π∗+, then we will refer to π∗+ as a red-
black relaxed plan for Π. Trivially, we have:

Proposition 2 h∗+V R is consistent and dominates h+. If
V R = ∅, then h∗+V R is perfect.

Some words are in order regarding two earlier works
that “un-relax” particular kinds of state variables. Fox and
Long (2001) automatically recognize transportation sub-
problems, and un-relax all vehicle position variables v. Key-
der and Geffner (2008) un-relax any single variable v mov-
ing which does not have any side effects on other variables.
In both cases, the actions moving v in a relaxed plan π+

are replaced by an approximate TSP solution visiting the set
D(v, π+) ⊆ D(v) of values required in π+. This is different
from painting v black because it disregards repetitions and
ordering of these values. For example, say v is a worker that
must perform a sequence j1, . . . , jn of jobs, each at a loca-
tion di. Then the TSP approximation follows some path vis-
iting each of D(v, π+) = {d1, . . . , dn} once. In a red-black
plan, v follows a path traversing the sequence d1, . . . , dn.

The question remains how to actually compute h∗+. That
computation is NP-hard because h∗+ generalizes h+. We
adopt the popular strategy of upper-approximation by satis-
ficing relaxed planning. Hence we investigate the tractability
borderline of satisficing planning for RB tasks. One notion
that will be central in this is the causal graph. While the
causal graph CGΠ of an RB task Π is defined exactly as for
FDR, the red/black coloring of its vertices suggests consid-
ering the structure of the two respective sub-graphs of CGΠ.
By the black causal graph CGB

Π of Π, we denote the sub-
graph of CGΠ induced by the black variables V B.

Bounding Variable Number and Size
A first question one might ask is, what about restricting the
number of black variables? For example, is the red-black
planning problem still easy when taking into account the
deletes on a single binary-valued variable? It is this question
that initiated our investigation, and it turns out the answer is
“yes”. We now prove the following more general result:

Algorithm
: RB2-PLANGEN(Π)
main
// Π = 〈{v0}, V R, A, I,G〉
R← I
R← R ∪ RELAXEDFIXEDPOINT(A∅ ∪AI[v0])
if G ⊆ R

return“solvable′′

for I[v0] 6= d ∈ D(v0), a1 ∈ AI[v0]→d s.t. pre(a1) ⊆ R
R← RJa1K
R← R ∪ RELAXEDFIXEDPOINT(A∅ ∪Ad)
if G ⊆ R

return“solvable′′

for a2 ∈ Ad→I[v0] s.t. pre(a2) ⊆ R
everywhere in Π and R,

replace I[v0] and d with a new value d{I[v0],d}
R← R ∪ RELAXEDFIXEDPOINT(A)
if G ⊆ R

return“solvable′′

return“unsolvable′′

Figure 2: Algorithm used in the proof of Theorem 1.

Theorem 1 Plan generation for RB tasks with a fixed num-
ber of black variables, each with a fixed-size domain, is
polynomial-time.

A set {v1, . . . , vn} of black variables can be compiled into
a single black variable v with domain

⊗n
i=1D(vi). This

compilation is exponential in n, but incurs polynomial over-
head for fixed n, so it suffices to prove Theorem 1 for the
single-variable case. In what follows, we detail the proof for
domain size 2. We will outline below the extension of that
proof to arbitrary fixed-size domains; to ease that extension,
some of our formulations for the binary-valued case are a
little more general than needed.

A pseudo-code algorithm for solving RB tasks Π =
〈{v0}, V R, A, I,G〉 with |D(v0)| = 2 is shown in Figure 2.
The following notation is used:
• A∅ = {a ∈ A | v0 6∈ V(pre(a)) ∪ V(eff(a))} are the

actions that do not touch v0 at all.
• For each value d ∈ D(v0) of v0, Ad = {a ∈ A |

pre(a)[v0] = d, v0 6∈ V(eff(a))} are the actions with a
prevail condition on d.

• For each pair d 6= d′ ∈ D(v0) of values of v0, Ad→d′ =
{a ∈ A | pre(a)[v0] = d 6= d′ = eff(a)[v0]} are the
actions changing v0 from d to d′.

We assume wlog that v0 ∈ V(eff(a)) implies v0 ∈
V(pre(a)), and that pre(a)[v0] 6= eff(a)[v0]. Thus every ac-
tion affecting v0 is in exactly one of these sets.

The algorithm RB2-PLANGEN starts with (fully) relaxed
planning on a restricted set of actions, then enters two nested
for-loops, each of which ranges over a subset of actions, and
each of whose bodies consists of another instance of relaxed
planning. Obviously, the algorithm terminates in polyno-
mial time. We need to prove that it succeeds if and only if
a plan π for the (non-relaxed) RB task Π exists, and that we
can efficiently construct such a plan in the positive case.

Assume first that π is a plan for Π. Say π does not use any
action of the form AI[v0]→d. Then the first relaxed planning
fixed point R, achieved on the set A∅∪AI[v0] of actions that

128

either do not touch v0 at all or are only prevailed by its initial
value, reaches the goal, and RB2-PLANGEN succeeds as de-
sired. If π does use an action affecting v0, then the first such
action a1 is in AI[v0]→d, and is found in the first for-loop.
Application of (not relaxed) a1 to R changes v0 to d and
adds all the red side effects of a. If π does not use any action
from Ad→I[v0], then the second relaxed planning fixed point
R, now including also all facts that can be reached with the
actions A∅ ∪ Ad, succeeds. If π does use an action a2 from
Ad→I[v0], then a2 will be found in the second for-loop. The
algorithm then switches to relaxed planning over the entire
action set – trivializing v0 by replacing its two values with a
new aggregate value that is true in the new initial state – and
will definitely reach the goal.

Vice versa, if RB2-PLANGEN succeeds, we prove that we
can construct a plan for Π. That is obvious if RB2-PLANGEN
succeeds before the first for-loop, where the actions support-
ing R do not affect v0, and all we need to do is sequence all
the actions in the relaxed plan fixed point. If the algorithm
succeeds in the first for-loop, then we attach to that sequence
the action a1 ∈ AI[v0]→d we are currently considering, and
then again sequence all the actions in the relaxed plan fixed
point. Finally, suppose that the algorithm reaches the point
in the second for-loop where I[v0] and d are replaced with
the new value d{I[v0],d}. In that case, we attach the culprit
action a2 ∈ Ad→I[v0] to our prefix. This provides us with an
action sequence π′ that is applicable in the initial state I of
Π, and in which a1 switches v0 from its initial value to d, and
a2 switches it back. Of these two actions, all preconditions
other than those on v0 are red, and are thus true in IJπ′K,
as well as in every state reachable from it. Hence, starting
from IJπ′K, we can switch the value of v0 back and forth
as much as we want. Replacing the two values of v0 with
d{I[v0],d} represents exactly that. Given this, if the relaxed
plan fixed point of the second for-loop returns a relaxed plan
π+, then a non-relaxed execution of π+ in IJπ′K can be ob-
tained simply by inserting a1 in between any two actions of
π+ whenever v0 currently has value I[v0] but d is needed,
and inserting a2 whenever v0 currently has value d but I[v0]
is needed. This ends in a plan for Π as desired.

Let us illustrate this with our running example, before
considering domain sizes larger than 2. Say we paint all
variables except F red. Then the first relaxed planning fixed
point is unable to pick up key A, and ends in front of the
lock. The first for-loop finds the action that picks up key A,
and the second relaxed fixed point opens the lock and moves
over to position 7, but cannot pick up key B. The second
for-loop finds the action that drops key A, and the last re-
laxed fixed point reaches the goal. Note that, once the action
dropping key A has become applicable, whenever we need
to free the hand we can do so by dropping key A (because,
A being painted red, that key remains in the hand).

To extend the algorithm to the more general case where
the single black variable v0 has a domain of size k =
O(1), observe that RB2-PLANGEN essentially consists of
two action-choice branching points, captured by the two for-
loops. For non-binary domains, we replace these nested
loops with a tree search, each of whose branching points
tries all actions changing the current value of v0 to any other

value of v0. The key observation is that we can bound the
depth of the tree search by a function depending only on
k, that is, by a constant. Say that, during the search, we
encounter a value d of v0 that has already appeared on the
active search path. Say further that D is the set of all v0

values encountered on that search path between these two
occurrences of d, including d itself. Then, similarly to the
binary-valued case of I[v0] and d demonstrated above, from
this point on we can switch back and forth between all val-
ues of D as needed. So we do not need to distinguish
between these values anymore, and can replace D with a
new aggregate value dD. A search branch stops when ei-
ther a branching point finds no suitable actions, or when the
domain of v0 has reduced to a single value. In the latter
case, we execute a final relaxed plan fixed point over all ac-
tions, similarly to how it is done in the body of the second
for-loop of RB2-PLANGEN. A simple upper bound on the
number of steps after which that happens (if it happens) is
(k+ 1)(k− 1): Discovering a duplicate takes at most k+ 1
steps, and each time that happens, we reduce the domain size
of v0 by at least 1. This concludes the proof of Theorem 1.

While the algorithm we just described runs in polynomial
time for fixed k, it is exponential in that parameter, which
itself is exponential in the number of black variables in case
we have to pre-compile a fixed number of these. This makes
it doubtful whether the algorithm is of practical value for
computing heuristic functions.2 Having this in mind, a nat-
ural next question is whether the tractability result of Theo-
rem 1 can be extended either to a fixed number of black vari-
ables with unrestricted domains, or to an unrestricted num-
ber of black variables with fixed-size domains. Theorems 2
and 3 show that the answer to this question is “no”, even
under some additional restrictions on the black variables.

Theorem 2 Plan existence for RB tasks with a fixed number
of black variables is NP-complete.

For NP-hardness, we construct an RB task, with a sin-
gle black variable, that is solvable iff an input CNF formula
ϕ is satisfiable. Consider a planning encoding Π(ϕ) with:
(1) ternary-valued variables x1, . . . , xn which encode the
propositional variables in ϕ, the domain of each xi com-
prising true, false, and unassigned; (2) Boolean variables
c1, . . . , cm which encode satisfaction of the clauses in ϕ;
and (3) a variable v0 with domain {1, . . . , n + 1}. Initially,
v0 = 1, all clause variables are false, and all the proposi-
tion variables are unassigned. The goal is to make all clause
variables true. There are actions changing a clause variable
cj to true provided an xi variable corresponding to one of
cj’s literals is assigned the correct truth value. Other actions
change the value of xi from unassigned to either false or true
provided v0 = i, and applying such an action also changes
the value of v0 to i+ 1. This encoding does not work in the
delete relaxation – that is, if we paint all variables of Π(ϕ)
red – because xi may be set to both truth values. However, if

2Matters may be different if the actual planning problem we
want to solve can be framed as a member of this tractable fragment.
A relevant example where that is the case is monotonic planning
with a small number of non-replenishable resources.

129

only v0 is painted black, then plans are forced to assign each
xi exactly one truth value, yielding the desired equivalence.

For membership in NP, just observe that there always ex-
ists a polynomial-length plan. We can pre-compile the fixed
number of black variables into a single black variable, whose
domain size is polynomial. Since all causal graph neigh-
bors of that variable are red, the number of times it needs to
change its value is bounded by the sum of the domain sizes
of these neighbors. This concludes the proof of Theorem 2.

Theorem 3 Plan existence for RB tasks where all black
variables have fixed-size domains is PSPACE-complete, and
is NP-complete even if CGB

Π contains no arcs.
If we fix the domain size of the black variables, but not

their number, then we obtain a problem that is as hard as
FDR with fixed-size domains, which is PSPACE-hard (By-
lander 1994), and PSPACE membership is straightforward
because the addition of red variables still allows for a proof
similar to that for FDR. For the second part of the claim,
consider the CNF encoding from the previous proof, but now
without the special variable v0 (where thus the xi variables
can freely change their value from unassigned to either true
or false). If all the clause variables cj , but none of the vari-
ables xi, are painted red, then the black causal graph of the
resulting RB task contains no arcs – each arc in the causal
graph involves a red clause variable. At the same time, since
the xi variables are all black, the plans are forced to assign
each xi exactly one truth value, and thus our RB task is solv-
able iff ϕ is satisfiable. Membership in NP follows from ba-
sically the same argument as above for Theorem 2: for each
black variable, all causal graph neighbors are red so we get
a polynomial bound on the number of moves required. This
concludes the proof of Theorem 3.

We now relate Theorems 1-3 to the main characteriza-
tion theorem of Chen and Giménez (2010), that establishes a
general relation between FDR planning complexity and the
structure of the causal graph. Adopting the notation of Chen
and Giménez, for a digraph G, let #vertices(G), cc-size(G),
and scc-size(G) denote the number of vertices, the size of
the largest connected component in (the undirected graph in-
duced by) G, and the size of the largest strongly connected
component in G, respectively. For a set of digraphs G, we
say that #vertices(G) is bounded if there exists a constant
k such that #vertices(G) ≤ k for all G ∈ G. Bounded
cc-size(G) and bounded scc-size(G) are defined similarly.

PlanExist(G) and PlanGen(G) are the plan existence and
plan generation problems restricted to FDR planning tasks
whose causal graphs are elements of G. The main character-
ization theorem of Chen and Giménez (2010) is as follows:

Theorem 4 (Chen and Giménez, 2010) Let G be a set of
directed graphs. If cc-size(G) is bounded, then PlanGen(G)
is polynomial-time solvable. Otherwise, PlanExist(G) is not
polynomial-time decidable (unless W[1] ⊆ nu-FPT).

W[1] 6⊆ nu-FPT is a standard assumption on paramet-
ric complexity hierarchy (Flum and Grohe 2006). Note that
Theorem 4 is not a dichotomy result: unless P = NP, there
are digraph sets G for which PlanExist(G) is neither in P nor
NP-hard. As the tractability result in Theorem 4 covers only

trivial planning problems, the theorem shows that valuable
islands of tractability within FDR must be characterized in
terms that go beyond the structure of the causal graph.

Focusing on the structure of CGB
Π, let RB-PlanExist(G)

and RB-PlanGen(G) be respectively the plan existence and
plan generation problems restricted to RB planning tasks
whose black causal graphs are elements of G. Note that
these problems put no restriction on the structure of the
causal graph itself beyond being a super-graph of some el-
ement of G. Theorem 5 below refines the complexity char-
acterization for RB with respect to the structure of the black
causal graph, providing a valuable fragment of tractability
via Theorem 1, and establishing P/NP dichotomies for both
general RB, as well as for RB restricted to fixed-size domain
variables. The first part of Theorem 5 is by the polynomial-
time plan generation for MFDR and Theorem 2, and the sec-
ond part is by Theorems 1 and 3.

Theorem 5 Let G be a set of directed graphs.

• If #vertices(G) = 0, then RB-PlanGen(G) is polynomial-
time solvable. Otherwise, RB-PlanExist(G) is NP-hard.

• If #vertices(G) is bounded, then RB-PlanGen(G) re-
stricted to RB tasks with bounded black variable
domains is polynomial-time solvable. Otherwise,
RB-PlanExist(G) for RB with bounded black variable do-
mains is NP-hard.

Causal Graph Structure and Reversibility
Departing from the conclusive yet pessimistic statement of
Theorem 4, Chen and Giménez (2010) considered so-called
reversible FDR tasks. An FDR task Π = 〈V,A, I,G〉 is re-
versible if, for every state s reachable from I , there exists
an action sequence π so that sJπK = I . The characteri-
zation theorem of Chen and Giménez for this fragment of
FDR, Theorem 6 below, establishes a valuable tractability
result. (In fact, this fragment has already been successfully
exploited for devising heuristic functions (Helmert 2006).)

Theorem 6 (Chen and Giménez, 2010) Let G be a set of
directed graphs. If scc-size(G) is bounded, then PlanGen(G)
restricted to reversible FDR is polynomial-time solv-
able (under a succinct plan representation). Otherwise,
PlanExist(G) for reversible FDR is not polynomial-time de-
cidable (unless W[1] ⊆ nu-FPT).

Adopting the notion of reversibility in red-black planning
requires a slight, natural adaptation: Since the value sets
of the red variables in states reachable from I will always
include their initial values anyway, reversibility should be
requested only on the task’s black variables. That is, we
say that an RB task Π = 〈V B, V R, A, I,G〉 is reversible
if, for every state s reachable from I , there exists an action
sequence π so that sJπK[V B] = I[V B]. While this exten-
sion of reversibility to RB may at first sight appear minor
and insignificant, at closer inspection it turns out to be quite
substantial. Reversibility of FDR tasks with acyclic causal
graph can be tested in linear time at the level of the indi-
vidual domain transition graphs of the variables: such a task
is reversible iff the reachable part of each domain transition

130

graph is strongly connected. In contrast, even if RB is re-
stricted to tasks with empty black causal graphs, testing re-
versibility is not (likely to be) polynomial-time:

Theorem 7 It is co-NP-hard to test whether an RB task is
reversible, even when restricting the input to RB tasks whose
black causal graph contains no arcs.

The proof is by reduction from DNF tautology test-
ing. Given a propositional DNF formula ϕ over l clauses
c1, . . . , cl, consider an RB planning encoding Π(ϕ) with:
black variables x1, . . . , xn with D(xi) = {unassigned, true,
false}, encoding the propositional variables in ϕ; and a
Boolean red variable r, encoding whether or not ϕ is sat-
isfied under a given assignment to x1, . . . , xn. All xi vari-
ables are initially unassigned, and r is initially false; the goal
does not matter here. The value of xi can be changed from
unassigned to either false or true with no preconditions, and
back from false or true to unassigned with precondition r.
We can set r to true using actions {a1, . . . , al}, where the
precondition of aj requires that all xi participating in cj are
assigned to their values required by cj .

LetM be the set of all 2n valuations of ϕ’s propositions.
For every m ∈M, let Sm ⊆ S be the set of reachable states
in which all variables xi are assigned as in m. We observe:
(1) For every m ∈ M that does satisfy ϕ, the states in Sm

are reversible in the red-black sense.
(2) For every m ∈ M that does not satisfy ϕ, none of the

states in Sm is reversible in the red-black sense.
(3) For every state s reachable in Π(ϕ), and every m ∈ M

that complies with the (partial) valuation to x1, . . . , xn
defined by s, there exists a state sm ∈ Sm such that sm
is reachable from s.

For (1), Sm consists of two states in this case, one of which
has r true and the other of which has an applicable aj action
achieving r. This allows to assign the xi variables back to
their initial unassigned values. For (2), Sm is a singleton in
this case, setting the xi to m and r to false. (3) is obvious.

If ϕ is a tautology, then by (3) and (1) every reachable
state in Π(ϕ) is reversible. If ϕ is not a tautology, then there
exists a valuation m that does not satisfy ϕ. Applying (3) to
the initial state, we can reach a state sm ∈ Sm, which by (2)
is not reversible. This concludes the proof of Theorem 7.

We now show that, somewhat surprisingly given Theo-
rem 7, plan existence for reversible RB tasks with acyclic
black causal graphs can be decided in polynomial time. This
substantially extends Chen and Gimenez’ tractability result
(Theorem 6) for PlanExist(G) to the red-black setting.
Theorem 8 Let G be a set of directed graphs. If scc-size(G)
is bounded, then RB-PlanExist(G) restricted to reversible
RB is polynomial-time solvable. Otherwise, the problem
RB-PlanExist(G) for reversible RB is not polynomial-time
decidable (unless W[1] ⊆ nu-FPT).

Note the subtle difference in claims, between Theorem 6
and Theorem 8, regarding solving plan generation vs. de-
ciding plan existence. Both the negative and positive parts
of Theorem 8 consider plan existence, whereas the positive
part of Theorem 6 makes the stronger claim of tractability of
plan generation. It is an open question whether plan gener-
ation is tractable in the setting of Theorem 8; we conjecture

that it is not. We will get back to this at the end of this sec-
tion, and for now consider plan existence only.

The negative part of Theorem 8 follows immediately from
the negative part of Theorem 6. As for the positive part,
given bounded scc-size(G) we can with polynomial over-
head compile each strongly connected component into a sin-
gle black variable. Since the compilation leaves the seman-
tics of the task intact, if the original task was reversible, so is
the compiled task. Thus it suffices to consider acyclic causal
graphs. We show that red-black plan existence, in this set-
ting, is equivalent to relaxed plan existence:

Theorem 9 Any reversible RB task with acyclic black
causal graph is solvable iff its monotonic relaxation is.

The “only if” direction is trivial. We prove the “if” di-
rection with three successive lemmas. The first one makes
the simple observation that, in any reversible RB task, we
can achieve all reachable red values up front. We need a few
notations. Let Γ ⊆

⋃
v∈V R D(v) be the minimal set such

that, for every reachable state s, s[V r] ⊆ Γ. Given a reach-
able state s, by Γ(s) we denote the completion of s with all
achievable red values, i. e., Γ(s) = s ∪ Γ.

Lemma 1 Let Π be a reversible RB task, and let s be a state
reachable in Π. Then Γ(s) is reachable in Π as well.

We can complete I into Γ(I) by going to every reachable
state in turn, reverting the black vars to I in between every
two states. In Γ(I), the action sequence reaching s from I is
applicable and leads to Γ(s) as desired.

In our running example, say we paint all variables except
F andO black. This yields a reversible RB task with acyclic
black causal graph (compare Figure 1 (b)). To Γ-complete
I into Γ(I), we move to position 2, take key A, move to
position 3, open the lock, and revert R and A to I .

Henceforth, we consider only Γ-completed states, which
by Lemma 1 is not a restricting condition for red-black
reachability. Our second lemma introduces the remaining
prerequisite – acyclic black causal graph – and observes that
we then have a degree of freedom in choosing which black
variables to revert to their initial value. For the remainder
of this section, let {v1, . . . , vn} be a topological ordering of
V B with respect to CGB

Π. We can revert any top subset of
the variables, leaving the remaining ones untouched:

Lemma 2 Let Π = 〈V B, V R, A, I,G〉 be a reversible RB

task with acyclic black causal graph CGB
Π, and s be a reach-

able state of Π with Γ(s) = s. Then, for any vi ∈ V B,
there exists a sequence of actions π applicable in s s.t. (i)
sJπK[v1, . . . , vi] = I[v1, . . . , vi], and (ii) π does not touch
(in any precondition or effect) any of vi+1, . . . , vn.

By reversibility, there exists a reverting sequence ρ for s,
i. e., a plan for 〈V B, V R, A, s, I[V B]〉. Let ρ′ be an action
sequence obtained from ρ by removing all actions that have
no effect on any of the variables v1, . . . , vi. We show that
ρ′ has the desired properties (i) and (ii). Provided ρ′ is ap-
plicable in s, its outcome is I[vj] for all vars vj with j ≤ i
because the responsible actions from ρ are contained in ρ′,
yielding property (i). To see applicability, first note that any
red preconditions along ρ′ are true simply because s = Γ(s).

131

Algorithm
: UNRELAX(Π, π+, gB)
main
// Π = 〈V B, V R, A, I,G〉 and gB ⊆ IJπ+K
// Assume with Lemma 1 that I = Γ(I)
global π ← 〈〉
let v1, . . . , vn be a topological ordering of V B wrt CGB

Π

ACHIEVE(gB ∪ IJπ+K[V R])

procedure ACHIEVE(g)
gB ← g[V B] // g[V R] ⊆ Γ(I), see Lemma 3
for i = n to 1

if vi 6∈ V(gB)
continue

let ρ be a reverting sequence for v1, . . . , vi // Lemma 2
π ← π ◦ ρ
if gB[vi] = I[vi]

continue
let a be the first action in π+ s.t. eff(a)[vi] = gB[vi]
ACHIEVE(pre(a))
π ← π ◦ 〈a〉

Figure 3: Algorithm used in the proof of Theorem 9.

By acyclicity of CGB
Π every action affects at most one black

variable, so by construction of ρ′ every action a in ρ′ affects
exactly one vj where j ≤ i. But then, since {v1, . . . , vn} is
a topological ordering of V B, any black preconditions of a
are on variables vl for l ≤ j ≤ i, and the actions supporting
them in ρ (if needed) are contained in ρ′. So ρ′ is applica-
ble in s. These arguments also show that neither the effects
nor the preconditions of the actions in ρ′ touch the variables
vi+1, . . . , vn. Thus we have (ii), concluding the argument.

In our running example, say we have completed I into
Γ(I) as above (trivializing the variables F and O), then exe-
cuted an arbitrary action sequence moving around the robot
and keys. If ρ reverts to I , then clearly ρ′ obtained by re-
moving all except the robot moves from ρ reverts only R to
I . Similar if we remove all except the moves of R and A.

We now have the machinery in place for our last and cen-
tral lemma, proving that we can find a red-black plan π for
any sub-goal achieved in a relaxed plan π+. Figure 3 depicts
pseudo-code for the construction of π.

Lemma 3 Let Π = 〈V B, V R, A, I,G〉 be a reversible RB
task with acyclic black causal graph and I = Γ(I), π+ be
an action sequence applicable in the monotonic relaxation
Π+, and gB be an assignment to V B such that gB ⊆ IJπ+K.
Then there exists an action sequence π applicable in I such
that (i) IJπK[V B] = gB and (ii) IJπK[V R] ⊇ IJπ+K[V R].

The proof is by induction over the length of π+. We
prove the stronger claim that there exists π with the claimed
properties (i) and (ii), as well as with the third property
that (iii) π does not touch (neither in preconditions nor in
effects) any black variable vj with j > m(gB), where
m(g) = max{i | vi ∈ V(g)} denotes the largest variable
index in any partial assignment g.

For the base case, if π+ is empty then the claim is trivially
satisfied by the empty sequence π. For the inductive case,
assume that the claim holds for all relaxed plans of length k;
we show it for π+ of length k + 1.

First, consider the sequence π+
k containing the first k ac-

tions of π+; denote the last action in π+ by ak+1. By induc-
tion assumption applied to π+

k , we can reach a state sk in Π

so that pre(ak+1) ⊆ sk and IJπ+
k K[V R] ⊆ sk. Given this,

we can apply ak+1 to sk, which obviously will yield a state
sk+1 where IJπ+K[V R] ⊆ sk+1. In other words, the red
variable values achieved by π+ are all reachable in Π. But
then, IJπ+K[V R] ⊆ I because, by prerequisite, the initial
state is Γ-completed, i. e., I = Γ(I). Thus, part (ii) of the
claim is trivially satisfied, for any sequence π we construct.

We now show how to construct an action sequence π
achieving gB. We start with π = 〈〉. We process the vari-
ables in gB in descending order, from vn to v1. If vi 6∈
V(gB), there is nothing to do. Else, we first invoke Lemma 2
to obtain a sequence of actions reverting the variables vj for
j ≤ i, without touching any vj for j > i. We append that
sequence to π. If gB[vi] = I[vi], then we have achieved
this sub-goal and proceed with the next variable vi−1 (or
stop if i = 1). Otherwise, π+ must contain an action a
that achieves gB[vi]. Applying the induction assumption to
the prefix π+

a of π+ that precedes a, we obtain a sequence
πa that is both applicable in Π and achieves pre(a) with-
out touching any variables indexed higher than m(pre(a)).
Clearly, m(pre(a)) ≤ i: a affects vi and can thus only be
preconditioned on vi itself and variables preceding it. But
then, πa is applicable at the end state IJπK of our current se-
quence π, because IJπK[v1, . . . , vi] = I[v1, . . . , vi]. Given
that, we append πa, and then a, to π. This extended se-
quence still does not touch any variables vj for j > i, and
thus achieves gB[vi] while satisfying property (iii). Con-
tinuing with the next lower variable, we achieve the rest of
gB without invalidating any sub-goals already achieved, thus
accomplishing property (i). This concludes the argument.

Together, Lemma 3 and Lemma 1 finish the proof of The-
orem 9: Given a relaxed plan, first turn I into Γ(I) using
Lemma 1, then construct a plan for G using Lemma 3.

To illustrate Lemma 3 with our running example, con-
sider the point, in the relaxed plan π+ for the task, where
both keys have been picked up. The construction of π, for
gB := {R = 7, A = R,B = R}, proceeds as follows.
We first Γ-complete I into Γ(I) as above. We then achieve
B = R by the π+ action a taking key B at position 7. We
recursively establish a’s precondition by moving R from 1
to 7. We proceed to the sub-goal A = R. We revert R to
I (moving back to 1), then use the π+ action a taking key
A at position 2, whose precondition we achieve recursively
by moving from 1 to 2. Finally, working on the sub-goal
R = 7, we revert R to I and then move it from 1 to 7 at
which point π has the desired properties (i) and (ii).

As the example illustrates, while the constructed π is a
red-black plan, it certainly is not a good red-black plan,
which it should be in order to avoid over-estimation when
used inside a heuristic function. Much worse, while the
proof of Lemma 1 is constructive, executing that construc-
tion involves enumerating all reachable red-black states, so
the overall construction of π is not polynomial time.

As pointed out, it is an open question whether plan gen-
eration for reversible RB with acyclic black causal graphs is

132

tractable, and we conjecture that it is not. To understand this
pessimism, recall that the overall causal graph – over black
and red variables – may contain cycles (e. g. Figure 1 (b)).
Thus, it is unclear how to tackle red and black variables in
combination, rather than separating the red variables out us-
ing Lemma 1. In particular, we can not in general follow the
ordering of values achieved in the relaxed plan, because that
might require reverting black variables, which in turn might
require red values not achieved by the relaxed plan yet.

Red-Black Relaxed Plan Heuristics
Our ultimate objective in this investigation is to enable the
design of practical heuristic functions that will improve on
the commonly used approximations of h+, by approximat-
ing h∗+ for tractable fragments of RB instead. Theorem 1
provides a constructive proof for red-black plan generation,
yet the asymptotic runtime required suggests that this ap-
proach is not generally practical. As for the tractable frag-
ment identified by Theorem 8, denoted in what follows by
rSCC, this pertains to red-black plan existence rather than
red-black plan generation. So rSCC cannot be used directly
for approximating h∗+, and anyhow, its reversibility prereq-
uisite cannot be checked efficiently. We get back to this in
the conclusion. For now, we provide a first analysis of the
proposed approach from a theoretical perspective, by iden-
tifying benchmark domains in which h∗+ is perfect within
the tractable fragment rSCC. We start with a simple suffi-
cient condition for h∗+ to be perfect.

Lemma 4 Let Π be an FDR planning task and V ′ be a sub-
set of its variables. If all variables in V ′ have no outgoing
arcs in CGΠ, then h∗+V ′ is perfect.

Indeed, in this setting, all non-redundant red-black re-
laxed plans (that do not contain any superfluous actions),
and thus in particular all optimal red-black relaxed plans,
are valid plans for the original task Π. To see this, observe
that the leaf variables v in CGΠ are neither (1) used to sup-
port value changes of any other variables, nor (2) affected as
a side effect of changing any other variables. Due to (1), any
non-redundant red-black relaxed plan either changes v along
a simple (acyclic) path from v’s initial value to its goal value,
or leaves v untouched in case it has no goal. That same path
will be executable within Π. Due to (2), such execution is
not interfered with by any other activities in the red-black
relaxed plan. This concludes the argument.

Lemma 4 can be applied to natural FDR encodings of sev-
eral IPC benchmark domains:

Theorem 10 In any planning task Π of the LOGISTICS,
MICONIC, SATELLITE, VISIT-ALL, and ZENOTRAVEL do-
mains, one can choose a variable subset V R so that h∗+V R is
perfect and Π∗+V R ∈ rSCC.

In LOGISTICS and MICONIC, sets of red variables satis-
fying the claim are those representing the locations of the
packages and passengers, respectively. These variables are
causal graph leaves, and so we can apply Lemma 4 to obtain
the first half of the claim. For the second half, the result-
ing red-black planning tasks are reversible and their black

causal graphs are acyclic. The same argument can be ap-
plied to (the straightforward FDR encoding of) any trans-
portation domain with reversible road maps and with no ca-
pacity and fuel constraints. If vehicles are associated with
individual replenishable fuel supplies, then reversibility is
maintained while the strongly connected components in the
black causal graph have size 2 (each vehicle location vari-
able forms a cycle with the respective fuel variable). This
implies the result for ZENOTRAVEL. The argument does not
hold up in the presence of capacity constraints, however, be-
cause those introduce cycles between the capacity variables
and the object locations. Indeed, in the GRIPPER domain, a
set of red variables as claimed by Theorem 10 does not exist.
For example, if the red variables are the ball locations, then
Π∗+V R ∈ rSCC but h∗+V R under-estimates significantly because
we can free the gripper hands by dropping balls in the wrong
room without having to pick them up again.

In SATELLITE, we assume an FDR encoding that asso-
ciates each satellite with 3 variables encoding the direction,
which instrument is presently powered on, and which in-
strument is presently calibrated. Choosing the image vari-
ables to be red, the only black cycles are those between each
power and calibration variable, and are thus of bounded size.

In VISIT-ALL, we choose the “visited” variables to be
red, and obtain Π∗+V R ∈ rSCC. On the one hand, Lemma 4
does not apply here directly because the actions changing
the location also mark, as a side effect, the target location as
being visited. On the other hand, these side effects are not
harmful because the values they delete – location “not being
visited” – are required neither by action preconditions nor
by the goal, and are thus irrelevant. Lemma 4 can easily be
extended to capture this situation.3

Conclusion
Red-black planning relaxes only a subset of the state vari-
ables, thus generalizing both regular and delete-relaxed
planning, allowing to smoothly interpolate between the two.
We have extended Chen and Gimenez’ characterization the-
orems to this more general setting, and identified two signif-
icant islands of tractability. Theoretical evidence suggests
that at least one of these (rSCC) can, in principle, yield
highly informed heuristic functions.

The main obstacle in making the approach practical is
that the tractability of rSCC pertains not to plan generation,
needed to compute a heuristic, but to plan existence. We
believe that this can be addressed by replacing the notion
of reversibility with that of invertibility (as defined, e. g.,
by Hoffmann, 2011). A variable is invertible if every arc
(d, d′) in its DTG has an inverse (d′, d) whose condition is
contained in that of (d, d′). This can be tested efficiently,
and red-black reversibility follows if all black variables are
invertible. Our initial results indicate that the construction

3Note that, for LOGISTICS and SATELLITE, even V R = ∅ satis-
fies the claim of Theorem 10, since the original tasks are reversible,
and their causal graphs have bounded-size SCCs. This is not so for
the other domains concerned: MICONIC and SATELLITE are not
reversible, VISIT-ALL satisfies neither requirement.

133

underlying Theorem 9 can be simplified in this setting, al-
lowing to generate red-black plans efficiently.

Acknowledgments. Carmel Domshlak’s work was partially
supported by ISF grant 1045/12 and the Technion-Microsoft
E-Commerce Research Center.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Bonet, B.; McCluskey, L.; Silva, J. R.; and Williams, B.,
eds. 2012. Proceedings of the 22nd International Confer-
ence on Automated Planning and Scheduling (ICAPS 2012).
AAAI Press.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence 69(1–
2):165–204.
Cai, D.; Hoffmann, J.; and Helmert, M. 2009. Enhanc-
ing the context-enhanced additive heuristic with precedence
constraints. In Gerevini et al. (2009), 50–57.
Chen, H., and Giménez, O. 2010. Causal graphs and struc-
turally restricted planning. Journal of Computer and System
Sciences 76(7):579–592.
Flum, J., and Grohe, M. 2006. Parameterized Complexity
Theory. Springer-Verlag.
Fox, M., and Long, D. 2001. Hybrid STAN: Identifying
and managing combinatorial optimisation sub-problems in
planning. In Nebel, B., ed., Proceedings of the 17th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-01),
445–450. Seattle, Washington, USA: Morgan Kaufmann.
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.
2009. Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS 2009). AAAI
Press.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research 20:239–290.
Haslum, P. 2012. Incremental lower bounds for additive cost
planning problems. In Bonet et al. (2012), 74–82.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Rintanen, J.; Nebel, B.;
Beck, J. C.; and Hansen, E., eds., Proceedings of the
18th International Conference on Automated Planning and
Scheduling (ICAPS 2008), 140–147. AAAI Press.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Koenig, S.; Zilberstein, S.; and Koehler,
J., eds., Proceedings of the 14th International Conference on
Automated Planning and Scheduling (ICAPS-04), 161–170.
Whistler, Canada: Morgan Kaufmann.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2011. Analyzing search topology without run-
ning any search: On the connection between causal graphs

and h+. Journal of Artificial Intelligence Research 41:155–
229.
Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Ghallab, M., ed., Proceedings
of the 18th European Conference on Artificial Intelligence
(ECAI-08), 588–592. Patras, Greece: Wiley.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-
relaxed plan heuristics. In Bonet et al. (2012).

134

