
Partially Grounded Planning as Quantified Boolean Formula

Michael Cashmore
University of Strathclyde
Glasgow, G1 1XH, UK

michael.cashmore@strath.ac.uk

Maria Fox
King’s College London

London WC2R 2LS
maria.fox@kcl.ac.uk

Enrico Giunchiglia
Universit di Genova

16145 Genova (GE), Italy
giunchiglia@unige.it

Abstract

This paper describes a technique for translating bounded
propositional reachability problems, such as Planning, into
Quantified Boolean Formulae (QBF). The key feature of this
translation is that the problem, and the resultant encoding is
only partially grounded. The technique is applicable to other
SAT or QBF encodings as an additional improvement, poten-
tially reducing the size of the resulting formula by an expo-
nential amount. We present experimental results showing that
the approach applied to a simple SAT translation greatly im-
proves the time taken to encode and solve problems in which
there are many objects of a single type, even solving some
problems that cannot be reasonably encoded as SAT.

1 Introduction
Planning as Satisfiability is one of the most well-known and
effective techniques for classical planning: SATPLAN (Kautz
and Selman 1992; 1996) was an award-winning system in
the deterministic track for optimal planners in the first Inter-
national Planning Competition (IPC) in 1998, the 4th IPC in
2004, and the 5th IPC in 2006. The basic idea is to encode
the existence of a plan with n+1 (or fewer) steps as a propo-
sitional satisfiability (SAT) formula obtained by unfolding,
n times, the symbolic transition relation of the automaton
described by the planning problem.

In general, SAT-based planning, though quite successful,
suffers from the drawback that it is easy to come up with
problems in which the number of steps required is large,
making it impossible to even encode the original problem
as a propositional formula. The same problem arises in
bounded model checking (Biere et al. 1999). As a solu-
tion to this problem we introduce a technique for translat-
ing bounded propositional planning problems into Quanti-
fied Boolean Formulae (QBF) in which objects are described
in terms of equivalence classes.

The use of compact encoding as Quantified Boolean For-
mulae (QBFs) combined with the use of QBF solvers has
been proposed (Dershowitz, Hanna, and Katz 2005; Jussila
and Biere 2007; Mangassarian, Veneris, and Benedetti 2010;
Cashmore and Fox 2010) as an approach to Planning. In
particular, Rintanen (2001), Jussila and Biere (2007) and

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Cashmore et al. (2010; 2012) present encodings that are
logarithmic in the number of time-steps in the problem,
resembling the proof of the PSPACE-hardness of solving
QBFs (Savitch 1970; Stockmeyer and Meyer 1973). In con-
trast our approach is linear in the number of time-steps, more
closely resembling existing SAT-based encodings. Our tech-
nique translates bounded propositional planning problems
into Quantified Boolean Formulae (QBF) in which objects
are described in terms of equivalence classes.

Before being encoded as SAT, Planning problems are typ-
ically grounded. There is growing interest in the Planning
community (Nguyen and Kambhampati 2001; Ridder and
Fox 2011) in the question of how to avoid grounding, and the
work described here shows how grounding can be avoided.
It is clear that there is the potential for lifted encodings to be
exponentially smaller than grounded ones.

The Quantified Boolean Formulae obtained from our
translation can require exponentially fewer variables (and
clauses) than a corresponding SAT encoding to describe the
state (and transition relation). The potentially exponential
reduction is a function of the objects in the domain and is
greatest in domains in which there are many objects of a
single type. In order to determine the effectiveness of the
encoding we run experiments on selected domains showing
that the QBF encoding scales better as the number of objects,
and size of the instance, increases. In addition we show that
there exist problems which can be solved by the QBF trans-
lation that remain unsolved by SAT.

After some preliminaries we describe the partially
grounded QBF translation in Section 3 This is followed by a
full example in Section 4 and some experimentation in Sec-
tion 5 Finally, we conclude in Section 6

2 Preliminaries
Quantified Boolean Formula
Quantified Boolean Formulae (QBF), which is PSPACE-
complete (Savitch 1970; Stockmeyer and Meyer 1973), is
perhaps the most fundamental problem in PSPACE. An
instance of the QBF problem is typically presented as a
Boolean expression in conjunctive normal form (CNF).

The decision problem is stated as: given ϕ, a Boolean
expression in conjunctive normal form, with Boolean vari-
ables x1, . . . , xn partitioned into m sets X1, . . . , Xm, is it

Proceedings of the Twenty-Third International  Conference on Automated Planning and Scheduling

29



true that there exists an assignment to variablesX1 such that
for all assignments made to X2 there exists an assignment
to X3 (and so on) such that ϕ is satisfied? For example:

∃x1, x2,∀x3,∃x4 · (
(¬x1 ∨ ¬x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ ¬x4))

is false, since there is no assignment to variables x1, x2 and
x4 that will satisfy the expression for both values of x3.

The QBF instance can be thought of as a binary tree with
conjunctive and disjunctive nodes. The outermost quanti-
fier can be expanded, removing it from the problem. Where
φ[x/>] is the result of assigning x → true in φ (and simi-
larly for φ[x/⊥]) the formula after expanding the outermost
variable x becomes φ[x/>]∨φ[x/⊥] if x is quantified exis-
tentially and φ[x/>] ∧ φ[x/⊥] if x is quantified universally.
After every variable is expanded the formula is reduced to
true or false.

Variables that are not of the outermost set can also be ex-
panded, but the definition differs. Only variables quantified
after the expanded variable are copied into a new formula,
while the preceding variables are present in both halves of
the expansion. When given the expression

∃X1,∀y,∃X2, . . . ,∃Xm(ϕ)

expanding y will produce the equivalent formula:

∃X1(
∃X2, . . . ,∃Xm(ϕ[y/>])

∧
∃X ′

2, . . . ,∃X ′
m(ϕ[y/⊥])

)

Expanding every universally quantified variable in the prob-
lem will flatten the formula to an exponentially larger SAT
instance.

The Planning Problem
Although the idea of partially grounding with QBF can be
applied to any representation, Planning problems here are
specified using the standard STRIPS formulation (Fikes and
Nilsson 1971). The world is described with F , a set of flu-
ents. An assignment of true or false to these fluents describes
a state. I , a complete assignment to F , denotes the initial
state of the world. The goal state is described by G, a for-
mula over F . The world is changed usingA, the set of action
fluents.

Traditionally, in order to translate the planning problem
into Boolean encodings we must first ground the instance.
Grounding means generating fluents and action fluents from
the operators and propositions of the domain. Examples of
propositions and operators are shown in the example domain
in Figure 1. Briefly, the set of fluents are found by making
every possible valid binding of objects to propositions. Ac-
tion fluents are similarly created from the operators.

The encoding described in Section 3 is only partially
grounded. This means that some operators will not be
grounded at all, or only some parameters will be bound, cre-
ating a set of partially grounded operators. These operators
will be represented by variables in the QBF encoding.

Planning as SAT
Consider a planning problem Π = 〈F,A, I,G〉. As stan-
dard in planning as satisfiability, the existence of a parallel
plan with makespan n is proved by building a propositional
formula with n copies of the sets F and A.

In the following,
• by Xα we denote one such copy of the set of variables;
• by I(Xα) (resp. G(Xα)) we denote the formula obtained

from I (resp. G) by substituting each x ∈ X with the
corresponding variable xα ∈ Xα;
• by σ(Xα) we denote the formula obtained from σ by sub-

stituting each variable x ∈ X with the corresponding vari-
able xα ∈ Xα;
• by τ(Xα, Xβ) we denote the formula obtained from τ by

substituting each variable x ∈ X with the corresponding
variable xα ∈ Xα and similarly each x′ ∈ X ′ with the
corresponding xβ ∈ Xβ .

The state constraint σ(X) enforces that:
• each action fluent in X implies a conjunction of fluents

(in X) corresponding to its preconditions; and
• each pair of action fluents inX that are mutually exclusive

form a binary disjunction of their negations.
The transition relation τ(X,X ′) enforces that:
• each action fluent in X implies its effects in X ′; and
• each fluent in X ′ implies a disjunction of supporting ac-

tions and itself in X , (explanatory frame axioms).
For n ≥ 1, the planning problem Π with makespan n is

the Boolean formula Πn defined as

I(X1) ∧
∧n
i=1 σ(Xi)

∧
∧n
i=1 τ(Xi, Xi+1) ∧G(Xn+1)

(1)

and a plan for Πn is an interpretation satisfying (1).
However, the size of (1) can be exponential in the number

of fluents - making it impossible to even build (1). QBFs are
a promising alternative representation language given that:
1. there exist encodings of the planning problem with

makespan n as QBFs which are polynomial in the num-
ber of fluents (Rintanen 2001; Cashmore and Fox 2010;
Cashmore, Fox, and Giunchiglia 2012), and

2. there is a growing interest in developing efficient solvers
for QBFs; see, for example, the report from the 2010 QBF
competition (Peschiera et al. 2010).

3 Partially grounded QBF encoding
Briefly, the idea behind the encoding is to represent a sin-
gle object of the ungrounded type and then to use universal
variables to create multiple contexts for this representation.
When the universal variables are expanded - as described in
Section 2 - the existential variables representing the object
are copied, and multiple objects of the same type can be rep-
resented.

The new encoding will be introduced in two parts. First
the state representation will be described. This will be fol-
lowed by an in-depth description of the state and transition

30



constraints. The pigeonhole problem will be used as an ex-
ample to illustrate the encoding. This domain was chosen as
it is very simple to understand and an obvious candidate for
lifting. The domain is described in Figure 1.

Splitting propositions and operators
Kautz and Selman (1992) used the idea of operator split-
ting to significantly reduce the size of the resulting encoding.
The basic idea is to reduce the arity of operators by replac-
ing operators that take three or more parameters by several
operators that take no more than two parameters. For exam-
ple, a place (?p − pigeon, ?h − pigeonhole) operator for
placing a pigeon p into pigeonhole h would be replaced by
two split operators: place[1](?p) and place[2](?h).

Operator splitting has been explored and implemented in
more detail in more recent SAT-based planners (Ernst, Mill-
stein, and Weld 1997; Robinson et al. 2008; 2009) and bears
some similarity to the alternate state-representation used by
Huang et al. (2012).

The encoding presented here uses a split representation
similar to that of Kautz and Selman (1992) in a semi-parallel
setting. An operator with multiple parameters will be split
into a number of split operators equal to the number of pa-
rameters to remain ungrounded plus one. For example, if
only pigeons were to remain ungrounded in the example,
splitting the place operator will result in the split opera-
tors place[1](?p) and place[2](?h). However, if both ob-
jects were to remain ungrounded then the operator is split
into three parts: place[0]; place[1](?p); and place[2](?h).
The purpose of this third split operator, place[0], is to en-
sure consistency between the leaves of the QBF. This role
will be explained in detail later.

The propositions are also split, however, no extra split
proposition is added. Instead the proposition is split into a
number of parts equal to the number of ungrounded param-
eters and each of these split propositions has an arity of the
number of grounded parameters. For example, when both
pigeons and pigeonholes remain ungrounded, the proposi-
tion in(?p, ?h) becomes: in[1](?p) and in[2](?h).

Once this is combined with partial grounding, a proposi-
tion with arity 3 is described with only 3 variables, as op-
posed to grounding fully without splitting, in which case
there are 3|O| grounded action fluents. |O| is the number
of objects in the problem.

Partially grounded state representation
After splitting, the split propositions and operators that
correspond to parameters which are not to be lifted are
grounded. The resulting sets are encoded as sets of Boolean
variables: grounded split fluents (F ); grounded split ac-
tion fluents (A); ungrounded split propositions (P ); and un-
grounded split operators (O). A variable from one of these
sets is given a subscript to represent the parameter of which
it is representative. For example oα ∈ O is a split operator
variable representing the parameter α. Each state is encoded
as the set X , comprising of two parts: Xg and Xu, where
Xg := F

⋃
A and Xu := P

⋃
O.

Additional variables are required in order to ensure that
the ungrounded parts of the plan are consistent between con-

texts of the QBF. These variables will be called lock vari-
ables. In each case, m is the number of universal variables.
For each split operator variable oα a set of lock variables are
added to Xg:

{lock1 oα, . . . , lockm oα} ∈ Xg

The operator lock variables ensure that a variable such as
place[1](?p) can only be made true in one context of the
QBF at each time-step. This is important as otherwise we
could place all the pigeons into a single pigeonhole with a
single action.

For each split proposition pα a set of lock variables is
added to Xu for each other ungrounded parameter of the
proposition. For example, consider split proposition:

pα := in[1](?p)

A lock is added to Xu corresponding to the other un-
grounded parameter pβ := in[2](?h). These variables are
denoted

{lock1 pβ , . . . , lockm pβ} ∈ Xu

Similarly for split proposition pβ := in[1](?h) a set of lock
variables are added:

{lock1 pα, . . . , lockm pα} ∈ Xu

The proposition lock variables ensure that the same object is
bound to the proposition between time-steps. For example,
if in[1](?p) and in[2](?h) were both true in two different
contexts of the QBF, the proposition lock variables are re-
quired to know which pigeon is in which pigeonhole.

In the pigeonhole example, in which both objects are un-
grounded, the set X := Xg

⋃
Xu is

Xg
i := {
place[0]i,
lock1 place[1]i, . . . , lockm place[1]i,
lock1 place[2]i, . . . , lockm place[2]i}

Xu
i := {
place[0]i, place[1]i,
in[0]i, in[1]i,
placedi, emptyi,
lock1 in[0]i, . . . , lockm in[0]i,
lock1 in[1]i, . . . , lockm in[1]i}

As the number of pigeons or pigeonholes is increased, the
size of the lock variable sets grows logarithmically. No other
variables are added.

A number of variables are quantified universally between
Xg and Xu. An encoding of a planning problem with
makespan n contains n+ 1 copies of X , and so the quantifi-
cation layer is:

∃Xg
1 . . . X

g
n+1∀a1 . . . am∃Xu

1 . . . X
u
n+1

The universal variables a1, . . . , am define 2m contexts -
leaves of the QBF tree - each of which encodes a unique
object of each ungrounded type.

The Partially Grounded QBF (PG-QBF) encoding of
a planning problem with makespan n is the Quantified
Boolean formula Φn containing n + 1 copies of X and is
defined by:

31



( d e f i n e ( domain PIGEONHOLE)
( : r e q u i r e m e n t s : s t r i p s : t y p i n g )
( : t y p e s p ige on p i g e o n h o l e )
( : p r e d i c a t e s ( i n ? p − p i ge on ? h − p i g e o n h o l e )

( p l a c e d ? p − p i ge on )
( empty ? h − p i g e o n h o l e )
)

( : a c t i o n p l a c e
: p a r a m e t e r s ( ? p − p i ge on ? h − p i g e o n h o l e )
: p r e c o n d i t i o n ( and ( empty ? h )

( n o t ( p l a c e d ? p ) ) )
: e f f e c t
( and ( and ( n o t ( empty ? h ) )

( i n ? p ? h ) )
( p l a c e d ? p ) ) ) )

Figure 1: The domain for the pigeonhole problem with operator place and propositions placed, empty, and in.

∃Xg
1 . . . X

g
n+1∀a1 . . . am∃Xu

1 . . . X
u
n+1(

I(Xg
1 ∪Xu

1 ) ∧G(Xg
n+1 ∪Xu

n+1)
∧
∧n
i=1 τqbf (Xg

i ∪Xu
i , X

g
i+1 ∪Xu

i+1)
∧
∧n
i=1 σqbf (Xg

i ∪Xu
i ))

(2)

A plan for Φn is an interpretation satisfying (2).
The state constraints σqbf (Xg

i ∪Xu
i ) ensure that Oi

⋃
Ai

represent a valid action choice, and that their preconditions
hold in Xi. The transition constraints

τqbf (Xg
i ∪X

u
i , X

g
i+1 ∪X

u
i+1)

ensure that the effects of each action applied in step i hold
in step i+ 1, and also enforce the frame axioms.

State constraints
The state constraints σqbf (Xg

i ∪Xu
i ) ensure that if an action

is to be applied then:

1. exactly one split action variable is made true for each
grounded parameter;

2. for each ungrounded parameter, the corresponding split
operator variable is made true in exactly one context of
the QBF;

3. any action with which it is mutually exclusive cannot be
applied; and

4. it’s preconditions hold.

In the following the time-step subscript i is omitted for sim-
plicity.

Constraint (1) is defined by:

aα → ¬bα for all aα, bα ∈ A, aα 6= bα
oα → (aβ,1∨, . . . ,∨aβ,j) for all oα ∈ O and aβ ∈ A

where aβ,i represents the ith grounded split action fluent
representing the parameter β. j is the number grounded split
action fluent variables representing this action and parame-
ter combination in A.

These constraints ensure that only a single split action flu-
ent for each parameter is made true and that if a split oper-
ator variable is made true, representing an ungrounded part
of the action, the grounded part must also be made true. For
example, if pigeons are grounded, but pigeonholes remain
ungrounded:

place[1](pigeoni)→ ¬place[1](pigeonj),
for each i, j ∈ |P |, i 6= j

place[2](?h)→
place[1](pigeon1) ∨ . . . ∨ place[1](pigeon|P |)

In the case where both object types are ungrounded:

(place[1](?p)→ place[0])∧
(place[2](?h)→ place[0])

Constraint (2) makes use of the lock variable set associ-
ated with the split operator:

oα → (lockj oα ↔ aj), for j = 1, . . . ,m
aβ ∧

∧m
j=1(lockj oα ↔ aj)→ oα

The first constraint ensures that the split operator variable
oα is true in at most one context of the QBF. The second
constraint ensures that if a grounded split action fluent is
made true then the split operator variable oα is true in exactly
one context of the QBF. For example, consider

place[1](?p)→ (lock1 place[1]↔ a1)

in an encoding with m=1.
If place[1](?p) |= > in the context defined by

a1 |= ⊥
then the associated lock variable lock1 place[1] |= ⊥.

Now, when a |= >, place[1](?p) cannot be true, as this
implies lock1 place[1] must be true, which causes a conflict.
The key is that lock1 place[1] is quantified before the uni-
versal variables, and so is not copied upon expansion.

The second constraint:
place[0] ∧ (lockj place[1]↔ aj)→ place[1](?p)
∧
place[0] ∧ (lockj place[2]↔ aj)→ place[2](?h)

32



simply ensures that both halves of place(?p, ?h) are per-
formed. If a grounded part of the action is true, then all
of the split operators corresponding to ungrounded parame-
ters of the action must also be performed. Otherwise only
part of an action is performed. It is for this reason that the
additional split operator (place[0]) is created.

The use of operator lock variables to enforce disjunction
between instances of the same variable in different contexts
of the QBF is the most important contribution of this encod-
ing.

Constraint 3 is easily enforced in exactly the same way as
a SAT encoding, with binary disjunctions between the nega-
tions of grounded split action variables.

Constraint 4 is enforced in two parts. Firstly:

oα → pα
aα → fα

for each oα ∈ O with associated split proposition precondi-
tion pα, and each split action fluent aα ∈ A with associated
split fluent precondition fα. For example:

place[1](?p)→ ¬placed(?p)
∧
place[2](?h)→ empty(?h)

Secondly a constraint is required to ensure that the split
propositions and split fluents constituting the preconditions
belong to the same fluent.

For example, consider the new action remove(?p, ?h)
in Figure 2. It is not enough to ensure that in[0](?p) and
in[1](?h) are true in the correct contexts. It must also be
ensured that both halves connect in the same whole fluent.
Otherwise, if pigeon1 was in pigeonhole1 and pigeon2 in
pigeonhole2 it would be possible to remove pigeon1 from
pigeonhole2. This is avoided by adding the constraint:

oα →
∧m
j=1(lockj oβ ↔ lockj pβ)

for each split operator oα with precondition pα that forms
part of a whole fluent, and for each other ungrounded split
proposition pβ of that fluent.

Using remove as an example: the first ungrounded split
operator variable remove[1](?p) implies that the pigeon is
in a pigeonhole (in[1](?p)) and also that the in[1](?p) split
proposition is related to the correct pigeonhole.

The pigeonhole object is remembered by the proposi-
tion lock variables lock1 in[2], . . . , lockm in[2]. The cor-
rect pigeonhole means the pigeonhole from which it is
being removed, as stored in the operator lock variables
lock1 remove[2], . . . , lockm remove[2].

The resulting constraints are:

remove[1](?p)→∧m
j=1(lockj remove[2]↔ lockj in[2])

∧
remove[2](?h)→∧m

j=1(lockj remove[1]↔ lockj in[1])

and ensure that the pigeon is removed only from its own
pigeonhole.

Transition constraints
The transition constraints τqbf (Xi, Xi+1) ensure that:

1. Xi+1 models the effects of the actions applied in Xi;

2. facts true in Xi+1 and not added by an action in Xi were
true in Xi;

Consider τ(Xi, Xi+1); in the following description of the
constraints we will use vi and vi+1 to distinguish between
variables belonging to the two sets, where vi ∈ Xi and
vi+1 ∈ Xi+1.

Constraint (1) is enforced in much the same way as con-
straint (4) of the state constraints.

oα,i → pα,i+1

aα,i → fα,i+1

for each oα ∈ O with associated split proposition effect pα,
and each split action fluent aα ∈ A with associated split
fluent effect fα. Note that the effects may be negations. For
example:

place[1]i → placedi+1

∧
place[2]i → ¬emptyi+1

Additionally, the proposition lock variables must be set:

oα,i →
∧m
j=1(lockj oβ,i ↔ lockj pβ,i+1)

for each split operator oα with effect pα that forms part of
a whole fluent, and for each other ungrounded split proposi-
tion pβ of that fluent. For example:

place[1]i →
∧m
j=1(lockj place[2]i ↔ lockj in[2]i+1)

∧
place[2]i →

∧m
j=1(lockj place[1]i ↔ lockj in[1]i+1)

Constraint 2 enforces the frame axioms. These enforce
the requirement that split fluents and split propositions retain
the correct value between states, and also that the locks are
maintained. The first part of this is expressed with:

pα,i → pα,i+1 ∨
∨
Dpα,i

fα,i → fα,i+1 ∨
∨
Dfα,i

¬pα,i → ¬pα,i+1 ∨
∨
Apα,i

¬fα,i → ¬fα,i+1 ∨
∨
Afα,i

for each p ∈ P and each f ∈ F . Dpα is the set of split
operators oα that include pα as a delete effect. Apα is the set
of split operators oα that include pα as an add effect. Dfα
and Afα are similarly defined sets of action fluents.

In the example:

emptyi → emptyi+1 ∨ place[2]i
∧
placedi → placedi+1

∧
¬emptyi → ¬emptyi+1

∧
¬placedi → ¬placedi+1 ∨ place[1]i

The locks are maintained using the constraints:

pα,i+1 →
∨
Apα,i ∨

∧m
j=1(lockj pβ,i ↔ lockj pβ,i+1)

33



( : a c t i o n remove
: p a r a m e t e r s ( ? p − p i ge on ? h − p i g e o n h o l e )
: p r e c o n d i t i o n ( i n ? p ? h )
: e f f e c t
( and ( n o t ( i n ? p ? h )

( and ( empty ? h ) )
( n o t ( p l a c e d ? p ) ) ) ) ) )

Figure 2: The operator remove for the pigeonhole domain.

for each pα ∈ P and each other parameter β of the whole
fluent. For example:

in[1]i+1 →
place[1]i ∨

∧m
j=1(lockj in[2]i ↔ lockj in[2]i+1)

∧
in[2]i+1 →

place[2]i ∨
∧m
j=1(lockj in[1]i ↔ lockj in[1]i+1)

These constraints ensure that the split proposition locks refer
to the context in which the linked split proposition resides.

4 Example
Putting everything together we arrive at the QBF instance
Φn, constructed according to formula 2, with the quantifica-
tion layer:

∃Xg
1 . . . X

g
n+1∀a1 . . . am∃Xu

1 . . . X
u
n+1

where

Xg
i := {
place[0]i,
lock1 place[1]i, . . . , lockm place[1]i,
lock1 place[2]i, . . . , lockm place[2]i}

}

Xu
i := {
place[0]i, place[1]i,
in[0]i, in[1]i,
placedi, emptyi,
lock1 in[0]i, . . . , lockm in[0]i,
lock1 in[1]i, . . . , lockm in[1]i}

and the constraints are defined by Figure 3. Constraints 1
and 2 represent the initial and goal states respectively.

Constraints 3 to 8 ensure that only a single place action
is attempted at each time-step, and that each split operator
variable representing this action is true in only one context
of the QBF.

Constraints 9 and 10 enforce action preconditions, while
constraints 11 to 14 enforce the effects of these actions.

Constraints 15 to 24 are the frame axioms. Constraints 23
and 24 maintain the proposition locks, effectively ensuring
that the same pigeons remain in the pigeonholes between
time-steps.

The number of variables is small, dominated by the lock
variables of which there are 4m(n+1) in a problem with 2m

pigeons and pigeonholes and n + 1 states. The size of the
formula in terms of clauses is dominated by the equivalences
between the locks, which are O(m(n+ 1)).

5 Experimentation
Experiments were run on several domains to determine the
effectiveness of the encoding. We hypothesised that:
• as the size of the problem increased, the PG-QBF ap-

proach would scale better than the SAT approach in both
encoding time and solving time;

• as the size of the problem increased, PG-QBF would find
solutions faster than the SAT approach;

• we would find problems that were too large to encode in
SAT within the time limit allowed, but that could be en-
coded and solved using PG-QBF.
The domains selected for experimentation were the pi-

geonhole, gripper and blocksworld domains. These domains
were chosen as they work well with ungrounded approaches.
In other domains in which there is very little or no benefit
from lifting the partially grounded QBF encoding resembles
the SAT encoding.

SAT PG-QBF
problem encoding solving encoding solving

pigeonhole2 0.04 0.00 0.04 0.00
pigeonhole4 0.09 0.00 0.04 0.00
pigeonhole8 0.33 0.12 0.06 0.00

pigeonhole16 5.53 5.06 0.1 0.09
pigeonhole32 155.71 * 0.13 0.58
pigeonhole64 - - 0.16 22.8

gripper2 0.06 0.00 0.07 0.00
gripper4 0.13 0.03 0.1 0.01
gripper8 0.28 6.61 0.12 0.35

gripper16 1.22 1171.49 0.16 180.19
gripper32 7.03 - 0.3 -

blocksworld2 0.05 0.00 0.04 0.00
blocksworld4 0.11 0.01 0.09 0.02
blocksworld8 0.93 0.56 0.13 0.16

blocksworld16 13.43 20.47 0.18 1.16
blocksworld32 - - 0.32 5834.88
blocksworld64 - - 0.68 -

Table 1: Time taken to encode and solve problems using
partially grounded QBF encodings and SAT based encod-
ings. All times are in seconds. “-” means the time limit was
reached, “*” means that the encoding ran out of memory.

For each domain a number of problems were generated,
gradually increasing the size of the domain. These problems
were then translated into SAT and PG-QBF encodings. The
time taken for this translation was recorded. We used the
SAT encoding used by SATPLAN’06 (Kautz, Selman, and

34



1. ¬placed0 ∧ empty0 ∧ ¬in[0]0 ∧ ¬in[1]0
2. placedn+1

3. place[1]i → place[0]i, for all i = 1 . . . (n+ 1)

4. place[2]i → place[0]i, for all i = 1 . . . (n+ 1)

5. place[1]i → (lockj place[1]i ↔ aj), for all i = 1 . . . (n+ 1) and j = 1 . . .m

6. place[2]i → (lockj place[2]i ↔ aj), for all i = 1 . . . (n+ 1) and j = 1 . . .m

7. place[0]i ∧
∧m

j=1(lockj place[1]i ↔ aj)→ place[1]i, for all i = 1 . . . (n+ 1)

8. place[0]i ∧
∧m

j=1(lockj place[2]i ↔ aj)→ place[2]i, for all i = 1 . . . (n+ 1)

9. place[1]i → ¬placedi, for all i = 1 . . . n

10. place[2]i → emptyi, for all i = 1 . . . n

11. place[1]i → placedi+1, for all i = 1 . . . n

12. place[2]i → ¬emptyi+1, for all i = 1 . . . n

13. place[1]i → (lockj place[2]i ↔ lockj in[2]i+1), for all i = 1 . . . n and j = 1 . . .m

14. place[2]i → (lockj place[1]i ↔ lockj in[1]i+1), for all i = 1 . . . n and j = 1 . . .m

15. emptyi → place[2]i ∨ emptyi+1, for all i = 1 . . . n

16. ¬emptyi → ¬emptyi+1, for all i = 1 . . . n

17. ¬placedi → place[1]i ∨ ¬placedi+1, for all i = 1 . . . n

18. placedi → placedi+1, for all i = 1 . . . n

19. in[1]i → in[1]i+1, for all i = 1 . . . n

20. ¬in[1]i → place[1] ∨ ¬in[1]i+1, for all i = 1 . . . n

21. in[2]i → in[2]i+1, for all i = 1 . . . n

22. ¬in[2]i → place[2] ∨ ¬in[2]i+1, for all i = 1 . . . n

23. in[1]i → (lockj in[2]i ↔ lockj in[2]i+1), for all i = 1 . . . n and j = 1 . . .m

24. in[2]i → (lockj in[1]i ↔ lockj in[1]i+1), for all i = 1 . . . n and j = 1 . . .m

Figure 3: The constraints QBF instance Φn representing a pigeonhole problem with 2m pigeons and pigeonholes, and n + 1
states.

Hoffmann 2006) as it used the same STRIPS-based fluen-
t/action representation as the PG-QBF encoding. Other SAT
encodings, and additional constraints can also be used as a
basis for partially grounded QBF encodings.

The sizes of these encodings can be seen in Table 2. This
table highlights the difference in scaling between the ap-
proaches. The size of the SAT encoding very quickly be-
comes unreasonable, while the PG-QBF encodings scale
much better; in the case of the pigeonhole problem PG-QBF
encoding grows linearly with the number of objects.

The encodings were then solved using the SAT solver
picosat-535 and QBF solver quantor-3.0. Descriptions of
these solvers can be found in Biere (2004) and (2008).

The times are recorded in Table 1. Times are presented in
seconds, a hyphen indicating that the process was terminated
after the time limit of 2 hours was reached. A star indicates
that the process ran out of memory before the time limit was
reached. The experiments were all run on a machine with
8GB of RAM and no artificial bound on the amount of mem-
ory used.

As can be observed, PG-QBF was able to encode and
solve all of the pigeonhole instances considered, within the
2 hour limit, while SAT could not encode pigeonhole64,

and was unable to solve pigeonhole32 and pigeonhole64 in
the time available. PG-QBF was able to encode all of the
instances across all domains in under one third of a sec-
ond, while the time required by SAT to encode larger in-
stances grew exponentially. Both approaches exhibit expo-
nentially growing solution time, although the PG-QBF curve
increases more slowly than the SAT curve. Neither approach
was able to solve gripper32. These results support our first
and second hypotheses, that PG-QBF scales better than SAT
in both encoding and solution time, and that PG-QBF solves
problems faster than SAT. Our third hypothesis is supported
by pigeonhole64 and blocksworld32, which demonstrates
that there are indeed instances that cannot be encoded by
SAT, but can be encoded and solved by PG-QBF, within a
fixed time limit.

6 Conclusions
In this paper we have introduced a method for lifting SAT
encodings of planning problems into Quantified Boolean
Formulae. Lifting objects into equivalence classes is a very
powerful idea, being explored in different ways by a number
of researchers in planning (Nguyen and Kambhampati 2001;
Ridder and Fox 2011). It is well-known that grounding of

35



SAT PG-QBF
problem variables clauses variables clauses
gripper2 120 657 129 488
gripper4 432 3267 290 1240
gripper8 1632 18183 643 2984

gripper16 6336 113679 1412 6952
gripper32 24960 782367 3077 15848

blocksworld2 72 261 109 331
blocksworld4 504 3891 352 1191
blocksworld8 3600 82503 963 3415

blocksworld16 26784 2265615 2422 8807
blocksworld32 - - 5801 21415
blocksworld64 - - 13468 50215

pigeonhole2 30 90 35 81
pigeonhole4 180 1232 79 207
pigeonhole8 1224 25008 177 501

pigeonhole16 8976 641696 399 1187
pigeonhole32 68640 18500160 901 2769
pigeonhole64 - - 2027 6367

Table 2: Formula sizes for partially grounded QBF and SAT
based encodings. “-” means the encoding ran out of time.

planning domains is infeasible for very large problems and
that techniques for lifting planning instances can help with
the solution of very large instances containing very large
numbers of objects of the same type.

Our approach shows how to construct QBF encodings that
both lift sets of similar objects into representative variables,
and ensure consistent reasoning when the specific objects in-
volved in transitions are not yet committed to. The approach
is inspired by earlier work in least-commitment planning.

We have shown that our approach can lead to exponen-
tially smaller encodings and allow larger problem instances
to be solved than is possible using SAT.

References
Biere, A.; Cimatti, A.; Clarke, E.; and Zhu, Y. 1999. Sym-
bolic model checking without BDDs. In Proceedings of the
Fifth International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’99), 193–
207.
Biere, A. 2004. Resolve and expand. In Proceedings of the
7th International Conference on Theory and Applications of
Satisfiability Testing (SAT’04), 59–70.
Biere, A. 2008. Picosat essentials. Journal on Satisfiability,
Boolean Modeling and Computation (JSAT).
Cashmore, M., and Fox, M. 2010. Planning as QBF. Inter-
national Conference on Automated Planning and Scheduling
Doctoral Consortium (ICAPS 2010).
Cashmore, M.; Fox, M.; and Giunchiglia, E. 2012. Planning
as quantified boolean formulae. In Proceedings of the 20th
European Conference on Artificial Intelligence (ECAI 2012).
Dershowitz, N.; Hanna, Z.; and Katz, J. 2005. Bounded
model checking with QBF. In Proceedings of the 8th Inter-
national Conference on Theory and Applications of Satisfia-
bility Testing (SAT’05), 408–414.
Ernst, M. D.; Millstein, T. D.; and Weld, D. S. 1997. Au-
tomatic SAT-compilation of planning problems. In Proceed-

ings of the 15th International Joint Conference on Artificial
Intelligence (IJCAI’97), 1169–1176.
Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving. Arti-
ficial Intelligence 2(3–4):189–208.
Huang, R.; Chen, Y.; and Zhang, W. 2012. SAS+ planning
as satisfiability. Journal of Artificial Intelligence Research
43:293–328.
Jussila, T., and Biere, A. 2007. Compressing BMC encod-
ings with QBF. Electronic Notes in Theoretical Computer
Science 174(3):45–56.
Kautz, H., and Selman, B. 1992. Planning as satisfiability.
In Proceedings of the 10th European Conference on Artificial
Intelligence (ECAI’92), 359–363.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
planning, propositional logic and stochastic search. In Pro-
ceedings of the 13th National Conference on Artificial Intel-
ligence (AAAI’96), 1194–1201.
Kautz, H. A.; Selman, B.; and Hoffmann, J. 2006. SatPlan:
Planning as satisfiability. In Abstracts of the 5th International
Planning Competition.
Mangassarian, H.; Veneris, A. G.; and Benedetti, M. 2010.
Robust QBF encodings for sequential circuits with applica-
tions to verification, debug, and test. IEEE Transactions on
Computers 59(7):981–994.
Nguyen, X., and Kambhampati, S. 2001. Reviving partial
order planning.
Peschiera, C.; Pulina, L.; Tacchella, A.; Bubeck, U.; Kull-
mann, O.; and Lynce, I. 2010. The seventh QBF solvers
evaluation (QBFEVAL’10). In Proceedings of 13th the In-
ternational Conference on Theory and Applications of Satis-
fiability Testing (SAT’10).
Ridder, B., and Fox, M. 2011. Performing a lifted reach-
ability analysis as a first step towards lifted partial ordered
planning. In Proceedings of UK Planning and Scheduling
SIG Workshop (Plansig’11).
Rintanen, J. 2001. Partial implicit unfolding in the
Davis-Putnam procedure for quantified Boolean formulae.
In Proceedings of the 8th International Conference on
Logic for Programming, Artificial Intelligence and Reason-
ing (LPAR’01), 362–376.
Robinson, N.; Gretton, C.; Pham, D. N.; and Sattar, A. 2008.
A compact and efficient SAT encoding for planning. In Pro-
ceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS’08), 296–303.
Robinson, N.; Gretton, C.; Pham, D. N.; and Sattar, A. 2009.
SAT-based parallel planning using a split representation of
actions. In Proceedings of the 19th International Conference
on Automated Planning and Scheduling (ICAPS’09).
Savitch, W. J. 1970. Relationships between nondeterministic
and deterministic tape complexities. Journal of Computer
and System Sciences 4(2):177–192.
Stockmeyer, L. J., and Meyer, A. R. 1973. Word problems re-
quiring exponential time: Preliminary report. In Proceedings
of the 5th Annual ACM Symposium on Theory of Computing
(STOC’73), 1–9.

36




