
New Encoding Methods for SAT-Based Temporal Planning

Masood Feyzbakhsh Rankooh and Gholamreza Ghassem-Sani
Sharif University of Technology

Tehran, Iran

Abstract

Although satisfiability checking is known to be an effec-
tive approach in classical planning, it has scarcely been
investigated in the field of temporal planning. Most no-
tably, the usage of ∃-step semantics for encoding the
problem into a SAT formula, while being demonstra-
bly quite efficient for decreasing the size of the encod-
ings in classical planning, has not yet been employed
to tackle temporal planning problems. In this paper,
we define temporal versions of classical ∀-step and ∃-
step plans. We show that when the casual and tempo-
ral reasoning phases of a SAT-based temporal planner
are separated, these semantics can be used to translate
a given temporal planning problem into a SAT formula.
We introduce two different types of ∃-step encodings
in temporal planning. The first encoding method is a
temporal version of the classical ∃-step encoding. Like
its classical counterpart, in the new encoding we sup-
pose a few restrictive simplifying assumptions. On the
other hand, by relaxing one of these assumptions, the
second type of ∃-step encodings, which is often more
compact than the first one, is introduced. However, if a
temporal planning problem possesses the property that
we call required causal simultaneity, neither of our pro-
posed encodings will be expressive enough to represent
a valid temporal plan. Nevertheless, we show that this
property is rather rare and can be detected in polyno-
mial time. Our experiments indicate that by embedding
the proposed encodings into ITSAT, a SAT-based tem-
poral planner based on the ∀-step encoding, a consid-
erable improvement is achieved in terms of both speed
and memory usage of the planner. The resulting planner
significantly outperforms POPF, which is currently the
state-of-the-art of temporally expressive planners.

Introduction
Previous research in the field of temporal planning has enor-
mously benefited from employing well-developed classi-
cal planning strategies. In fact, many classical planning
methods have already been used to tackle temporal plan-
ning problems, too. For instance, many successful tempo-
ral planners have utilized the ideas of partial order planning
e.g., VHPOP (Younes and Simmons 2003) and CPT (Vidal

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Geffner 2006). Planning graph analysis has also been
adopted by temporal planners such as TGP (Smith and Weld
1999) and TPSYS (Garrido, Fox, and Long 2002). Some
other temporal planners have embedded temporal reasoning
into heuristic state space search. TFD (Eyerich, Matmuller,
and Roger 2009) and POPF (Coles et al. 2010) are two suc-
cessful instances of this latter approach.

Employing satisfiability checking is another important
trend of classical planning research. In this approach, a
given planning problem is encoded into a SAT formula. In
order to make the corresponding SAT formula finite, the po-
tential plan is assumed to have a finite number of steps. The
formula is given as the input to an off-the-shelf SAT solver.
The SAT solver tries to find a model for the formula. If such
a model exists, the final plan is extracted from it. Otherwise,
the number of steps is increased and the whole process is
repeated.

SAT-based classical planning was first used to find op-
timal plans, i.e., plans with minimum number of actions
(Kautz and Selman 1992). To guarantee the optimality of
the output plan, the formulae must include certain clauses to
ban each step from containing more than one action. How-
ever, if optimality is not the objective of the planner, forc-
ing single-action steps is not necessary. In an alternative
approach, which has been shown to be quite effective (Rin-
tanen, Heljanko, and Niemelä 2006), the planning problem
is encoded in such a way that each step of the final plan can
have several parallel actions. The usage of multiple-action
steps results in a smaller number of steps in SAT formulae,
which in turn reduces the number of SAT variables. Since
the speed of SAT solvers may exponentially decrease as the
number of variables is increased, employing this idea of-
ten results in considerably faster planners. Several encod-
ing methods have been introduced to take advantage of such
a parallelism. The research in this area is mainly focused
on the so-called ∀-step and ∃-step semantics of valid plans
(Rintanen, Heljanko, and Niemelä 2006).

The ∀-step semantics allows each step of a plan to include
a particular set of actions, only if those actions can be exe-
cuted in every possible order without affecting the validity
of the plan. On the other hand, the ∃-step semantics is based
on some weaker requirements: for each step of a plan, there
must exist at least one possible ordering in which the actions
of that step can be arranged without falsifying the validity of

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

73

the plan. It should be clear that the ∃-step semantics poten-
tially allows more parallelism than what is permitted by the
∀-step semantics. In fact, ∃-step encoding has been shown
to be one of the most efficient methods for converting clas-
sical planning problems to SAT formulae (Rintanen, Hel-
janko, and Niemelä 2006).

Satisfiability checking has also been used to tackle tem-
poral planning problems. STEP (Huang, Chen, and Zhang
2009) and T-SATPLAN (Mali and Liu 2006) are two SAT-
based planners that handle temporal constraints by assign-
ing explicit discrete time labels to each step of the encod-
ing. TM-LPSAT (Shin and Davis 2005), which has been de-
signed to solve planning problems defined by PDDL+ (Fox
and Long 2002), is another SAT-based planner that can han-
dle temporal planning problems. However, in TM-LPSAT,
the steps of the SAT formula do not possess predefined time
labels. Instead, the execution time of each step will be stored
in a variable whose value is to be determined by an SMT
solver (Armando and Giunchiglia 1993).

ITSAT (Rankooh, Mahjoob, and Ghassem-Sani 2012) is
yet another example of SAT-based temporal planners. Like
TM-LPSAT, ITSAT does not assign explicit time labels to
the steps of its encoding. Besides, ITSAT first abstracts out
the durations of actions. It then finds a plan that is only
causally valid. The plan is then refined in such a way that
satisfies temporal constraints imposed by the durations of
actions.

In this paper, we generalize the concepts of single-action-
step, ∀-step, and ∃-step plans to the temporal planning con-
text. We show that according to our definition of parallel
plans, STEP, T-SATPLAN, and TM-LPSAT are all using a
temporal version of the single-action-step encoding. We also
show that the separation of causal and temporal reasoning
has enabled ITSAT to somehow use the temporal version of
∀-step semantics for its encoding. We also introduce a new
temporal version of ∃-step semantics and use it to propose
two novel encoding methods. The completeness of the pro-
posed semantics is also analyzed in this paper. For testing
the efficiency of the new encodings, we replace the ∀-step
encoding of ITSAT by each of our proposed encodings and
compare the performance of the resulting planner with that
of original ITSAT and POPF which are currently the state-
of-the-art of temporally expressive planners.

Preliminaries
In this section, we define basic concepts such as temporal
states, actions, problems, and plans. Our definitions of these
concepts here are consistent with the level 3 of PDDL2.1
(Fox and Long 2003), and have been inspired by the formal-
ization used for TEMPO (Cushing et al. 2007). We assume
that the reader is familiar with the definitions of states, ac-
tions, and problems of classical planning.

Definition 1 (temporal states) A temporal state, s, is a
pair (state(s), agenda(s)) , where state(s) is a classical
planning state and agenda(s) contains all the actions that
are started but not yet finished before reaching s.

Definition 2 (temporal actions and events)
A temporal action, a, is a quadruple

(start(a), end(a), over(a), dur(a)) where start(a)
and end(a) are two classical planning actions denoting the
starting and ending events of a, over(a) is a set of classical
preconditions representing the over-all conditions of a, and
dur(a) is a positive rational number specifying the duration
of a.

Definition 3 (mutual exclusion) Two events, ei and ej ,
are mutually exclusive in the temporal sense if either of the
following conditions holds:

• ei and ej are mutually exclusive in the classical sense
(Blum and Furst 1997).

• ei (or ej) is the staring event of action a, and ej (or ei)
deletes a member of over(a).

Definition 4 (applicability) A set of events, E =
{e1, ..., en}, is applicable in state s, if all following condi-
tions hold:

• For each i, ei is applicable to state(s) in the classical
sense.

• If ei is the starting event of action a, then over(a) ⊆⋃
e∈E add(e) ∪ state(s)

• If ei is a starting event, then it does not delete an over-all
condition of any member of agenda(s).

• If ei is the ending event of action a, then a is a member of
agenda(s) and ei does not delete an over-all condition of
any other member of agenda(s).

• For all i and j, ei and ej are not mutually exclusive.

We say that members of E are simultaneously applied to
state s.

Definition 5 (successors) If a set of events E =
{e1, ..., en} is applicable to state s, it will change s to
s′ where state(s′) is the result of applying all members
of E to state(s) in the classical sense and in an arbi-
trary order, and agenda(s′) is determined by the follow-
ing rule: agenda(s′) = agenda(s) ∪ {a|start(a) ∈ E} −
{a|end(a) ∈ E}. s′ is also denoted by succ(s, E). Ap-
plying a sequence of sets of event to step s is defined
by the following recursive rule: succ(s, 〈E1, ..., En〉) =
succ(succ(s, E1), 〈E2, ..., En〉).

Definition 6 (temporal problems) A temporal problem,
P , is a triple (I,G,A) where I is a temporal state such that
agenda(I) = φ representing the initial state, G is a set of
classical goal conditions, andA is the set of all possible tem-
poral actions of P .

Definition 7 (temporal plans) A temporal plan π is a
sequence E1, ..., En, where each Ei is a set of simulta-
neously executed events representing a step of π. π is
valid for problem P = (I,G,A) if there exist a se-
quence s0, ..., sn of temporal states, such that s0 = I ,
G ⊆ state(sn), agenda(sn) = φ, and for every i, si =
succ(si−1, Ei). Moreover, there must exist a scheduling
function τ : {1, ..., n} → Q with the following properties:

• For all i, τ(i) < τ(i+ 1).

74

• For each a ∈ A, if start(a) ∈ Ei and end(a) ∈ Ej , then
τ(j) = τ(i) + dur(a).

It should be noted that by Definition 7, a valid temporal
plan is a sequence of steps where each step includes several
simultaneously executed events. In other words, all events
of any particular step must be executed at the same time.
We call this semantics, 1-step semantics for temporal plans.
This is in fact a generalization of classical single-action-step
semantics.

Simultaneity of events is necessary for solving some tem-
poral problems. For instance, consider the plan shown in
Figure 1(a). In this plan, we have two temporal actions a
and b, where the starting event of each is providing the over-
all conditions of the other. Consequently, if the goal state
is reached by either a or b, both actions have to be started
simultaneously. Another example of situations where simul-
taneity of events is necessary is depicted in Figure 1(b). In
this example, the over-all condition of a is added and deleted
respectively by the starting and ending events of b. The fact
that a and b have equal durations necessitates the simultane-
ous execution of these two actions.

Figure 1. Plans with simulataneous events

ITSAT Planning System
In this section, the ITSAT planning system is briefly de-
scribed. ITSAT was the first SAT-based temporal planner
in which the causal and temporal reasoning tasks were per-
formed in two separate phases. Such a separation is critical
for the feasibility of our ∃-step encoding methods discussed
later.

To solve a temporal planning problem, ITSAT first ab-
stracts out the durations of actions. In other words, it is as-
sumed that actions can have arbitrary durations. It then en-
codes the abstract problem into a SAT formula. This abstrac-
tion causes the encoding to be very similar to that of classi-
cal SAT-based planners. However, beside ordinary clauses
used by classical SAT-based planners, ITSAT needs a num-
ber of extra clauses to satisfy the over-all conditions of ac-
tions. Moreover, there are several clauses to appropriately
manipulate the agendas of states before and after each step.

By using the encoding method explained above, ITSAT
may find plans that are not temporally valid. However, all
the obtained plans are guaranteed to be what we call causally
valid.

Definition 8 (causally valid temporal plans) A temporal
plan π is causally valid for temporal problem P , if it admits
all requirements of definition 7, except for the existence of
the scheduling function τ , which is optional.

Figure 2. Negative cycle detection in ITSAT

Figure 2(a) represents a causally valid temporal plan that
is not temporally valid. That is because action b is to be
executed during the execution of action a, while the duration
of b is greater than that of a.

To find a temporally valid plan, ITSAT tries to schedule
the events of the obtained causally valid plan by solving a
particular Simple Temporal Problem (STP) (Dechter, Meiri,
and Pearl 1991) that enforces the temporal constraints of the

75

planning problem. If the STP is inconsistent, there must
exist a negative cycle in the corresponding Simple Tempo-
ral Network (STN). The STN of the plan in Figure 2(a) is
shown in Figure 2(b), where the cycle asbsbeaeas is a neg-
ative cycle. The sequence of events that lead to such nega-
tive cycles can be detected by simple Finite State Machines
(FSMs). The transition of these FSMs can then be turned
into appropriate caluses that collectively prevent such nega-
tive cycles from reoccurring. The FSM that detects the cycle
asbsbeaeas is depicted in Figure 2(c). It has been shown that
ITSAT is capable of solving problems with the required con-
currency property (Cushing et al. 2007), and is competitive
with the state-of-the-art temporally expressive planners.

New Semantics for Causally Valid Temporal
Plans

According to definition 7, although planners such as STEP,
T-SATPLAN, and TM-LPSAT allow parallel execution of
actions, they are in fact using the 1-step encoding. That is
because these planners assume simultaneous execution of all
events in each step.

As we mentioned before, the classical ∀-step semantics
permits the execution of more than one action in each step,
only if the validity of the plan is not dependent on the exe-
cution order of those actions. This can simply be guaranteed
by adding a particular clause for each pair of mutually exclu-
sive actions to ensure that those actions will not be included
in the same step. However, such a strategy does not work
for temporal planning. In temporal planning, because of the
temporal constraints between the starting and ending events
of actions, the validity of a particular ordering of events of a
step, also depends on the ordering of events of other steps.
Nevertheless, in ITSAT this problem has been tackled by
separating the causal and temporal reasoning phases. In gen-
eral, if we focus on finding causally valid plans, and post-
pone the scheduling phase, the mentioned problem about
checking the feasibility of imposing different orderings of
events in each step will no longer exist.

We now introduce our semantics for causally valid ∀-step
and ∃-step temporal plans.

Definition 9 (temporal ∀-steps and ∃-steps) Let S =
{E1, ..., En} be a set of sets of events, and s1 and s2 be two
temporal states. S is a temporal ∀-step from s1 to s2 if for all
one-to-one ordering functions O : {1, ..., n} → {1, ..., n},
we have: s2 = succ(s1, 〈EO(1), ..., EO(n)〉).
S is a temporal ∃-step from s1 to s2 if for some one-to-one
ordering functions O : {1, ..., n} → {1, ..., n}, we have:
s2 = succ(s1, 〈EO(1), ..., EO(n)〉)

Definition 10 (causally valid ∀-step and ∃-step temporal
plans) Let P = (I,G,A) be a temporal planning prob-
lem. Suppose s0, ..., sn is a sequence of temporal states such
that s0 = I , G ⊆ state(sn), and agenda(sn) = φ. If for
each 1 ≤ i ≤ n, Stepi is a ∀-step (∃-step) from si−1 to
si, then we call the sequence 〈Step1, ..., Stepn〉, a causally
valid ∀-step (∃-step) temporal plan for P .

∃-step Encodings for Causally Valid Temporal
Plans

Classical ∃-step encoding, which has been introduced in
(Rintanen, Heljanko, and Niemelä 2006), is based on the
∃-step semantics for classical valid plans. However, for the
sake of improving the efficiency of the planner, the follow-
ing restrictive rules have been also enforced on it.
• Rule 1: Instead of accepting all possible orderings among

the actions of each step, only a fixed arbitrary ordering
was allowed. Executing a step means executing its actions
according to this fixed ordering.

• Rule 2: Preconditions and effects of all actions of each
step must be consistent with the states before and after
that step, respectively.
The second rule causes an action a to be excluded from a

step if there is a contradiction between its effects and that of
any other action in that step. Also, a is prevented from being
in a step if its precondition is deleted in that step by any
other action that according to the predefined fixed ordering
is located before a.

In this section, we present two ∃-step encodings for tem-
poral planning. Both proposed encodings are based on the ∃-
step semantics for causally valid temporal plans (definition
10). By considering events, instead of actions, both rules
mentioned above can be applied to temporal planning, too.
While in our first encoding, we respect both rules, our sec-
ond encoding relaxes the second one. Besides, we also use
a third restrictive rule in both proposed encodings. We will
later discuss the benefits of the third rule.
• Rule 3: The ending event of each action must be located

next to the starting event of that action in the fixed order-
ing mentioned in Rule 1.
It should be noted that since we are using a total order be-

tween all events, our encodings are not completely coherent
with the ∃-step semantics defined by definition 10. In fact,
for the sake of simplicity, we have assumed that no pair of
actions can happen simultaneously in a causally valid plan.
This assumption does not render our encodings incomplete
unless the problem has a certain property that we call re-
quired causal simultaneity.

Definition 11 (required causal simultaneity) We say a
temporal plan π = 〈E1, ..., En〉 has simultaneity if for some
i, we have |Ei| > 1. If every causally valid plan of a tem-
poral problem P has simultaneity, we say that P requires
causal simultaneity.

Note that while the plan in Figure 1(a) requires causal si-
multaneity, this is not the case in the plan presented in Fig-
ure 1(b). Moreover, while required simultaneity entails re-
quired concurrency (Cushing et al. 2007), the reverse is not
true. In other words, required simultaneity is more specific
than required concurrency. We now show that the existence
of the required causal simultaneity has some necessary (but
not sufficient) conditions that can be detected in polynomial
time.

Let P be a temporal planning problem. Associated with
P , we construct a precedence graph G(P) =< V,E > as
follows:

76

• For each event ei of P , there is a vertex vi ∈ V .

• If ei is the starting event of action a, and ej adds an over-
all condition of a, we add a directed edge (vj , vi) to E.

• If ei is the ending event of action a, and ej deletes an
over-all condition of a, we add a directed edge (vi, vj) to
E.

The precedence graphs of the problems corresponding to
the plans of Figure 1(a) and Figure 1(b) are presented in
Figure 3(a) and Figure 3(b), respectively.

Figure 3. Precedence graphs

Theorem 1. Let P be a temporal planning problem for
which there exist a causally valid temporal plan. If P re-
quires causal simultaneity, then G(P) must have a cycle.

Proof sketch. The proof is given by contradiction. Sup-
pose that G(P) is acyclic. By applying the topological sort
algorithm to G(P), we obtain a total ordering on the ver-
tices of (and consequently on the events of P). Let π be a
causally valid temporal plan for P . We construct a new plan
π′, which is the same as π except for the previously simul-
taneous events that are now totally ordered by the topologi-
cal ordering. The ordering we imposed on the events of π′
prevents it from becoming causally invalid (details are omit-
ted here). This contradicts our assumption that P requires
causal simultaneity.

Since topological sort is a polynomial time algorithm,
we conclude that detecting the necessary conditions of re-
quired causal simultaneity, stated in theorem 1, can be done
in polynomial time. Our investigations show that from all
domains used in different International Planning Competi-
tions, only the rovers domain has this necessary condition.
Therefore, preventing the occurrence of simultaneous events
in the causally valid plans will not seriously damage the gen-
erality of our method.

We now describe the clauses that are to be included in
both new encodings. These are clauses needed for appropri-
ate manipulation of the agendas of states and preventing the
over-all conditions of each action from being deleted during
the execution of that action.

Clauses Shared by Both Proposed Encodings
Assume that the encoding is to represent a ∃-step temporal
plan, 〈Step1, ..., Stepn〉, where members of each Stept are
applied to the temporal state st−1, according to a predefined
fixed ordering, and map it to state st. Suppose that the index

of each event represents the location of that event in the fixed
ordering. From now on, if we say that an event ei is earlier
(later) than an event ej , we mean that j is greater (less) than
i. We denote the existence of an event e in a step t by the
SAT variable Y t

e . We also use the SAT variableOt
a to denote

that action a is a member of agenda(st). The SAT variable
Xt

p is used to denote the existance of proposition p in state
st.

Encoding the initial state and goal conditions of the prob-
lem is quite standard. The following clauses are introduced
to guarantee that the agendas of states are changed appro-
priately. We give both a verbal description, and a formal
representation of each clause.

• If ei is the starting event of action a, the presence
of ei in step t implies that a is not a member of
agenda(st−1). Besides, if a is a member of agenda(st)
but not agenda(st−1), then ei must be present in step t:
(Y t

ei →∼ Oa
t−1) and (∼ Ot−1

a ∧ Ot
a → Y t

ei). Further-
more, if ei is present in step t, but ei+1, which according
to our third restrictive rule must be the ending event of
a, is not present in step t, then a has to be a member of
agenda(st): Y t

ei∧ ∼ Y
t
ei+1
→ Ot

a.

• A description analogous to what is given above also
applies to the ending event of a: (Y t

ei+1
→∼ Oa

t),
(Ot−1

a ∧ ∼ Ot
a → Y t

ei+1
), and (∼ Y t

ei ∧ Y
t
ei+1
→ Ot−1

a).

• The agenda of the initial and final state of the plan must
be empty: for each a, (∼ O0

a∧ ∼ On
a).

The following clauses are added to the encoding for pre-
venting the over-all conditions of each action from being
deleted during the execution of that action. These clauses are
representing a schematic message passing strategy, which
is inspired by the chaining method used in (Rintanen, Hel-
janko, and Niemelä 2006). For each step t, proposition p,
and event ei whose corresponding action has p as an over-
all condition, the SAT variable Bt

p,i denotes whether or not
p is deleted in step t, by an event whose index is less than
i (i.e., an earlier event). Similarly, variable At

p,i represents
that whether or not p is deleted in step t by an event whose
index is greater than i (a later event). Finally, variable Dt

p
shows whether or not p is deleted by any event in step t.

• Assume that event ei deletes proposition p, and ej is the
first event after ei with the property that its corresponding
action has p as an over-all condition. If ei is present in
step t, then a message must be sent to ej to indicate that
p has been deleted earlier in step t: (Y t

ei → Bt
p,j) and

(Y t
ei → Dt

p).

• Assume that event ei deletes proposition p, and ej is the
last event before ei with the property that its correspond-
ing action has p as an over-all condition. If ei is present in
step t, then a message must be sent to ej to indicate that p
will be deleted later in step t: (Y t

ei → At
p,j).

• Assume that p is an over-all condition of action a, ei is
the ending event of a, and ej is the first ending event after
ei with the property that its corresponding action has p as
an over-all condition. If ei receives a message implying

77

that p has been deleted earlier in step t, then it must pass
this message to ej : (Bt

p,i → Bt
p,j).

• Assume that p is an over-all condition of action a, ei is the
starting event of a, and ej is the last starting event before
ei with the property that its corresponding action has p as
an over-all condition. If ei receives a message implying
that p is to be deleted later in step t, then it must pass this
message to ej : (At

p,i → At
p,j).

• Assume that p is an over-all condition of action a. If p
is deleted in step t, then a cannot be a member of both
agenda(st−1) and agenda(st): (Dt

p ∧ Ot
a →∼ Ot−1

a).
In other words, if a is started before and ended after step
t, its overall conditions cannot be deleted in step t.

• Assume that p is an over-all condition of action a, and ei
is the starting event of a. If ei is present in step t, and p
has been deleted by an event later than ei in step t, then
ei+1 (the ending event of a) must be present in step t, too:
(Y t

ei ∧A
t
p,i → Y t

ei+1
). This implies that if a is started but

not ended in step t, its over-all condition cannot be deleted
later in step t. This is where we are taking advantage of
our third restrictive rule: if a is both started and ended in
the same step, because its starting and ending events are
next to each other, no other event can delete its over-all
conditions while a is being executed.

• Assume that p is an over-all condition of action a, and ei
is the ending event of a. If ei is present in step t, and p
is deleted by an event earlier than ei in step t, then ei−1
(i.e., the starting event of a) must be present in step t, too:
(Y t

ei ∧ B
t
p,i → Y t

ei−1
). This implies that if a is ended

but not started in step t, its over-all condition cannot be
deleted in step t by an earlier event.

In addition to the shared clauses stated above, there are
other necessary clauses exclusive to each of our new encod-
ings. We present these clauses in their corresponding sub-
section. We say that an event e requires a proposition p if p
is a precondition of e, or e is the starting event of an action
that has p as an over-all condition. We say that the a propo-
sition p is relevant to an event e if e requires, adds, or deletes
p.

A Natural Extension to the Classical ∃-step
Encoding
Our first proposed encoding is a natural extension to the clas-
sical ∃-step encoding, as it uses all three restrictive rules
stated above. According to the second rule, the precondi-
tions and effects of events of each step must be consistent
with the states before and after that step, respectively. There-
fore, this part of the encoding, which also includes explana-
tory frame axioms, is very similar to its corresponding part
in the standard classical encodings. However, when we are
dealing with temporal planning problems, the over-all con-
ditions of actions must be encoded, too:

• Assume that e is the starting event of an action a, p is an
over-all condition of a, and e does not add p. If e is present
in any step t, then p must be true in st−1: (Y t

e → Xt−1
p).

Similar to the classical ∃-step encoding, for any i < j, if
ei deletes p and ej requires p, then ei and ej cannot be both
present in any step. To ensure this, a schematic message
passing strategy very similar to the one mentioned before, is
employed.

For each step t, proposition p, and event ei that requires
p, Zt

p,i denotes if p is deleted in step t by an event earlier
than ei.
• Assume that ei deletes p, and ej is the first event after ei

with the property of requiring p. If ei is present in step t,
then a message must be sent to ej to indicate that p has
been deleted earlier in step t: (Y t

ei → Zt
p,j).

• Assume that ei requires proposition p, and ej is the first
event after ei with the property of requiring p. If ei re-
ceives a message implying that p has been deleted earlier
in step t, then ei cannot be present in step t, and it must
pass this message to ej : (Zt

p,i →∼ Y t
ei ∧ Z

t
p,j).

Relaxed ∃-step Encoding
The second restrictive rule presented before, prevents a
proposition from being both produced and used in the same
step of the final plan. It also does not allow the deletion
and production of any particular proposition to happen in
the same step. By relaxing these restrictions the encod-
ings can be further compressed, i.e., the relaxation permits
more events in each steps. In classical planning, a less re-
laxed form of Rule 2 has been used in (Wehrle and Rintanen
2007), where the effects of actions in each step can be used
by other actions in that step. However, here we totally re-
lax Rule 2 and allow each proposition to be required, added,
and deleted in each step as many times as is needed. In the
first encoding, explained in the previous subsection, we in-
form events if any of their requirements is deleted earlier in
the same step. In the relaxed encoding, however, the events
are informed about the very last change in the truth value
of their requirements. No event can occur in the final plan
unless the last change in the truth value of any of its require-
ments has caused the requirement to become true. For each
step t, event ei, and proposition p that is relevant to ei, V t

p,i
represents the truth value of p just before the hypothetical
execution of ei.
• Assume that ei deletes p, and ej is the first event after ei

with the property of having p as a relevant proposition.
If ei is present in step t, then a message must be sent to
inform ej that the last change in p has been performed
to delete it: (Y t

ei →∼ V t
p,j). An analogous discussion

is valid when ei adds p: (Y t
ei → V t

p,j). Moreover, if ei is
not present in step t, it must pass any received information
regarding the value of p to ej : (∼ Y t

ei ∧ V
t
p,i → V t

p,j) and
(∼ Y t

ei∧ ∼ V
t
p,i →∼ V t

p,j).
• Assume that ei is the last event in the ordering with the

property of having p as a relevant preposition. If ei is
not present in step t, the value of p just before ei must be
transferred to the next step: (∼ Y t

ei ∧ V
t
p,i → Xt

p) and
(∼ Y t

ei∧ ∼ V t
p,i →∼ Xt

p). Moreover, If ei deletes p we
add the clause (Y t

ei →∼ Xt
p) to ensure that the presence

of ei in step t, implies that p is not true in st. Again,

78

an analogous discussion is valid when ei adds p: (Y t
ei →

Xt
p).

• Assume that ei is the first event in the ordering with the
property of having p as a relevant proposition. ei must be
informed of the value of p in st−1: (Xt−1

p ↔ V t
p,i).

• Assume that ei requires p. If ei is present in step t, then p
must be true just before the execution of ei: (Y t

ei → V t
p,i).

Implementation Details and Empirical Results
We have incorporated our new encoding methods into IT-
SAT. ITSAT has been slightly modified so that our new en-
codings can coherently work with it. These modifications
have been applied to mutual exclusion analysis and negative
cycle detection parts of ITSAT.

It is known that SAT-based planners can significantly ben-
efit from inference about mutually exclusive propositions
(Kautz, Selman, and Hoffmann 2006). Any two propositions
that remain mutually exclusive after the planning graph has
been leveled off (Blum and Furst 1997), cannot be both true
in the same state of a valid plan. These are the only mutual
exclusion relations that are included in our new encodings.

The second minor modification of ITSAT is related to its
FSMs that detect certain negative cycles. As we mentioned
before, the negative cycles are prevented by encoding the
transitions of a particular FSM to the SAT formula. In our ∃-
step encodings, the events of each step are assumed to be ex-
ecuted according to a predefined ordering. We have slightly
modified the encoding of ITSAT to impose the correspond-
ing order on the transitions of each FSM in each step.

For evaluating the proposed encoding methods, we have
tested three versions (i.e., the original ∀-step, the ∃-step, and
the relaxed ∃-step version) of ITSAT on the problem sets of
previous International Planning Competitions. The experi-
ments have been conducted on a 3.1GHz corei5 CPU with
4GB main memory. Precosat (Biere 2009), which is a free
off-the-shelf SAT solver, has been used for satisfying SAT
formulae in all three versions of ITSAT. For each problem
and each version of ITSAT, several SAT formulae with in-
creasing number of steps were produced. Some of the results
are shown in Table 1.

The columns of Table 1 represent: the name of the do-
main, the problem number, the used encoding method, the
number of steps in the encoding, the result of precosat
in terms of satisfiability or unsatisfiability of the formula,
the number of clauses and variables divided by 1000, the
amount of time taken by precosat to determine the result,
and the amount of memory needed for saving the formula.
For each problem and each encoding method, the results are
presented for two cases: unsatisfiable formula with the high-
est number of steps, and satisfiable formula with the lowest
number of steps. We have used symbol ∃∗ as an abbrevi-
ation for the relaxed ∃-step encoding. Symbol ∞ is used
in the time column for cases in which precosat has not de-
termined the satisfiability of the formula in 1800 seconds.
Please note that in the sokoban domain, an extra comparison
between ∃∗ and ∃ configurations has been presented in Table
1 for problem no. 1 in which the ∀ configuration could not
find a plan.

As it is shown in Table 1, using our proposed encodings
causes a considerable improvement in terms of both speed
and memory usage of the planner. Furthermore, the relaxed
∃-step encoding is faster than the other two in almost all
domains. Although the results presented in table 1, does
not cover all the domains used in previous IPCs, we should
mention that the same pattern has been observed in nearly
all of those domains, too.

time mem
domain prob enc steps res C

1000
V

1000
(s) (MB)

∀ 29 F 1907 60 ∞ 134
∃ 13 F 349 86 7 45

4 ∃∗ 6 F 219 101 11 62
∀ 30 T 1973 63 465 138

sokoban ∃ 14 T 378 93 12 47
(2011) ∃∗ 7 T 256 118 11 64

∃ 12 F 765 187 233 95
1 ∃∗ 4 F 346 157 7 70

∃ 13 T 835 203 120 99
∃∗ 5 T 435 197 48 124
∀ 52 F 8080 153 10 509
∃ 31 F 1442 220 1.4 134

parcprint. 12 ∃∗ 13 F 689 74 1.4 139
(2011) ∀ 53 T 8233 156 8 518

∃ 32 T 1929 293 2.1 137
∃∗ 14 T 744 83 1.7 142
∀ 30 F 250 22 139 21
∃ 11 F 67 18 0.5 10

floortile 10 ∃∗ 8 F 69 27 1.3 16
(2011) ∀ 31 T 257 22 169 21

∃ 12 T 74 20 0.7 11
∃∗ 9 T 78 31 1.1 17
∀ 41 F 80 10 ∞ 8
∃ 41 F 59 17 ∞ 10

crewplan. 1 ∃∗ 9 F 241 74 0.7 39
(2011) ∀ 42 T 83 10 2.9 8

∃ 42 T 60 18 2.2 10
∃∗ 10 T 269 83 0.7 45
∀ 26 F 73 6 ∞ 7
∃ 12 F 23 6 ∞ 4

pegsol 20 ∃∗ 5 F 15 7 0 4
(2011) ∀ 27 T 77 6 5 8

∃ 13 T 25 7 11 6
∃∗ 6 T 19 8 0.4 4
∀ 9 F 25155 145 6 1533
∃ 5 F 864 215 1.3 97

depots 10 ∃∗ 4 F 977 483 2 250
(2004) ∀ 10 T 28741 163 11 1745

∃ 6 T 1058 260 4.7 103
∃∗ 5 T 1237 607 4 266
∀ 17 F 15365 217 15 939
∃ 8 F 739 199 2.3 97

driverlog 15 ∃∗ 6 F 647 246 1 187
(2004) ∀ 18 T 16606 232 9 1058

∃ 9 T 841 225 8 104
∃∗ 7 T 763 266 2 240

Table 1. Comparing Different Encoding Methods

79

We have also compared the most efficient version of IT-
SAT (i.e., ITSAT-∃∗), which uses the relaxed ∃-step encod-
ing, with POPF2, the state-of-the-art of temporally expres-
sive planners. For each problem, a time limit of 30 minutes
has been imposed on both planners. Starting with a formula
with one step, ITSAT-∃∗ uses precosat to satisfy the formula
within a time limit of 5 minutes. If the formula is unsatisfi-
able, 5 more steps will be added to the encoding. Otherwise,
ITSAT-∃∗ tries to schedule the achieved causally valid tem-
poral plan, in order to find a valid plan. If such a scheduling
is impossible, ITSAT-∃∗ adds the encoding of an FSM, as it
was discussed before, to the formula. The whole process is
repeated until the 30 minutes time limit is reached.

Although parallel solving of formulae with different num-
ber of steps was shown to be more effective than our
naı̈ve sequential approach Rintanen, Heljanko, and Niemelä
2006), the empirical results show that even this simple
method is sufficient to outperform current temporally ex-
pressive planners. We leave the investigation regarding the
effect of using such parallelism for our future research.

We have compared ITSAT-∃∗ with POPF2 based on the
number of problems they can solve in each domain and also
by the total score given to each planner using the scoring
strategy of recent IPCs: if a planner cannot solve a problem,
it will get score 0 for it; Otherwise, its score is equal to the
makespan of the best plan found by either of planners di-
vided by the makespan of the plan found by the planner. In
order to achieve a better assessment of ITSAT-∃∗ in prob-
lems with required concurrency, we have also tested both
planners in two extra domains (driverlogshift and matchlift),
which were introduced by Strathclyde Planning Group and
have this property.

As it is shown in Table 2, ITSAT-∃∗ significantly outper-
forms POPF2 in both the total number of solved problems
and the total score. In fact, ITSAT-∃∗ solves 53 more prob-
lems than POPF2. Moreover, the total score of ITSAT is
32 percent higher than that of POPF2. These results show a
major improvement in temporally expressive temporal plan-
ning. The only domains in which POPF2 has a considerable
lead over ITSAT-∃∗ are parking and elevators. These two
domains are inherently difficult for SAT-based planners, as
the number of actions that provide each preposition is rele-
vantly high in their problems.

Conclusion

In this paper, we formally defined temporal versions of clas-
sical ∀-step and ∃-step semantics. We also showed that by
separating the casual and temporal reasoning phases of a
SAT-based temporal planner, one can employ these seman-
tics to construct effective encodings. Two different types
of ∃-step encodings were introduced for temporal planning.
We embedded our new ∃-step encodings into ITSAT and
empirically showed the new encodings to be more efficient
than the ∀-step encoding employed previously in ITSAT.
The resulting planner, ITSAT-∃∗, significantly outperforms
POPF2, which has been so far the state-of-the-art in tempo-
rally expressive planning.

solved score

domain IPC prob ITSAT POPF2 ITSAT POPF2

zenotravel 20 13 13 12.41 11.46

driverlog 2004 20 15 15 13.70 11.84

rovers 20 20 19 20 13.91

depots 22 13 7 12.84 5.53

airport 2006 50 37 15 37 13.40

satellite 36 14 14 13.35 8.96

pegsol 20 20 19 20 18.62

crewplanning 20 20 20 19.11 20

openstacks 20 8 20 6.47 20

parking 20 1 20 0.53 20

elevators 20 0 2 0 2

floortile 2011 20 20 5 18.78 5

storage 20 6 0 6 0

matchcellar 20 20 20 20 20

sokoban 20 4 3 4 2.89

parcprinter 20 20 0 20 0

turnandopen 20 6 9 6 8.52

tms 20 20 4 20 4

driverlogshift — 10 10 10 10 8.99

matchlift 14 14 13 14 12.06

total 482 281 228 274.19 207.18

Table 2. Comparing ITSAT-∃∗ with POPF2

References
Armando, A.; and Giunchiglia E. 1993. Embedding Com-
plex Decision Procedures inside an Interactive Theorem
Prover. Annals of Mathematics and Articial Intelligence,
8(34), 475502.
Biere, A. 2009. P{re,i}coSAT@SC’09. Solver description
for SAT Competition 2009. In SAT 2009 Competitive Event
Booklet.
Blum, A.; and Furst, M. 1997. Fast planning through plan-
ning graph analysis. Artificial intelligence. 90:281-300.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. Proceedings of
20th International Conference on Automated Planning and
Scheduling, 42-49, AAAI press.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is temporal planning really temporal? Proceed-
ings of 20th International Joint Conference on Artificial In-
telligence, 1852-1859, AAAI press.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Con-
straint Networks. Artificial Intelligence 49(1-3): 61-95.
Eyerich, P.; Mattmuller, R.; and Roger, G. 2009. Unifying
Context-Enhanced Additive Heuristic for Temporal and Nu-

80

meric Planning. Proceedings of 19th International Confer-
ence on Automated Planning and Scheduling, AAAI press.
Fox, M.; and Long, D. 2002. PDDL+: Modelling Contin-
uous Time-dependent Effects. In Proceedings of the Third
International NASA Workshop on Planning and Scheduling
for Space.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research, 20: 61-124.
Garrido, A.; Fox, M.; and Long, D. 2002. A temporal plan-
ning system for durative actions of PDDL2.1. Proceedings
of 15th European Conference on Artificial Intelligence, 586-
590, IOS press.
Huang, R.; Chen, Y.; and Zhang, W. 2009. An optimal
temporally expressive planner: Initial results and application
to P2P network optimization. Proceedings of 19th Interna-
tional Conference on Automated Planning and Scheduling,
AAAI press.
Kautz H.; and Selman, B. 1992. Planning as Satisfiability.
Proceedings of 10th European Conference on Artificial In-
telligence, 359-363, IOS press.
Kautz, H.; Selman, B.; and Hoffmann, J. 2006. SatPlan:
Planning as Satisfiability. International Planning Competi-
tion.
Mali, A. D.; and Liu, Y. 2006. T-SATPLAN: A SAT-based
Temporal Planner. International Journal of Artificial Intelli-
gence Tools 15(5): 779-802.
Rankooh, M. F.; Mahjoob, A.; and Ghassem-Sani, G. 2012.
Using Satisfiability for Non-Optimal Temporal Planning.
Proceedings of the 13th European Conference on Logics in
Artificial Intelligence, Springer.
Rintanen, J.; Heljanko, K.; and Niemelä. 2006. Planning as
satisfiability: parallel plans and algorithms for plan search.
Artificial Intelligence, 170(12-13): 1031-1080.
Shin, J.; and Davis, E. 2005. Processes and continu-
ous change in a SAT-based planner. Artificial Intelligence,
166(1-2): 194-253.
Smith, D. E.; and Weld D. S. 1999. Temporal planning with
mutual exclusion reasoning. Proceedings of 16th Interna-
tional Joint Conference on Artificial Intelligence, 326-337,
AAAI press.
Vidal, V.; and Geffner, H. 2006. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. Artificial Intelligence, 170(3): 298-335.
Wehrle, M.; and Rintanen, J. 2007. Planning as Satisfia-
bility with Relaxed ∃-step Plans. Proceedings of 20th Aus-
tralian Joint Conference on Artificial Intelligence, 244-253,
Springer-Verlag.
Younes, H. L. S.; and Simmons, R. G. 2003. VHPOP: Ver-
satile Heuristic Partial Order Planner. Journal of Artificial
Intelligence Research, 20: 405-430.

81

