
A Generic Technique for Synthesizing Bounded Finite-State Controllers

Yuxiao Hu
Google Inc.

151 Charles Street West
Waterloo, Ontario N2G 1H6, Canada

yuxiao@google.com

Giuseppe De Giacomo
SAPIENZA Università di Roma

Via Ariosto 25
00185 Roma, Italy

degiacomo@dis.uniroma1.it

Abstract

Finite-state controllers are a compact and effective plan rep-
resentation for agent widely used in AI. In this paper, we pro-
pose a generic framework and related solver for synthesizing
bounded finite-state controllers, and show its instantiations to
three different applications, including generalized planning,
planning programs and service composition under partial ob-
servability and controllability. We show that our generic
solver is sound and complete, and amenable to heuristics that
take into account the structure of the specific target instantia-
tion. Experiments show that instantiations of our solver to the
problems above often outperform tailored approaches in the
literature. This suggests that our proposal is a promising base
point for future research on finite-state controller synthesis.

Introduction
Finite-state controllers are a compact and effective plan rep-
resentation for agent control widely used in AI. Consider,
for example, the following recently-proposed domains:

Generalized planning: Bonet et al (2009) presented a sim-
ple but interesting example of a type of contingent planning:
In a 1×5 grid world shown in Figure 1(a), the robot initially
is in one of the leftmost two cells. The goal is to visit cellB,
and then go toA. The robot can perform left and right moves
within the grid, and can observe whether its current loca-
tion is A, B or neither of them. Bonet et al. claim that the
finite-state controller in Figure 1(c) represents a notable al-
ternative to traditional “conditional plans,” as the controller
is not only a correct plan for this particular instance, but also
for all 1 × N grids with N ≥ 2. In a sense, Figure 1(c)
is a generalized plan for all planning problems of the form
shown in Figure 1(b). A number of similar generalized plan-
ning problems with controller-based solutions have recently
been proposed, e.g., tree-chopping (Levesque 2005), deliv-
ery (Srivastava, Immerman, and Zilberstein 2008), etc.

Service composition: Imagine a service composition task
(De Giacomo, De Masellis, and Patrizi 2009), where the
goal is to provide a target service (e.g., MT shown in Fig-
ure 2(a)) from a set of available services (e.g. M1 and M2

shown in Figure 2(b)). Initially, both the target and the avail-
able services are in their initial states. At any time, the tar-
get service may request an action from its current state, and

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Generalized planning example.

Figure 2: Service composition example.

an orchestrator should select one of the available services to
perform this requested action. Upon action execution, which
is nondeterministic and hence only partially controllable, the
target and the chosen services will update their control states
according to the transitions, but the orchestrator only has
partial observability as which states the services are in (e.g.
o0 and o1). It is the orchestrator’s responsibility to guaran-
tee that all legal requests of the target can be satisfied at any
time, and when the target is in its final states, so must be
all the available services. Figure 2 shows one possible or-
chestrator for our example problem, where a/Mi(oj) on the
edge denotes “for action request a, choose service Mi, and
upon observing oj , transition to.”

Planning programs: As a middle ground of AI planning
(Ghallab, Nau, and Traverso 2004) and high-level action lan-
guages (Levesque et al. 1997), De Giacomo et al. (2010)
proposed a new approach to agent programming via “plan-
ning programs.” Given a dynamic domain (e.g., the re-
searcher’s world involving walking, driving and bus-riding
between her home, department, the parking lot and the pub,
shown in Figure 3(a)), and a goal network involving main-
tenance and achievement goals (Figure 3(b)), the planning
problem is to find a strategy such that all goal requests can
be accommodated for the long-lived agent. For example,
if the current goal node is t1 in Figure 3(b), the next goal
may be either a transition to t0, requesting to “be home with
the car parked at home while maintaining a non-empty fuel
tank,” or a transition to t2, requesting to “be in the pub while

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

109

Figure 3: Planning program example.

maintaining a non-empty tank.” In either case, she must be-
have in a way that not only achieves the current goals, but
also ensures that all possible future requests can be satisfied
after the action. Figure 3(c) shows a policy for this problem.

The three applications are different in structure, but share
one thing in common: the desired plans, e.g., the generalized
plan in Figure 1(c), the orchestrator in Figure 2(c), and the
policy in figure 3(c), are all finite-state controllers.

Such controllers are usually hand-written by skilled soft-
ware engineers in real applications. It is desirable to have au-
tomated techniques that help put them out of the loop in the
synthesis of the controllers, and let them concentrate on pro-
viding the specification of the desired behaviors. One exam-
ple of this is creating routines to facilitate the independence
of Smart Homes inhabitants with chronic illness. Such rou-
tines are obtained by composing services in the home so as
to be constantly ready for user-requested tasks specified in
terms of goals. Such compositions, which are essentially
finite-state controllers, are typically done by hand. There is
obvious interest in automating the synthesis of such compo-
sitions, and this has attracted interest toward work on auto-
mated service composition and planning programs (De Gia-
como et al. 2012). Interestingly, they observed that current
specific techniques automated service composition (De Gia-
como, De Masellis, and Patrizi 2009) and planning programs
(De Giacomo, Patrizi, and Sardina 2010) are an overshoot in
their case. They have simple need to synthesize very many
simple controllers, more than a few sophisticated ones.

In this paper, we propose a generic framework and related
solver for the synthesis of bounded finite-state controllers.
In particular, the solver is based on direct search in AND-
OR trees that incrementally capture the possible executions
of the (partial) controller in its environment. We show that
our generic solver is sound and complete, and is amenable to
heuristics that take into account the structure of the specific
problem it is applied to. We also show that simple adapta-
tions of our solver to the three problems above are sound and
complete (notice that all such problems allows for bounded
controllers), and outperform the tailored approaches in the
literature, at least when simple controllers are sufficient, like
in the case of (De Giacomo et al. 2012). Observe that in this
paper we do not look into sophisticated specific heuristics.
This makes our proposal a promising base point for future
research on finite-state controller synthesis.

In the following, we first give a formal definition of
the controller synthesis framework, and then elaborate our
generic solver with correctness guarantee. After that, we ex-
plain the instantiation of our framework to the three types of
problems above, and show the very encouraging experimen-

tal results. We conclude by discussing future work.

Controller Synthesis Framework
We are interested in control problems of the following form:
given a dynamic environment and a behavior specification
for an agent acting in its environment, find a strategy in the
form of a finite-state controller, which realizes the behavior.

Formally, we define the dynamic environment as a tuple
E = 〈A,O,S, I,∆,Ω〉, where

• A is a finite set of actions,

• O is a finite set of observations,

• S is a finite set of world states (the state space),

• I ⊆ S is a set of possible initial states,

• ∆ ⊆ S ×A× S is the transition relation, and

• Ω : S → O is the observation function.

We use the notation s a−→ s′ to denote 〈s, a, s′〉 ∈ ∆.
An (N -bounded) finite-state controller for an environment
E = 〈A,O,S, I,∆,Ω〉 is a tuple C = 〈Q, q0, T 〉, where

• Q is a set of control states with cardinality |Q| = N ,

• q0 = 1 is the initial control state,

• T : 〈Q×O〉 → 〈Q×A〉 is the transition function.

We use q
o/a−→ q′ to denote T (q, o) = 〈q′, a〉. Note that

finite-state controllers are essentially Mealy machines and
have a natural graphical representation.

An (execution) history of controller C in environment
E is a finite sequence h = 〈q0, s0〉, 〈q1, s1〉, · · · , 〈qn, sn〉,
such that there is a corresponding sequence of actions r =
a1a2 · · · an, called the run of C in E , satisfying

• s0 ∈ I (recall that q0 = 1 by definition),

• qi
Ω(si)/ai+1−→ qi+1 and si

ai+1−→ si+1.

We use h � h′ to mean that the history h is a prefix of the
history h′. We call extension of an history h any history h′
such that h � h′.

We synthesize controllers from a specification. Here we
consider a generic specification in terms of “allowed his-
tories”. Also our specification includes the fact that the
controller must have a bounded set of states. A behavior
specification for E and bounded set of control states Q is
a function β : (Q × S)∗ → {true, false, unknown}. Intu-
itively, β(h) = true means that h is valid and conclusive,
i.e., the specification on h has been fulfilled; β(h) = false
means it is invalid, i.e., h should never be generated by the

110

controller; β(h) = unknown means validity cannot be con-
cluded yet, so all one-step extensions of h need to be ex-
amined. Moreover the following condition must be satisfied
for all h′ ∈ (Q × S)∗, if 〈qi, si〉, 〈qj , sj〉 ∈ h′ for some
i 6= j, qi = qj and si = sj , then there exists a prefix h � h′
such that β(h) ∈ {true, false}. Notice this reflects the fact
that the controller will not be able to distinguish between the
two points of the history so from 〈qi, si〉 and 〈qj , sj〉 it will
be act identically. For this reason history h′ must already
be either accepted or rejected. This definition of behavior
specification based on classification of histories is general
enough to capture all the examples above. In particular, it is
more expressive than Bonet et al (2009) with the support of
temporally extended goals.

We say that a controller C for an environment E satisfies
the behavior specification β iff for all its histories h in E we
have β(h) 6= false and there exists an extension h′ such that
β(h′) = true. (In fact after a certain number of steps all its
extension become true, due to the required condition above.)
Given a controller C in E we can check whether it satisfies β.
More interestingly, if we do not have the controller, we can
use β to actually search for it. This is what we study next.

Generic Solver
Associated to the above framework, we propose a (surpris-
ingly simple) generic solver that systematically searches the
space of bounded finite-state controllers by traversing the
AND-OR execution tree of incremental partial controllers.
Here, the OR nodes are the choice points for the controller’s
actions and transitions, while the AND nodes handle all pos-
sible environment feedback. Each node of the search tree
keeps a current partial controller, along with its current con-
trol state, the world states and the execution history so far.

Given a dynamic environment E , a bound set of con-
trol states Q, and a behavior specification β, the algo-
rithm in Figure 4 generates a controller C by a call to
synthesizeE,Q(I), where I is the set of initial states in E
(line 1). This creates the root of the search tree, which is
an AND node containing an empty controller ∅,1 the initial
control state 1, initial world states I, and empty history ∅.

The function AND step (lines 4–7) represents AND
nodes in the search tree that handle all contingencies in the
world states. For this, the function OR step is called for each
possible state s ∈ S, with the history h augmented with the
current control and world states 〈q, s〉. C is updated after
each call to OR step (line 6), so that the resulting controller
is incrementally implemented to handle all states in S.

The function OR step (lines 9–20) simulates a one-step
execution of the current partial controller C for a given con-
trol state q and world state s with execution history h. Four
different cases may arise during this simulation:
1. If the behavior specification function β(h) returns true,
it means the current controller C has generated a valid and
conclusive history, so no further extension is necessary. In
this case, C is returned as a good partial controller (line 10).
2. If β(h) returns false, it indicates that h is illegal, so no
extension of C can be a valid controller. In this case, the
current search branch fails, and the algorithm backtracks to

1〈{1, . . . N}, 1, ∅〉 to be precise, but we only denote the transi-
tion relation when there is no ambiguity, since Q and q0 are fixed.

1: C =synthesizeE,Q(I)
2: return AND stepE,Q(∅, 1, I, ∅);
3:
4: AND stepE,Q(C, q, S, h)
5: for each s ∈ S
6: C := OR stepE,Q(C, q, s, h · 〈q, s〉);
7: return C;
8:
9: OR stepE,Q(C, q, s, h)

10: if β(h) = true return C;
11: else if β(h) = false fail;
12: else if (q Ω(s)/a−→ q′) ∈ C
13: S′ := {s′ | s a−→ s′};
14: return AND stepE,Q(C, q′, S′, h);
15: else
16: NON-DETERMINISTICALLY CHOOSE
17: a ∈ A and q′ ∈ Q;
18: S′ := {s′ | s a−→ s′};
19: C′ := C ∪ {q Ω(s)/a−→ q′};
20: return AND stepE,Q(C′, q′, S′, h);

Figure 4: A generic algorithm for controller synthesis.

the most recent non-deterministic choice point (see below),
from where alternative choices are explored (line 11).
3. Otherwise, β(h) must have returned unknown, indicating
a legal but non-conclusive history, so further simulation of
the controller is needed. If an action and transition is already
specified in C for the current control state q and observa-
tion Ω(s), then we simply follow it by recursively calling
AND step with the current controller C and history h, but
successor control state q′ and the set S′ of all possible suc-
cessor world states (lines 12–14).
4. If, on the other hand, no action or transition is speci-
fied in C for q and Ω(s), then the algorithm makes a non-
deterministic choice for a and q′ (lines 16–17). We recur-
sively call AND step to handle all successor states in the
same way as in the previous case, except that the new tran-
sition is appended to the controller (lines 19–20).

The algorithm above is formulated using nondeterminis-
tic choices to reveal the compactness of our solution. It is
not hard to see that the resulting search actually strategically
enumerates all valid controllers with states in the bounded
set Q, e.g. never revisiting isomorphic (identical by state re-
naming) controllers and avoiding controllers with unreach-
able states, so we have:
Theorem 1 (Soundness and Completeness). Given envi-
ronment E with initial states I, a bounded set of states
Q with |Q| = N , and a behavior specification β, C =
synthesizeE,Q(I) iff C is an N -bounded finite-state con-
troller in E that satisfies β, up to isomorphism.

Proof sketch. Soundness: Suppose C is a controller gener-
ated by the algorithm. We can show by induction that either
the current history is a valid one according to β, or all the ac-
tions that C may prescribe from the current plan state and the
set of possible world states is executable in E . Furthermore
the one-step transition by applying such an action leads to a
new plan state and a new set of possible world states that, if
appended to the history, recursively satisfy this property.
Completeness: Suppose a controller C′ exists such that all
its possible executions in E will satisfy β. We construct

111

a controller C by following the algorithm starting from an
empty controller in its initial state by the following rules:

• If a transition exists for the plan and world states in the
partial plan, then we following it.

• Otherwise, add in the partial plan the transition that is pre-
scribed by C′, and follow the transition.

It can be proven by induction that using these two rules, the
synthesized controller C is isomorphic to the reachable frag-
ment of C′.

In practice, for the generic solver to work well, the non-
deterministic choice at line 16 must be resolved wisely, mak-
ing use of the structure of the target problem. For example,
in most application domains, compact controllers are prefer-
able, so one should try to reuse control states as much as pos-
sible; for planning tasks like generalized planning and plan-
ning programs, one could make use of domain-independent
heuristics developed in the state-of-the-art planners (Hoff-
mann and Nebel 2001; Richter and Westphal 2010) for ef-
fective action selection.

Next, we show how our generic solver can be instantiated
to efficiently synthesize controllers in the different applica-
tions illustrated in the introduction.

Generalized Planning
Problem formalization. Bonet et al. (2009) formalize the
generalized planning problem (what they call “control prob-
lem”) as P = 〈F, I,A,G,R,O,D〉, where
• F is a set of (primitive) fluents,
• I is a set of F-clauses representing the initial situation,
• A is a set of actions with conditional effects,
• G is a set of literals representing the goal situation,
• R is a set of non-primitive fluents,
• O is the set of observable fluents, O ⊆ R, and
• D is the set of axioms defining the fluents in R.

Without going into the details, e.g., the evaluation of non-
primitive fluents in R using the axioms in D, we note that
this problem can be modeled in our framework by defining
the dynamic environment as E = 〈A,O,S, I,∆,Ω〉, where
• A = A, O = d(O), S = d(F), where d(V) is the cross

product of the domains for all variables v ∈ V ,
• I = {s ∈ S | s |= I},
• 〈s, a, s′〉 ∈ ∆ iff action a changes state s to s′ in P ,
• Ω(s) = o iff o is observed in state s in P .
Notice that with this definition, we can allow actions to have
preconditions like in (Pralet et al. 2010), by eliminating ille-
gal transitions, as well as non-deterministic effects.

The behavior specification accepts all legal execution his-
tories leading to a goal-satisfying state, and rejects those that
contain repeated configurations (indicating infinite loop) and
that cannot be extended (indicating dead end). Formally,

β(〈q0, s0〉, · · · , 〈qk, sk〉) =
true if sk |= G;
false if 〈sk, a, s′〉 6∈ ∆ for all a ∈ A, s′ ∈ S, or

〈qk, sk〉 = 〈qi, si〉 for some 0 ≤ i < k;
unknown otherwise.

1: plan(P) :- initStates(SL), andStep([], P, 1, SL, []).
2:
3: andStep(P, P, , [],).
4: andStep(P0, P1, Q, [S|SL], H) :-
5: orStep(P0, P,Q, S,H), andStep(P, P1, Q, SL,H).
6:
7: orStep(P, P, , S,) :- goal(G), holds(G,S), !.
8: orStep(, , Q, S,H) :- member(〈Q,S〉, H), !, fail.
9: orStep(P0, P1, Q, S,H) :-

10: observation(S,O), H ′ = [〈Q,S〉|H],
11: (
12: member(〈Q,O,A,Q′〉, P0), !, legalAct(A,S),
13: nextStates(S,A, SL′), andStep(P0, P1, Q′, SL′, H ′);
14: bestAct(A,S), nextStates(S,A, SL′), size(P0,M),
15: (between(1,M,Q′);
16: Q′ is M + 1, bound(N), Q′ =< N),
17: andStep([〈Q,O,A,Q′〉|P0], P1, Q′, SL′, H ′)
18:).

Figure 5: Prolog code for generalized planning.

Solver adaptation. The structure of the generalized plan-
ning problems is very close to that of our generic problem,
so the adaptation of the solver is straightforward. We imple-
mented a planner in SWI-Prolog, whose body is shown in
Figure 5. After the list of all initial states is obtained by init-
States/1, andStep/5 is activated to process each of the pos-
sible states in it (line 1). The parameters to andStep are the
input plan, the output plan, the current control state, the list
of current possible world states, and the execution history,
respectively. (orStep below has similar parameters except
that the fourth parameter is a single world state instead of
a list of states.) Lines 3–5 here are the AND step (corre-
sponding the lines 4–7 in Figure 4). Notice the use of vari-
able P in line 5 for updating the current plan after each state
is handled by orStep/5. Lines 7–18 are the OR step (corre-
sponding to lines 9–20 in Figure 4), with line 7 handling goal
achievement, line 8 enforcing backtracking due to state rep-
etition, lines 12–13 following existing transition, and 14–17
trying new transitions. In the last case, bestAct/2 succeeds
with all possible actions for the current state, so heuristics
could be implemented here so that the most promising ac-
tions are unified first. For choosing the target control state
Q′ for the transition, line 15 enumerates all currently used
states, before attempting to create a new one (not exceed-
ing the bound) in line 16. More advanced ordering, e.g., the
“most-recently used state” heuristics, could be explored here
for better search efficiency.
Theorem 2 (Correctness). If program “plan(P)” suc-
ceeds, then P is anN -bounded plan that solves the general-
ized planning problem, and vice versa (up to isomorphism).

Experimental results. We run our planner on a set of
benchmark problems, and compared its performance with
the compilation approach of Bonet, Palacios and Geffner
(BPG) (2009) and the constraint programming based planner
(Dyncode) by Pralet et al. (2010). We did not rerun their ex-
periments, but instead used the original data in the respective
paper directly, so this comparison may be off by a constant
factor due to the different experiment settings explained in
Table 1. In the table, column N shows the number of con-
trol states required for the smallest plan, and for each plan-
ner, “Solve” is the solution time (in seconds) with N states,

112

BPG Dyncode Our solver
Problem N Solve Solve Proof Solve Proof
Hall-A 1× 4 2 0.0 0.01 0.02 0.01 0.0
Hall-A 4× 4 4 5730.5 0.26 2.35 0.21 1.86
Hall-R 1× 4 1 0.0 0.01 0 0.01 0
Hall-R 4× 4 1 0.0 0.02 0 0.01 0
Prize-A 4× 4 1 0.0 0.02 0 0.01 0
Corner-A 4× 4 1 0.1 0.02 0 0.01 0
Prize-R 3× 3 2 0.1 0.03 0.03 0.04 0.01
Prize-R 5× 5 3 2.7 2.37 0.97 2.71 1.3
Corner-R 2× 2 1 0.0 0.01 0 0.01 0
Corner-R 5× 5 1 1.6 0.02 0 0.01 0
Prize-T 3× 3 1 0.1 0.05 0 0.01 0
Prize-T 5× 5 1 0.3 0.34 0 0.02 0
Blocks 6 2 0.8 0.02 0.02 0.02 0.0
Blocks 20 2 34.8 0.04 0.02 0.02 0.0
Visual-M (8, 5) 2 1289.5 3.59 0.27 0.02 0.0
Gripper (3, 5) 2 4996.1 0.06 0.02 0.01 0.0

Table 1: Comparison of generalized planning approaches.
BPG is run on a Xeon 1.86GHz CPU with 2GB RAM, Dyn-
code on a Xeon 2GHz CPU with 1GB RAM, and our Prolog
adaptation on an Intel Core2 3.0GHz CPU with 3GB RAM.

and “Prove” is the time (in seconds) needed for the planner
to prove that no plan exists with less than N states. Sur-
prisingly, the simple adaptation of our generic solver, which
essentially performs depth-first search, achieves compara-
ble performance to Dyncode, and works much faster than
BPG in some cases. Despite the possible constant-factor
difference in the evaluation, it shows that our planner scales
well with all current benchmarks (e.g. reducing some from
thousands of seconds to less than one second). Potentially,
none of the three planners may scale to problems with huge
state space, but with the ease of solving all existing prob-
lems using our generic solver even without much domain-
specific optimization, we show that the current benchmark
suite is not hard enough, and it is highly desirable to con-
struct harder and more differentiating test problems for the
advancement of this research area.

Service Composition
Problem formalization. We consider service composition
problems (Calvanese et al. 2008) where the task is to real-
ize a target service MT , by choosing from a set of available
services M1, · · · ,Mn at each step. Target and available ser-
vices are represented as finite-state transition systems. The
target service is deterministic, while the available services
are nondeterministic and hence partially controllable. In par-
ticular we focus on the case where the orchestrator (the con-
troller in our terminology) used to realized the composition
has only partial observation on the states of the available
services (De Giacomo, De Masellis, and Patrizi 2009). Each
service Mi is a tuple 〈A,Oi, Si, si0, Fi, δi, oi〉, where
• A is the (shared) set of actions;
• Oi is a set of observations;
• Si is a set of service states;
• si0 ∈ Si is the initial service state;
• Fi ⊆ Si is a set of final states, where the service is al-

lowed to terminate;

• δi ⊆ Si ×A× Si is the transition relation of the service;
• oi : Si → Oi is the observation function.

To formalize their definition in our framework, we model
the joint behavior of the services as a dynamic environment
E = 〈A,O,S, I,∆,Ω〉, where

• A = {1, · · · , n}; O = O1 × · · · ×On ×A;

• S = ST × S1 × · · · × Sn ×A;

• I = {〈sT0, s10, · · · , sn0, a〉 | 〈sT0, a, ·〉 ∈ δT },
• ∆(〈sT , s1, · · · , sn, a)〉, k, 〈s′T , s′1, · · · , s′n, a′〉) iff

1. δT (sT , a, s
′
T), δk(sk, a, s

′
k),

2. si = s′i for all i 6∈ {T, k}, and
3. δT (s′T , a

′, s) for some s ∈ ST .

• Ω(〈sT , s1, · · · , sn, a〉) = 〈o1(s1), · · · , on(sn), a〉.
Notice that the state of the target serviceMT is not observed,
but the orchestrator can keep track of it using its internal
states, since the target service is deterministic. Intuitively,
the behavior specification needs to consider the following
factors (i) at any time, the requested action (stored as the
last element of a state tuple) must be executable by at least
one service; (ii) (final state constraint:) whenever the target
service is in a final state, so must be all composing services;
(iii) (state repetition:) if we reach a configuration (control
state and world state combined) that has been visited already
in the execution history, then all future executions from the
current configuration would be handled in the same way as
from its previous occurrence, so there is no need to consider
further extensions. Formally, the behavior specification is:

β(〈q0, σ0〉, · · · , 〈qk, σk〉) =
true if qi = qk and σi = σk for some 0 ≤ i < k;
false if 〈σk, a, σ〉 6∈ ∆ for all a ∈ A, σ ∈ S, or

σk = 〈sT , s1, · · · , sn〉 where sT ∈ FT

but si 6∈ Fi for some i ∈ {1, · · · , n};
unknown otherwise.

Solver adaptation. Although the non-determinism of the
environment is specified as a single transition relation in
our formalization above, it is not hard to see that the non-
determinism comes from two different sources, namely, the
uncertainty as which action the target may request, and the
nondeterministic effect of each composing service. Dur-
ing our instantiation of the generic solver, we take this spe-
cial structure of the problem into account, by creating two
AND steps, one for each source of non-determinism above.
This dramatically reduces the observation cases in the search
nodes, since only the state of the chosen service changes
and thus needs to be observed, and observations on all other
services can be safely ignored. Exploiting this structure
makes the branching factor of the AND nodes exponentially
smaller, and thus contributes to a much more efficient solver.

Following these intuitions, we implemented a general
solver for service composition problems in Prolog, the body
of which is shown in Figure 7, where procReqs/7 (lines
10–15) is the AND step for processing all possible requests
from the target and procTrans/9 (lines 22-26) handle all non-
deterministic effects of the executed service. Following a
similar idea, we also separate the OR step into chuzServ/7

113

Figure 6: Example composition problems used in our experiments. Labels of sensing results are omitted when the service is
fully observable.

Target Services orchestrator Target Services orchestrator

No Solution.

No Solution.

No Solution.

No Solution.

114

1: compose(C) :-
2: procState(sT0, 〈s10, · · · , sn0〉, 1, [], [], C).
3:
4: procState(ST , SL,Q,H,C,C) :-
5: member(〈ST , SL,Q〉, H), !.
6: procState(ST , SL,Q,H,C0, C1) :-
7: (isFinal(ST)->allFinal(SL);true),
8: procReqs(ST , δT , SL,Q, [〈ST , SL,Q〉|H], C0, C1).
9:

10: procReqs(, [], , , , C, C).
11: procReqs(ST , [〈ST , A, S

′
T 〉|T], SL,Q,H,C0, C1) :- !,

12: chuzServ(S′T , SL,Q,A,H,C0, C),
13: procReqs(ST , T, SL,Q,H,C,C1).
14: procReqs(ST , [|T], SL,Q,H,C0, C1) :-
15: procReqs(ST , T, SL,Q,H,C0, C1).
16:
17: chuzServ(ST , SL,Q,A,H,C0, C1) :-
18: (member(〈Q,A,K, , 〉, C0), !; between(1,n,K)),
19: findall(X ,member(〈SK , A,X〉, δK),SL′K),
20: procTrans(ST , SL,Q,A,K, SLK , H,C0, C1).
21:
22: procTrans(, , , , , [], , C, C).
23: procTrans(ST , SL,Q,A,K, [S

′
K |SL′K], H,C0, C1) :-

24: replace(SL, SK , S
′
K , SL

′), observe(S′K , O),
25: chuzTran(ST , SL

′, Q,A,K,O,H,C0, C),
26: procTrans(ST , SL,Q,A,K, SL

′
K , H,C,C1).

27:
28: chuzTran(ST , SL,Q,A,K,O,H,C0, C1) :-
29: member(〈Q,A,K,O,Q′〉,C0), !,
30: procState(ST , SL,Q

′, H,C0, C1).
31: chuzTran(ST , SL,Q,A,K,O,H,C0, C1) :-size(C0,M),
32: (between(1,M,Q′); Q′ is M + 1, bound(N), Q′ ≤ N),
33: procState(ST , SL,Q

′, H, [〈Q,A,K,O,Q′〉|C0], C1).

Figure 7: Prolog code for service composition.

(lines 17–20) which tries all possible services and chuz-
Tran/9 which tries the control state to transition to next. Fi-
nally, procStates/6 (lines 4–8) checks the behavior specifi-
cation according to the history and the current states.
Theorem 3 (Correctness). If program “compose(C)” suc-
ceeds, thenC is anN -bounded orchestrator that realizes the
composition, and vice versa (up to isomorphism).

The problem is known to be EXPTIME-complete, even
with complete observability. Moreover, from an analysis
of the composition technique in (De Giacomo, De Masel-
lis, and Patrizi 2009), one can conclude that the size of the
orchestrator is bounded by the size of target services in the
fully observable case, and by the size of the Cartesian prod-
uct of the powerset of the states of the target and the avail-
able services in the partially observable case. As a result,
if we perform an iterative deepening search starting with N
equal to 1 and stopping when we reach the above bound,
we get a sound and complete technique to compute com-
positions, which has the notable property of computing the
smallest orchestrator possible.

Experimental results. We experimented our solver on 18
benchmark problems on an Intel Core2 3.0GHz CPU with
3.0GB memory. The problems requires the composition
of target services of 2–4 states from 2–5 available services
ranging from 2 to 10 states. Twelve of the smaller prob-
lem instances used in the experiments are shown in Fig-
ure 6, and the full list of problems is available online at

www.cs.toronto.edu/∼yuxiao/compose.tgz. All problems are ei-
ther solved or proved unsolvable within less than 0.01 sec-
ond. This matches the results obtained by model checking
for problems with full observability, and is much faster, find-
ing smaller orchestrators, for case with partial observability
(De Giacomo, De Masellis, and Patrizi 2009). The obtained
results are not definitive since the existing benchmarks are
quite small, but certainly they show the effectiveness of the
proposed approach in practice.

Planning Programs
Problem formalization. Finally, we consider planning pro-
grams (De Giacomo, Patrizi, and Sardina 2010). In this case,
a domain is a tuple D = 〈P,A, S0, ρ〉, where P is a set of
propositions, A is a set of actions, S0 ∈ 2P is the initial
state, and ρ ⊆ 2P × A × 2P is the set of transitions. A
planning program for D is a tuple T = 〈T,G, t0, δ〉, where
• T = {t0, . . . , tq} is the finite set of program states;
• G is a finite set of goals of the form “achieve φ while

maintaining ψ,” denoted by pairs g = 〈ψ, φ〉, where ψ
and φ are propositional formulae over P ;
• t0 ∈ T is the program initial state;
• δ ⊆ T ×G× T is the program transition relation.

This synthesis problem can be modeled in our frame work
as E = 〈A,O,S, I,∆,Ω〉, where
• A = A is their set of available actions;
• O = S = 2P × T ×G× T ;
• I = {〈S0, t0, g, t〉 | 〈t0, g, t〉 ∈ δ};
• ∆(〈s, t, 〈ψ, φ〉, t′〉, a, 〈s′, t, 〈ψ, φ〉, t′〉) iff (i) 〈s, a, s′〉 ∈
ρ, (ii) s |= ψ and s′ |= ψ, and (iii) s′ 6|= φ;

• ∆(〈s, t, 〈ψ, φ〉, t′〉, a, 〈s′, t′, g, t′′〉) iff (i) 〈s, a, s′〉 ∈ ρ,
(ii) s |= ψ and s′ |= ψ, (iii) s′ |= φ, (iv) 〈t′, g, t′′〉 ∈ δ;

• Ω(σ) = σ.
Let σi = 〈si, ti, 〈ψi, φi〉, t′i〉, the behavior specification is
β(〈q0, σ0〉, · · · , 〈qk, σk〉) =

false if sk 6|= ψk, or 〈σk, a, σ〉 6∈ ∆ for all a, σ, or
σi = σk for some 0 ≤ i < k and tk = tk−1;

true if σi = σk if for some 0 ≤ i < k
and tk 6= tk−1;

unknown otherwise.
Note that the world state is fully observable (Ω(σ) = σ), so
stateless (single-state) controllers are sufficient in this case.
Solver adaptation. Like in service composition, a con-
troller for a planning program is faced with two sources of
nondeterminism in each cycle, namely, the uncertainty about
goal request, and the nondeterministic effects of the actions.
Figure 8 shows the body of the Prolog code for planning
programs, where procGoals/6 (lines 8–11) is the AND step
for the former, and procEffects/9 (lines 24–27) for the lat-
ter source of nondeterminism. planGoal/9 (lines 13–22) im-
plements the OR step that makes the action choices, where
bestAct/3 (line 20) returns the most promising action by us-
ing the additive heuristics (Bonet and Geffner 2001).
Theorem 4 (Correctness). If program “plan(P)” suc-
ceeds, then P is a controller that realizes the planning pro-
gram T in the domain D, and vice versa (up to isomor-
phism).

115

1: plan(P) :- initState(S), procState(0, S, [], [], P).
2:
3: procState(T, S, U,C,C) :- member(〈T, S〉, U), !.
4: procState(T, S, U,C0, C1) :-
5: findall(〈M,G, T ′〉, goal(T,M,G, T ′), GL), !,
6: procGoals(T,GL, S, [〈T, S〉|U], C0, C1).
7:
8: procGoals(, [], , , C, C).
9: procGoals(T, [〈M,G, T ′〉|GL], S, U,C0, C1) :-

10: planGoal(T,M,G, T ′, S, [], U, C0, C),
11: procGoals(T,GL, S, U,C,C1).
12:
13: planGoal(,M, , , S, , , ,) :- \+ holds(M,S), !, fail.
14: planGoal(, , , , S,H, , ,) :- member(S,H), !, fail.
15: planGoal(T,M,G, T ′, S, , , C, C) :-
16: member(〈T,M,G, T ′, S, 〉, C), !.
17: planGoal(, , G, T, S, , U, C0, C1) :-
18: holds(G,S), !, procState(T, S, U,C0, C1).
19: planGoal(T,M,G, T ′, S,H,U,C0, C1) :-
20: bestAct(G,A, S), nextStates(S,A, SL′),
21: H ′ = [S|H], C = [〈T,M,G, T ′, S,A〉|C0],
22: procEffects(T,M,G, T ′, SL′, H ′, U, C,C1).
23:
24: procEffects(, , , , [], , , C, C).
25: procEffects(T,M,G, T ′, [S|SL], H, U,C0, C1) :-
26: planGoal(T,M,G, T ′, S,H,U,C0, C),
27: procEffects(T,M,G, T ′, SL,H,U,C,C1).

Figure 8: Prolog code for planning programs

The problem is known to be EXPTIME-complete. More-
over, according to the analysis by De Giacomo et al. (2010),
the size of the controller can be bounded by 1. Interestingly,
if we assume that the planning programs to be determinis-
tic, we can avoid observing the target as in the case of ser-
vice composition, and then the controller may need multiple
states to remember the state of the target, in which case a
conservative bound for N can be identified similarly.

Experimental results. We use our planner to solve the re-
searcher’s world example on an Intel Core2 3.0Hz CPU with
3GB RAM, and it generated the correct solution within 0.04
second, while the model checking approach in De Giacomo
et al. (2010) requires several minutes. The most interesting
result however is that reported in (De Giacomo et al. 2012) in
the context of the Smart Home application mentioned in the
introduction, which involves routinely controlling the ser-
vices (e.g. controlling air temperature, filling and emptying
bathtub, etc.) in an intelligent home environment in Figure
9. Their experimental results show that, while the original
technique based on synthesis via model checking proposed
in De Giacomo et al. (2010) would be too slow and cum-
bersome for practical use, the approach presented here can
indeed be adopted in practice, as they demo in their use case.

Conclusion and Future Work
We have presented a generic framework and a related solver
for the synthesis of bounded controllers, which can be in-
stantiated for diverse problems. The solver appears to be
quite effective in practice, at least in simple cases where it
often surpasses specialized techniques. Moreover, it is very
suitable for heuristic pruning of the search space, a feature
that we did not go into in this work, but we plan to explore

Figure 9: The smart home environment in (De Giacomo et
al. 2012).

in the future. Given the promising results, we are currently
eager to experiment (instantiations of) our solver in more
real cases, e.g., to explore industrial/web service composi-
tion and to extend the smart home applications. Regarding
planning programs, recently Gerevini et al. (2011) proposed
an approach based on repetitively solving planning problems
to handle planning programs running over deterministic do-
mains. We are indeed quite interested in comparing it with
our generic solver in the future.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129:5–33.
Bonet, B.; Palacios, H.; and Geffner., H. 2009. Automatic deriva-
tion of memoryless policies and finite-state controllers using clas-
sical planners. In ICAPS.
Calvanese, D.; De Giacomo, G.; Lenzerini, M.; Mecella, M.; and
Patrizi, F. 2008. Automatic service composition and synthesis: the
roman model. IEEE Data Eng. Bull. 31(3):18–22.
De Giacomo, G.; Ciccio, C. D.; Felli, P.; Hu, Y.; and Mecella, M.
2012. Goal-based composition of stateful services for smart homes.
In CoopIS.
De Giacomo, G.; De Masellis, R.; and Patrizi, F. 2009. Composi-
tion of partially observable services exporting their behaviour. In
ICAPS.
De Giacomo, G.; Patrizi, F.; and Sardina, S. 2010. Agent program-
ming via planning programs. In AAMAS.
Gerevini, A. E.; Patrizi, F.; and Saetti, A. 2011. An effective
approach to realizing planning programs. In ICAPS. (to appear).
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Planning:
Theory and Practise. Morgan Kaufmann.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 14:253–302.
Levesque, H.; R., R.; Lesperance, Y.; F., L.; and R., S. 1997.
GOLOG: A logic programming language for dynamic domains.
Journal of Logic Programming 31:59–84.
Levesque, H. 2005. Planning with loops. In ICAPS.
Pralet, C.; Verfaillie, G.; Lemaı̂tre, M.; and Infantes, G. 2010.
Constraint-based controller synthesis in non-deterministic and par-
tially observable domains. In ECAI.
Richter, S., and Westphal, M. 2010. The lama planner: Guiding
cost-based anytime planning with landmarks. Journal of Artificial
Intelligence Research 39:127177.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008. Learning
generalized plans using abstract counting. In AAAI.

116

