
Incremental LM-Cut

Florian Pommerening and Malte Helmert
Universität Basel

Fachbereich Informatik
Bernoullistrasse 16

4056 Basel, Switzerland
firstname.lastname@unibas.ch

Abstract

In heuristic search and especially in optimal classical plan-
ning the computation of accurate heuristic values can take
up the majority of runtime. In many cases, the heuristic
computations for a search node and its successors are very
similar, leading to significant duplication of effort. For ex-
ample most landmarks of a node that are computed by the
LM-cut algorithm are also landmarks for the node’s succes-
sors. We propose to reuse these landmarks and incrementally
compute new ones to speed up the LM-cut calculation. The
speed advantage obtained by incremental computation is off-
set by higher memory usage. We investigate different search
algorithms that reduce memory usage without sacrificing the
faster computation, leading to a substantial increase in cover-
age for benchmark domains from the International Planning
Competitions.

Introduction
The performance of heuristic search for optimal classical
planning depends on accurate heuristic values to a large de-
gree. Computing good heuristic values is hard and can take
up a large amount of the search algorithm’s runtime. How-
ever, some hard to compute heuristic functions only change
slightly from state to state. In this case, it is possible to store
the result of the heuristic computation and use it when gen-
erating successor nodes. Instead of computing their heuris-
tic value from scratch, the stored information of the parent
node is adapted to accommodate the changes in the suc-
cessor state. A famous example for this is the Manhattan
distance (Korf 1985). Consider a sliding-tile puzzle where
the heuristic estimate is the sum of the Manhattan distances
of all tiles to their goal position. When one tile is moved
it is sufficient to update the heuristic value by the differ-
ence in the heuristic value of this tile. All other tiles do
not move and their heuristic values stay the same. Burns et
al. (2012) report that this feature doubled the performance
of their sliding-tile solver.

We investigate the incremental computation of the LM-
cut heuristic (Helmert and Domshlak 2009), an accurate es-
timate of the delete-relaxation heuristic h+. LM-cut seems
promising for incremental computation, as it is compara-
tively expensive to compute but yields high-quality heuristic

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

estimates. We show that after applying an operator, most
of the computational effort for heuristic calculation can be
reused from the parent node’s calculation. To this end, the
resulting landmarks are stored after each heuristic compu-
tation. As in the sliding-tiles example, most of this stored
information remains valid in a successor node and updating
the heuristic value is cheaper than computing it from scratch.

With an initial version we achieve speedups of over an
order of magnitude but at the cost of an often prohibitively
high memory consumption. We thus explore different tech-
niques to save memory while still being able to benefit from
the performance of incremental computation.

We start by discussing related work and introducing rel-
evant notation, followed by a discussion of the theoretical
background. We then introduce three possible ways to use
incremental computation in A∗ search and evaluate them.
To reduce the amount of used memory we also tried using
IDA∗ search instead of A∗ search, which we discuss in the
last section.

Related Work
We previously reported on incrementally computing the
LM-cut heuristic (Pommerening and Helmert 2012). Our
work there is restricted to a delete-free setting, however, and
uses a search space that is not complete for general STRIPS
planning. The search space takes advantage of the fact that
in the delete-free setting no operator has to be used more
than once. In this setting a tree search over the subsets
of operators is possible, so that no duplicates occur. This
tree search can be performed with depth-first methods in a
memory-efficient way. We now generalize this approach to
arbitrary STRIPS planning tasks, where this is not valid. In-
stead we use A∗ and IDA∗ search with the classical search
space that has to deal with duplicates in the search graph.

Liu, Koenig, and Furcy (2002) use incremental heuris-
tic computation in an incremental value iteration (IVI) ap-
proach to calculate the additive heuristic hadd (Bonet and
Geffner 2001). In their case the calculation of hadd uses
a value iteration (VI) method that updates hadd values un-
til they no longer change. Instead of resetting the values
for each variable before a computation, IVI maintains the
values from the last calculation in memory and starts from
there. This is most beneficial for siblings in the search tree,
since they often have similar values for most variables. The

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

162

algorithm is correct no matter which node’s information is
used for the incremental computation. For IVI it is thus suf-
ficient to store the information obtained from one heuristic
calculation, which in this case can be done in-place with-
out memory overhead. For the incremental computation of
hLM-cut, on the other hand, it is crucial that the landmarks
of the parent node are known to allow an incremental com-
putation. Memory restrictions are thus a major limitation
for incremental LM-cut, although they are no issue for IVI.
Liu, Koenig, and Furcy (2002) also introduce a second in-
cremental algorithm called PINCH (Prioritized INCremen-
tal Heuristic calculation) that combines IVI with a variable
ordering within the state. It inherits the property of IVI that
incremental computation can be done for any two states, so
memory restrictions are no issue for PINCH either.

Zhang and Bacchus (2012) use LM-cut to seed a
MAXSAT encoding of planning problems. While not incre-
mental, the algorithm they propose shares some important
aspects with ours. In a technique called lazy heuristic eval-
uation the LM-cut value of a search node is calculated and
this node is added to the open list. When the node is popped
from the open list and still has its LM-cut value as its stored
f -value, a more expensive heuristic based on the landmarks
found by LM-cut is computed. The article does not men-
tion whether the computed landmarks are stored with each
node or recomputed in a second LM-cut computation. In
the former case the algorithm is bound to show problems
with limited memory and might benefit from the techniques
discussed in the following. In the latter case, the technique
shares one key idea with one of our algorithms, where in-
cremental computation is only done locally: computing a
cheaper heuristic on node generation and a more expensive
heuristic later in the search, when the node is expanded,
saves search time. The reason for this is that not all nodes
that are generated are also expanded, which is discussed in
more detail later.

Notation
The planning tasks we try to solve are STRIPS tasks with
action costs:
Definition 1 (Planning task). A planning task is a tuple
Π = 〈V, I,G,O〉 with a finite set of propositional variables
V , an initial state I ⊆ V , a set of goals G ⊆ V and a finite
set of operators O, where each o ∈ O consists of a set of
preconditions pre(o) ⊆ V , a set of add effects add(o) ⊆ V ,
a set of delete effects del(o) ⊆ V , and a cost cost(o) ∈ R+

0 .
An operator o is applicable in state s ⊆ V if pre(o) ⊆ s.

Applying o in s results in the state s[o] = (s \ del(o)) ∪
add(o). An operator sequence π = o1 . . . on is applicable
in s if there are states s0, . . . , sn such that s0 = s and for all
1 ≤ i ≤ n, oi is applicable in si−1 and si−1[oi] = si. Ap-
plying π in s results in s[π] = sn. If G ⊆ s[π], the sequence
π is called a plan for s. The cost of an operator sequence is
cost(o1 . . . on) =

∑n
i=1 cost(oi). Optimal planning is the

PSPACE-complete problem of finding minimal-cost plans
for I (Bylander 1994).

Heuristic functions h map states s to heuristic values
h(s) ∈ R+

0 ∪ {∞}. The perfect heuristic h∗ maps each

state s to the cost of a cheapest plan for s. Heuristics h that
never overestimate this cost, i.e., where h(s) ≤ h∗(s) for
all s, are called admissible. Using an admissible heuristic,
the A∗ (Hart, Nilsson, and Raphael 1968) and IDA∗ (Korf
1985) algorithms are guaranteed to find optimal solutions.

Theory
LM-cut Heuristic. Experiments by Helmert and Domsh-
lak (2009) have shown that the LM-cut heuristic offers
high quality admissible estimates of the delete-relaxation
heuristic h+ for many planning tasks. The delete-relaxation
heuristic solves an easier version of the planning task where
all delete effects are ignored. It is a good, but intractable
(Betz and Helmert 2009; Bylander 1994) lower bound for
the perfect heuristic.

The values of LM-cut are defined by disjunctive action
landmarks (called landmarks in the following). A landmark
is an operator set L such that every solution must contain at
least one operator from L. Its cost (written as cost(L)) is the
minimum over the cost of the contained operators, reflecting
the fact that at least the cost for the cheapest operator has to
be spent. The LM-cut computation is performed in rounds
where each round proceeds as follows:

1. Compute the hmax values (Bonet and Geffner 2001) of all
variables. If hmax(g) = 0 for all goal variables g, stop
and return the computed heuristic value. If hmax(g) =∞
for some goal variable g, stop and return∞.

2. Use the hmax values to compute a landmark L with
nonzero cost c and add c to the heuristic value (which
starts as 0). For our purposes the details of how L is dis-
covered do not matter.

3. Reduce the operator costs of all operators in L by c.

4. Discard L.

Before returning, all operator costs are reset to their original
value. For a more detailed description of this process and the
discovery of landmarks in step 2., we refer to the literature
(Helmert and Domshlak 2009; Bonet and Helmert 2010).
Incremental Computation. The central idea presented here
is to store the landmarks computed in step 2. of the LM-cut
computation and use them during the heuristic computation
of successor nodes.

Consider a search node σ associated with the state s (writ-
ten as s = state(σ) in the following). When we compute the
heuristic value of swe store the discovered landmark set Ls.
When generating the successor node σo that results from ap-
plying operator o to s, most landmarks in Ls will also be
landmarks for s′ = state(σo). The landmarks in Ls are op-
erator sets where at least one operator has to be used when
starting from s. Applying the operator o does not change
this for landmarks that do not mention o.

We can thus start the LM-cut algorithm for s′ with the
landmark set {L ∈ Ls | o /∈ L} already computed. If the
LM-cut algorithm would have discovered these landmarks
in its first rounds, it would also have adjusted the operator
costs for each discovered landmark, so this has to be done as
well.

163

The remaining operator costs at the end of each LM-cut
calculation can either be stored alongside Ls or recreated
from the stored landmarks. We chose to do the latter be-
cause it frees up memory that can be used to save additional
landmark sets. In this case, the remaining operator costs are
computed for each operator o as its original cost reduced by
the sum of all stored costs of landmarks containing o. If the
same set of landmarks is discovered in two different orders,
the resulting cost can be different but remains an admissible
estimate.

If the LM-cut algorithm would have discovered the same
landmarks in the first rounds, the final calculated heuris-
tic value would be the same with incremental computation.
However, this is not necessarily the case. If the first rounds
would have discovered different landmarks, the hLM-cut

value could be higher or lower than the incrementally com-
puted value. The estimate remains admissible, though, be-
cause the operator costs are decreased for each landmark.
This introduces an additive cost partitioning with one par-
tition per landmark that assigns the landmark’s cost to all
its operators and zero to all other operators. Experiments
with expansion-limited searches have shown that incremen-
tal computation does not affect the overall predictive quality
of LM-cut (Pommerening 2011).

For a full incremental computation, the landmarks calcu-
lated for all generated search nodes have to be saved. If
this is not feasible because of memory constraints, stored
landmarks can be discarded for any node at any time. The
successors of such nodes where landmarks were discarded
can be generated with the regular (non-incremental) LM-cut
heuristic leading to a new set of stored landmarks. In the
following section we discuss and evaluate different strate-
gies when and for which nodes the stored landmarks should
be discarded.

Practice
The introduction and discussion of strategies is interleaved
with their empirical evaluation in the following sections be-
cause results for one strategy influence design choices for
the next. We evaluated our algorithms on 1396 tasks in
44 domains from IPC 1998–2011. These are all domains
from the respective optimal tracks where Fast Downward
(Helmert 2006) generates a grounded task without condi-
tional effects or axioms. All experiments were run on a clus-
ter of Intel Xeon X5550 quad-core CPUs (2.67GHz) with
one task per core. Memory was limited at 2 GB and time at
30 minutes per run.

We report the number of problems solved (coverage) and
the chance to solve a randomly selected task from a ran-
domly selected domain (coverage score). The coverage
score gives the same weight to each domain and is thus bet-
ter suited to compare performance than simple averages if
domains have different sizes.

We also report time scores which represent the expected
time to solve a random task logarithmically scaled between
1 second and the time limit. For details on this scoring sys-
tem we refer to the literature (Richter and Helmert 2009).
The data is right-censored, i.e., the time scores for runs that

are stopped because of exhausted memory cannot be mea-
sured. Hence, the time score is a pure measure of compu-
tation speed independent of memory usage only when it is
calculated for a timeout where no task stopped because of
exhausted memory (55 seconds in our case).

We thus report three values: an uncensored time score
computed for a time limit of 55 seconds and two estimates
for the uncensored time score with a limit of 1800 seconds.
The assumption for the first is that every problem exhausting
memory would not have been solved within the time limit.
For the second we assume that the task was solved at the
time the program was stopped.1

Application to A∗ Search
We implemented the incremental computation of LM-cut in
the Fast Downward planner. In this basic algorithm (called
hiLM-cut) all landmarks are stored and all computations ex-
cept the first are incremental.

Note that hiLM-cut, unlike the original non-incremental
LM-cut heuristic, is consistent: if σ′ is the successor node of
node σ via operator o, then hiLM-cut(σ′) ≥ hiLM-cut(σ) −
cost(o). To see this, observe that when going from σ to σ′,
the heuristic value can only decrease by the sum of costs
of landmarks containing the applied operator o (only land-
marks containing o are discarded by the incremental com-
putation). Because the landmarks found by the LM-cut pro-
cedure induce a cost partitioning, the costs of the landmarks
containing o must sum to at most cost(o). Note that we also
introduce variants of hiLM-cut that do not store all landmarks
and are thus not consistent.

Using A∗ with hiLM-cut instead of hLM-cut already im-
proves the coverage and computation time (see Table 1).
The improvement in computation speed comes at the cost
of a larger memory consumption. With hLM-cut only 31 in-
stances exhausted the memory limit, while the A∗ search
with hiLM-cut exhausted its memory 526 times. The time
score on the other hand increases by at least four percent-
age points. This increase in computation speed leads to an
increase in coverage by 5. We will now look into how the
memory requirements of hiLM-cut can be reduced without
sacrificing too much of the increased time score.

Saving Memory by Forgetting Landmarks
As explained earlier, stored landmarks can be discarded at
any time and can be recomputed on demand. This can be
used to trade computation speed for memory. The decisions
which landmarks are discarded and when this is done are re-
ferred to as a strategy. To reduce the memory consumption,
we used reference-counting pointers instead of storing the
landmarks explicitly for each node. When a successor node
is generated only pointers need to be copied from its parent.
When all landmark sets containing a specific landmark are
discarded, the landmark is also discarded automatically.

1Note that the uncensored time score for a limit of 1800 sec-
onds must fall between these two values, though not necessarily in
the middle of that interval. Since large, complex tasks tend to be
the ones with memory and time problems, the value is more likely
closer to the first value.

164

Coverage per domain A
∗
/h

L
M

-c
u
t

A
∗
/h

iL
M

-c
u
t

A
∗
/h

iL
M

-c
u
t

fr
on

tie
r

A
∗
/h

iL
M

-c
u
t

lo
ca

l

A
∗
/h

iL
M

-c
u
t

5
0

M
B

A
∗
/h

iL
M

-c
u
t

2
5
0

M
B

A
∗
/h

iL
M

-c
u
t

5
0
0

M
B

A
∗
/h

iL
M

-c
u
t

dy
na

m
ic

ID
A

∗
/h

L
M

-c
u
t

ID
A

∗
/h

iL
M

-c
u
t

fr
on

tie
r

ID
A

∗ L
/h

iL
M

-c
u
t

fr
on

tie
r

airport (50) 28 30 30 29 30 30 30 30 30 30 30
barman (20) 4 4 4 4 4 4 4 4 0 4 4
blocks (35) 28 28 28 28 28 29 29 29 28 29 28
depot (22) 7 7 7 7 7 7 7 7 7 7 7
driverlog (20) 13 13 13 14 13 13 13 13 13 13 14
elevators (2008) (30) 22 21 21 22 22 22 22 22 18 21 22
elevators (2011) (20) 18 17 17 18 18 18 18 18 15 17 18
floortile (20) 7 6 6 7 7 7 6 7 6 7 7
freecell (80) 15 15 15 15 15 15 15 15 15 15 15
grid (5) 2 2 2 2 2 2 2 2 2 2 2
gripper (20) 7 6 7 7 7 7 7 7 6 7 7
logistics00 (28) 20 20 20 20 20 20 20 20 20 20 20
logistics98 (35) 6 6 6 6 6 6 6 6 6 6 6
miconic (150) 141 141 141 142 142 142 142 142 141 141 141
mprime (35) 22 22 22 24 23 23 23 23 22 23 24
mystery (30) 17 18 18 17 17 18 18 22 16 17 17
nomystery (2011) (20) 14 18 18 16 17 18 18 18 14 15 15
openstacks (2006) (30) 7 7 7 7 7 7 7 7 7 7 7
openstacks (2008) (30) 18 18 18 18 18 18 18 18 26 26 26
openstacks (2011) (20) 13 13 13 13 13 13 13 13 19 19 19
parcprinter (2008) (30) 18 18 18 18 18 18 18 18 17 17 18
parcprinter (2011) (20) 13 13 13 13 13 13 13 13 12 12 13
parking (20) 2 2 2 5 3 2 2 3 1 3 3
pathways (30) 5 5 5 5 5 5 5 5 5 5 5
pegsol (2008) (30) 27 27 27 28 27 28 28 28 27 29 28
pegsol (2011) (20) 17 17 17 18 17 18 18 18 17 19 18
pipesworld-notankage (50) 17 16 16 18 18 17 17 18 16 18 18
pipesworld-tankage (50) 12 11 11 12 11 11 11 12 10 12 12
psr-small (50) 49 48 49 49 49 49 49 49 48 49 49
rovers (40) 7 7 7 7 7 7 7 7 7 7 7
satellite (36) 7 7 7 9 7 7 7 7 7 7 7
scanalyzer (2008) (30) 15 15 15 16 15 15 16 16 15 15 16
scanalyzer (2011) (20) 12 12 12 13 12 12 13 13 12 12 13
sokoban (2008) (30) 30 29 30 30 30 30 30 30 27 30 30
sokoban (2011) (20) 20 20 20 20 20 20 20 20 19 20 20
tidybot (20) 14 16 16 14 14 15 16 16 13 14 14
tpp (30) 6 6 6 6 6 6 6 6 6 7 6
transport (2008) (30) 11 11 11 11 11 11 11 11 10 11 11
transport (2011) (20) 6 7 7 7 6 7 7 7 5 6 6
trucks (30) 10 10 10 10 10 10 10 10 10 10 10
visitall (20) 10 11 12 11 11 11 12 12 10 12 11
woodworking (2008) (30) 16 18 18 20 19 19 19 19 17 20 20
woodworking (2011) (20) 11 12 12 14 13 13 13 13 11 14 14
zenotravel (20) 13 12 12 13 12 12 12 12 11 12 12
Coverage (1396) 757 762 766 783 770 775 778 786 744 787 790
Coverage score (in %) 52.5 53.1 53.4 54.8 53.5 54.0 54.4 55.0 51.2 55.1 55.4
Time score (min in %) 40.0 44.8 45.0 42.3 44.2 44.8 44.9 45.2 37.5 42.0 43.2
Time score (max in %) 40.3 52.7 52.2 42.8 45.0 45.9 46.8 45.2 37.5 42.6 44.0
Time score (55 s in %) 32.8 38.7 38.8 35.3 38.4 38.6 38.6 38.9 30.5 34.8 36.3

Table 1: Coverage and time score results. Results for hiLM-cut
dynamic are interpolated and not regarded for the maximum.

165

Discard Information After Expansion. Stored landmarks
of a node are only needed to compute the heuristic value of
its successor nodes. Once the node has been expanded and
the heuristic value of its successors is known, the only situa-
tion where its landmarks could be needed again is if it would
be reopened, which rarely happens. In a first try to reduce
the memory requirements we discard the stored landmarks
of a node as soon as all its children are generated. This idea
is somewhat related to frontier search (Korf 1999) as it only
stores landmarks for nodes on the search frontier and will
thus be called hiLM-cut

frontier . However, since only landmarks and
no nodes are discarded, the search algorithm remains a clas-
sical A∗ search.

Comparing A∗ with hiLM-cut and hiLM-cut
frontier shows that this

change can reduce the required memory by factors of up
to 3.5 with a geometric mean of 1.05. The time score re-
mains more or less unaffected2 (cf. Table 1). This modest
but steady improvement in available memory leads to one
additional solved problem in four domains. As this tech-
nique did not seem to negatively influence the time score, it
was also included in the following strategies for A∗ search.

Figure 1 shows a scatter plot of the search times needed
for A∗ with hiLM-cut

frontier and hLM-cut. The incremental compu-
tation improves the search time with few exceptions by up
to one order of magnitude. When ignoring easy problems
(solved with hLM-cut in under 1 s) the runtime was reduced
by 77% in the geometric mean.

The domains NoMystery and Miconic seem to benefit
particularly well from the incremental computation with
runtime reductions of 98% and 93% respectively (geomet-
ric mean). In Miconic the number of expansions is the same
for the incremental and non-incremental computation, so the
decrease in runtime purely results from the faster heuristic
computation. For NoMystery the number of expansions is
also decreased by incremental computation.
Fixed Memory Bounds. Failing a planner run because
there are too many stored landmarks should not be neces-
sary, because memory can be freed up by removing some
of them. This potentially slows down the search because
these landmarks need to be recomputed, but if the alternative
is running out of memory, discarding landmark information
should always be preferred. The amount of memory avail-
able to store landmarks can thus be fixed and some of the in-
formation can be discarded whenever this bound is reached.
To distinguish the reserved space from the overall memory
limit we call it bound in the following.

There are different possibilities for picking landmarks that
should be discarded once the bound is reached. We decided
to sort all nodes with attached landmarks according to their
f -value. Landmarks of a node with highest f -value are then
repeatedly discarded until the memory consumption of all
stored landmarks is below half the desired bound. The rea-
son for picking nodes with a high f -value is that nodes σ
with f(σ) > h∗ are never expanded in A∗. Removing half
of the stored landmarks can be beneficial to amortize the
time used to sort the nodes according to their f -values. For a

2The minimum score is actually increased slightly, but this can
be due to noise.

10−1 100 101 102 103
10−1

100

101

102

103

un
so

lv
ed

unsolved

A∗ with hLM-cut

A
∗

w
ith

h
iL

M
-c
u
t

fr
on

tie
r

Figure 1: Search times in seconds for incremental and non-
incremental LM-cut. Miconic domain printed as circles.

bound m the resulting heuristic is called hiLM-cut
m . Note that

hiLM-cut
frontier is the same as hiLM-cut

∞ . This technique could be
further improved by only marking elements as available and
deleting them on demand, as in lazily discarding batch re-
placement strategies for transposition tables (Akagi, Kishi-
moto, and Fukunaga 2010). In our case the data structures
used to store landmarks made it hard to implement this tech-
nique efficiently. Although the performance actually de-
creased with batch replacement, it could still be a possible
improvement with different data structures. We leave this
as future work and in the following discuss results achieved
without batch replacement.

Note that the amount of memory freed differs from node
to node for two reasons. Firstly, two nodes might have dif-
ferent amounts of (and differently sized) landmarks. Sec-
ondly, landmarks are stored as reference-counting pointers
and thus are only discarded once the last pointer to them
is discarded. Other ways to maintain the fixed bound are
certainly possible but were not evaluated. One could for ex-
ample discard nodes randomly.

A planner run can fail for two reasons: running out of time
and running out of memory. Figure 2 shows the number and
distribution of failure conditions for different bounds on the
available memory for landmarks. Not surprisingly the num-
ber of failures caused by exhausting memory increases with
an increasing bound. The number of timeouts is also ex-
pected to decrease as large instances that result in a timeout
with a small bound can run out of memory if more space is
reserved.

However, the results also show that the total number of
failures decreases with an increasing bound up to an opti-
mal bound of 500 MB. This means that some instances that
could not be solved when only few landmarks are stored, can
be solved when more landmarks are stored and the heuris-
tic can be computed incrementally more often. For the best
bound of 500 MB the coverage is 778, which corresponds

166

50
250

500
750

1000
1250

1500
1750 ∞

0

200

400

600

Memory bound in MB

Figure 2: Distribution of failure conditions for different
bounds. Bars show the number of instances that were
stopped because they reached their time (black) or memory
(white) limit. Instances were over 99% of both resources
where used when the task was stopped are shaded in gray.

to 12 additional tasks solved compared to hiLM-cut
frontier and 21

additional tasks compared to hLM-cut.

Dynamic Memory Bound. As the optimal bound strongly
depends on the problem, the search algorithm should ideally
not use a fixed memory bound but a dynamic one (hiLM-cut

dynamic).
In that case all available memory could be used to store
landmarks until it is needed by the search algorithm to store
search nodes. This is difficult to implement for several rea-
sons. Measuring the memory pressure of a complex program
accurately is not trivial, for one. Predicting and limiting
memory requirements is also hard, because data structures
use overallocation to ensure their amortized runtime proper-
ties. This change would also have required changing large
parts of the planner’s implementation, so it was not evalu-
ated.

We conjecture that an instance which can be solved with
at least one fixed bound can also be solved with a dynamic
bound. For such a task the dynamic bound will be at least as
high as the fixed bound and more landmarks can be stored.
The search should not result in a timeout because storing
more landmarks typically decreases the search time as long
as there is enough available memory. It should also not run
out of memory as the search with a fixed bound fits into
memory and all additionally used memory can be freed on
demand. If the results are interpolated over the results for
fixed bounds the estimated coverage is 786 or another 8 ad-
ditionally solved tasks compared to the best bound (see Ta-
ble 1).

Local Incremental Computation. Another approach to
save memory and still benefit from incremental computation
is to use it only locally. This relies on the observation that
A∗ search typically expands fewer nodes than the number of

nodes that are generated. The geometric mean over the ra-
tio of generated nodes to expanded nodes ranges from 2.47
(Visitall) to 39.00 (Mprime). The geometric mean over all
domains for this ratio is 8.05. This result shows that addi-
tional work during the expansion of a node can be amortized
if it saves time during the evaluation of its successors.

Incremental computation can thus be used in the follow-
ing way (called hiLM-cut

local). During the expansion of a node
its heuristic is (re-)calculated using the non-incremental
LM-cut heuristic before its children are generated. The re-
sulting landmarks are stored and used for the incremental
computation of its child nodes’ heuristic values. After the
generation of all child nodes, the stored landmarks can be
discarded. This means that there are two heuristic calcu-
lations for every expanded node (with the exception of the
initial node): (i) a (fast) incremental computation when it is
generated from its parent, and (ii) a (slow) non-incremental
computation when it is expanded.

This introduces an overhead for each node expansion but
decreases the time needed to generate a child node. The
slow, non-incremental computation is only used for nodes
that are actually expanded. If the incremental computation
is sufficiently faster than the non-incremental one, the addi-
tional heuristic computation can be compensated.

The coverage for A∗ with hiLM-cut
local is 783 which outper-

forms hLM-cut by 26 and hiLM-cut by 17 instances (see Ta-
ble 1). The time score is between that of hLM-cut and the
score of hiLM-cut.

Figure 3 shows a scatter plot of the search times for A∗

with hiLM-cut
local and our baseline algorithm. The runtime of

non-trivial problems was reduced by 49% geometric mean.
As with hiLM-cut, the domain Miconic seems to benefit from
the incremental computation particularly well with runtime
reductions of 89% (geometric mean). Openstacks (2008 and
2011) is the only domain where instances show a negative
tendency in the geometric mean (40% increase). This might
be due to the structure of Openstacks tasks which is dis-
cussed later.

Application to IDA∗ Search
When memory restrictions are too tight for an A∗ search,
the IDA∗ algorithm is an often used alternative. It traverses
the nodes in depth-first order and only needs to keep one
branch of the search tree in memory at all times. Transpo-
sition tables with limited memory are usually used to store
some of the closed nodes and detect duplicates. A larger
transposition table requires more space but allows to detect
more duplicates. A∗ search with the non-incremental LM-
cut heuristic rarely ran out of space (30 out of 1396 cases),
i.e., all nodes encountered during A∗ search typically fit into
memory with this heuristic. This allows us to use IDA∗ with
an unlimited-size transposition table that stores all encoun-
tered states. Such an IDA∗ search expands and reopens the
same nodes as A∗ but is repeated for increasing limits of f
until a solution is found. This is normally not done, as it has
the high space requirements of A∗ and slower computation
time of IDA∗. In this case, however, the full transposition
table fits into memory and the depth-first expansion order

167

10−1 100 101 102 103
10−1

100

101

102

103

un
so

lv
ed

unsolved

A∗ with hLM-cut

A
∗

w
ith

h
iL

M
-c
u
t

lo
ca

l

Figure 3: Search times in seconds for non-incremental LM-
cut and incremental LM-cut used only for siblings. Miconic
domain printed as circles and Openstacks printed as squares.

of IDA∗ can be used to significantly reduce the number of
stored landmarks. Although all states have to be stored in the
transposition table for duplicate detection, it is sufficient to
only store the discovered landmarks along the current branch
of the search tree for incremental computation.

With (non-incremental) hLM-cut, IDA∗ with full duplicate
detection has no advantage over A∗ and the coverage drops
by 13 tasks to 744 in this case (see Table 1). These results
are skewed by a surprisingly good performance of IDA∗

in the domain Openstacks. A total of 14 additional Open-
stacks tasks (8 in the 2008 variant and 6 for 2011) could be
solved with IDA∗. We believe this to be a result of better
tie-breaking. In this domain, the large number of 0-cost op-
erators leads to an LM-cut value of 1 in all states except the
goal state. Both A∗ and IDA∗ search thus have no infor-
mation regarding which successor to prefer. In the case of
Openstacks it is always useful to apply applicable 0-cost op-
erators. A depth-first search such as IDA∗ implicitly breaks
ties in favor of a longer plan, i.e., more applied actions, and
so has an advantage in this domain.

The effect of incrementally computing the LM-cut heuris-
tic in this scenario are clearly positive: a total of 787 tasks
could be solved this way. This means that IDA∗ with
hiLM-cut

frontier could solve 43 more tasks than IDA∗ with hLM-cut

and 30 additional tasks compared to A∗ with hLM-cut (see
Table 1). Even if we do not count the 14 additional tasks in
Openstacks, this is still a significant improvement.

Speeding Up Known Parts of the IDA∗ Search Tree
Every iteration of IDA∗ repeats the search effort done in
the previous iteration. The assumption is that the number
of newly generated nodes in an iteration (i.e., the size of
the IDA∗ layer) increases exponentially, so the last iteration
takes up the bulk of the computation time. When IDA∗ re-
generates nodes in the search tree from the previous itera-

tion, heuristic values for such nodes are recomputed. In a
classical IDA∗ search this makes sense, as there is no reli-
able way to recognize if a node is part of the already ex-
plored part of the search tree. In the case of an unlimited
transposition table, however, this can be determined by a
simple hash table lookup. The heuristic value can be saved
together with a state in the transposition table and instead of
recomputing it, it can be looked up. If a heuristic compu-
tation takes significantly longer than a lookup, IDA∗ search
will then be able to traverse the existing tree much faster.
This results in a new problem in the case of incremental
computation. The heuristic values for the first nodes outside
the already explored part cannot be computed incrementally,
because the landmarks for their parents are not stored. The
value of such a node could be computed non-incrementally.
Alternatively, its parent’s heuristic value could be computed
non-incrementally, allowing an incremental computation for
the node itself. We argue that the latter makes more sense in
this case. Nodes that are not yet saved in the transposition
table are successors of nodes that were pruned in the last it-
eration of IDA∗. The current iteration generates such a node,
because IDA∗’s limit on the f -value just passed its parent’s
f -value. This means that all of its siblings will also be gener-
ated in this IDA∗ iteration. By using non-incremental com-
putation for its parent instead of itself, the parent’s landmark
information will become available. The heuristic values of
all the node’s siblings can then be incrementally computed.
We call the modified IDA∗ search that looks up known f val-
ues in its transposition table and uses non-incremental com-
putation for parent nodes IDA∗L.

This idea is similar to that of hiLM-cut
local in A∗ as described

earlier. If the heuristic function is inaccurate, the number of
IDA∗ iteration increases and the IDA∗ layers contain fewer
nodes. Thus the length of operator sequences that can be
applied without increasing the f -value decreases. If all such
sequences have length 1, the search calculates the heuristic
twice for every node. The situation is different for more ac-
curate heuristics, when the number of nodes per IDA∗ layer
is larger and thus such chains are longer. In this case, the
heuristic can be computed incrementally for a larger sub-
tree and the cost for the non-incremental computation can
be amortized. This technique can be particular effective for
domains with a large branching factor, as this also increases
the size of the subtree that can be evaluated incrementally.
Adding this technique to our IDA∗ search increased its cov-
erage by another 3 tasks to 790 (see Table 1). Figure 4 shows
a scatter plot comparing IDA∗L with hiLM-cut

frontier to our baseline.
Runtimes are decreased by 48% in the geometric mean over
all domains. This technique has the largest impact in the
domains Airport and Miconic, reducing the runtime by 96%
and 92% respectively.

Conclusion
We have introduced a way to incrementally compute land-
marks with the LM-cut heuristic to speed up the heuris-
tic calculation during the search. The incremental compu-
tation is up to an order of magnitude faster than the non-
incremental computation but uses more memory. We intro-
duced several ways that trade off the gained speed against

168

100 101 102 103

100

101

102

103

un
so

lv
ed

unsolved

A∗ with hLM-cut

ID
A
∗

w
ith

lo
ok

up
an

d
h
iL

M
-c
u
t

fr
on

tie
r

Figure 4: Search times in seconds for A∗ with non-
incremental LM-cut and IDA∗ with incremental LM-cut and
reevaluations for parent nodes. Miconic domain printed as
circles and Openstacks printed as squares.

Domain - Problem A
∗

/h
L
M

-c
u
t

A
∗

/h
iL

M
-c

u
t

A
∗

/h
iL

M
-c

u
t

fr
on

tie
r

A
∗

/h
iL

M
-c

u
t

1
0
0

M
B

A
∗

/h
iL

M
-c

u
t

5
0
0

M
B

A
∗

/h
iL

M
-c

u
t

lo
ca

l

ID
A

∗
/h

L
M

-c
u
t

ID
A

∗ L
/h

iL
M

-c
u
t

fr
on

tie
r

airport #38 290 13 14 14 15 159 293 13
airport #25 T 191 191 177 191 707 1160 193
elevators (2008) #17 982 271 266 908 392 493 T 635
floortile #04-7 1186 M M 938 M 827 T 1060
miconic #17-4 522 50 53 58 55 76 516 60
mprime #19 T M M 844 1177 969 1782 744
mystery #06 1006 53 49 50 50 305 T 949
mystery #14 T 442 363 363 491 T T T
pipesworld-tankage #13 1270 285 268 521 290 718 T 990
scanalyzer (2011) #06 866 182 174 492 269 339 1270 343
sokoban (2008) #28 1589 M 244 226 262 1390 T 485
tidybot #12 1068 172 172 190 177 558 T 670
tidybot #20 T 1423 1278 T 1266 T T T
transport #07 T 250 245 T 553 1734 T T
woodworking (2008) #15 T M M 1303 663 655 T 626
woodworking (2011) #20 T 19 19 21 20 18 T 45
zenotravel #13 1355 M M T T 269 T T

Table 2: Runtimes for hard problems in seconds. If no run-
time is given the task exhausted time (T) or memory (M).

the lost memory. With A∗ search the best performing heuris-
tic used the incremental computation only locally to gen-
erate the successor nodes. With IDA∗ search and an un-
bounded transposition table an even larger improvement in
coverage was achieved (33 additional tasks compared to the
baseline). This heuristic also used incremental computa-
tion locally by looking up f values in the known part of the
search tree and recomputing heuristic values for parents of
the first nodes in the unknown part.

Table 2 shows explicit runtime results of tasks that
are the hardest in their domain for either A∗/hLM-cut or
A∗/hiLM-cut. The fast incremental methods frequently save
90% or more of the runtime compared to non-incremental
LM-cut. If the full incremental heuristic hiLM-cut fails,
the reason is often exhausted memory. The heuristics
hiLM-cut

frontier , hiLM-cut
m and hiLM-cut

local are increasingly more mem-
ory friendly and can solve tasks that do not fit in memory
with hiLM-cut. With an IDA∗L search memory requirements
can also be reduced, leading to a performance comparable
to that of A∗ with hiLM-cut

local .
Comparing the two best-performing heuristics to an A∗

search with hiLM-cut suggests that there is still room for im-
provement for the search times (see Table 2). This full in-
cremental computation most often fails by hitting the mem-
ory limit. Thus, one way to improve its performance would
be a more memory-efficient implementation. For example,
compressed bitsets could be used to store the landmarks and
reduce their memory footprint.

Another way to make the best use of all available memory
is to use a dynamic memory bound (hiLM-cut

dynamic). This would
require keeping track of all allocated memory in the plan-
ning system to correctly assess the remaining free memory.
Alternatively the memory bounded version (hiLM-cut

k) could
be combined with hiLM-cut

local . Landmark information could
then be stored as long as there is memory available. Heuris-
tic calculations for nodes where the parent did not store land-
marks could be performed by computing the landmarks for
the parent, storing them temporarily and then computing the
incremental heuristic for its successor states.

The techniques presented in this paper can also be applied
to other heuristics that benefit from incremental computation
but require too much memory to store all information. For
example, the optimal cost partitioning for landmark heuris-
tics (Karpas and Domshlak 2009) is based on solving a lin-
ear program. This LP is similar for a node and its succes-
sor and thus could be computed incrementally. This would
also require storing a large amount of data for each search
node and could thus benefit from the techniques discussed
here. As a second example, consider the improved LM-cut
heuristic by Bonet and Helmert (2010). Its value is based on
a hitting set computation, which could also reuse informa-
tion from the parent node. The information contained in the
hitting set problem is the same that is contained in the land-
marks, so memory restrictions will also be an issue here.
Finally, as mentioned earlier, the MAXSAT based heuris-
tic by Zhang and Bacchus (2012) could store the landmarks
discovered by LM-cut to discover the landmarks for succes-
sor nodes faster. It could also store parts of the MAXSAT
computation and perform this computation incrementally.

169

Acknowledgments
This work was supported by DFG grant HE 5919/2-1.

References
Akagi, Y.; Kishimoto, A.; and Fukunaga, A. 2010. On trans-
position tables for single-agent search and planning: Sum-
mary of results. In Proceedings of the 3rd Annual Sympo-
sium on Combinatorial Search (SoCS 2010), 2–9.
Betz, C., and Helmert, M. 2009. Planning with h+ in the-
ory and practice. In Proceedings of the 32nd Annual Ger-
man Conference on Artificial Intelligence (KI 2009), volume
5803 of Lecture Notes in Artificial Intelligence, 9–16.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129:5–33.
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In Proceedings of the 19th Eu-
ropean Conference on Artificial Intelligence (ECAI 2010),
329–334.
Burns, E.; Hatem, M.; Leighton, M. J.; and Ruml, W. 2012.
Implementing fast heuristic search code. In Proceedings of
the 5th Annual Symposium on Combinatorial Search (SoCS
2012), 25–32.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artificial Intelligence 69:165–
204.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS 2009), 162–169.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Karpas, E., and Domshlak, C. 2009. Cost-optimal plan-
ning with landmarks. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2009), 1728–1733.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Korf, R. E. 1999. Divide-and-conquer bidirectional search:
First results. In Proceedings of the 16th International Joint
Conference on Artificial Intelligence (IJCAI 1999), 1184–
1189.
Liu, Y.; Koenig, S.; and Furcy, D. 2002. Speeding up the
calculation of heuristics for heuristic search-based planning.
In Proceedings of the 18th National Conference on Artificial
Intelligence (AAAI 2002), 484–491.
Pommerening, F., and Helmert, M. 2012. Optimal planning
for delete-free tasks with incremental LM-cut. In Proceed-
ings of the 22nd International Conference on Automated
Planning and Scheduling (ICAPS 2012), 363–367.

Pommerening, F. 2011. Optimal planning for delete-free
tasks with incremental LM-cut. Master’s thesis, Albert-
Ludwigs-Universität Freiburg.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Proceedings
of the 19th International Conference on Automated Planning
and Scheduling (ICAPS 2009), 273–280.
Zhang, L., and Bacchus, F. 2012. MAXSAT heuristics for
cost optimal planning. In Proceedings of the 26th AAAI Con-
ference on Artificial Intelligence (AAAI 2012), 1846–1852.

170

