
Dynamic Online Planning and Scheduling
Using a Static Invariant-Based Evaluation Model

Cédric Pralet and Gérard Verfaillie
ONERA – The French Aerospace Lab

F-31055, Toulouse, France
cedric.pralet,gerard.verfaillie@onera.fr

Abstract

Sequential decision-making under uncertainty often
uses an approach in which a plan is built over a given
horizon ahead using a deterministic model, the first de-
cisions in this plan are applied, new information is ac-
quired, the plan is adapted or rebuilt from scratch over
a sliding horizon, and so on. This paper introduces a
generic local search library that can be used in this con-
text to quickly build and rebuild good quality plans.
This library is built upon the notion of invariant used
in constraint-based local search. Invariants allow tem-
poral constraints, resource constraints, and criteria to be
very quickly evaluated from a variable assignment and
re-evaluated from a small change in this assignment.
The paper also shows how the library can be used to
reason on dynamic problem instances using a unique
static problem model, without dynamic memory alloca-
tion. The approach is illustrated on a problem of data
download under uncertainty about the volume of data,
coming from the space domain.

1 Introduction
Planning and Scheduling (P&S) for autonomous systems of-
ten requires to take into account uncertainties about the sys-
tem and environment state, unexpected events, and new re-
quest arrivals. Autonomous systems must also make deci-
sions continuously (repeatedly) over a potentially long-term
mission horizon.

The need to tackle such dynamic domains is already
known in the planning community (Pollack and Horty 1999;
desJardins et al. 1999), and several techniques were pro-
posed for obtaining efficient and continuous replanning.
These techniques include: (a) rationale-based monitors,
which focus the replanning task on relevant changes in the
environment (Veloso, Pollack, and Cox 1998); (b) HTN re-
pair used in the CPEF framework (Myers 1999); (c) iter-
ative plan repair used in CASPER to remove conflicts in
plans (Chien et al. 2000); (d) dynamic maintenance and re-
pair of plans used in IxTeT (Lemai and Ingrand 2004), based
on POCL and STN reasoning; (e) techniques that take into
account plan stability upon repair (Fox et al. 2006).

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The need to handle dynamic domains is also already
known in the scheduling community (Ovacikt and Uzsoy
1994; El Sakkout and Wallace 2000; Elkhyari, Guéret, and
Jussien 2002), and more generally in combinatorial opti-
mization (Hentenryck and Bent 2006; Verfaillie and Jussien
2005; Alba, Nakib, and Siarry 2012), with an emphasis on
stability and robustness objectives and on incremental local
search techniques.

This paper introduces a new generic framework for man-
aging dynamic and continuous P&S problems. One of the
main novelties of this framework is its ability to tackle dy-
namic problems using static models, which never change
over the whole mission horizon. The use of static models
is motivated by operational constraints regarding the soft-
ware embedded on-board autonomous systems. More pre-
cisely, in the context of this study, the French space agency
(CNES) asked us to define planning and replanning algo-
rithms that do not use any dynamic memory allocation (no
“new” instruction once the on-board software is initialized).
This allows the exact memory size occupied by the planning
process to be known beforehand. This also guarantees, by
construction, the absence of memory leaks, memory heap
overflows, or time loss due to online model creations.

Additionally, we must bear on reactivity needs and on
strong limitations concerning computing resources available
on board (below 100MHz CPU / 100MB RAM in typical
space missions). Such limitations have an impact on P&S
tools, as shown by the feedback on CASPER for mission
EO-1 (Tran et al. 2004). Due to this operational context, the
new framework we propose for dynamic P&S is based on
local search, which is often able to quickly produce good-
quality solutions using a low amount of memory.

The use of local search for planning is not new: see for
instance iterative repair in ASPEN (Rabideau et al. 1999),
enforced hill-climbing in FF (Hoffmann and Nebel 2001),
stochastic local search in LPG (Gerevini, Saetti, and Se-
rina 2003), or evolutionary algorithms in DAE (Bibaı̈ et al.
2010). The main novelty here is that the local search ap-
proach proposed is based (1) on dynamic Constraint Satis-
faction Problems (Mittal and Falkenhainer 1990), in which
constraints can be active or not depending on the context,
and (2) on generic constraint-based local search techniques,
used in tools such as COMET and LocalSolver (Henten-
ryck and Michel 2005; Benoist et al. 2011). These tools are

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

171

built upon the notion of invariants, which allow combina-
torial constraints, temporal constraints, resource constraints,
and criteria to be very quickly evaluated from a variable as-
signment and re-evaluated from a small change in this as-
signment. We extend such invariant reasoning to integrate,
in the context of a static model, P&S techniques defined
for managing STN (Dechter, Meiri, and Pearl 1991) and
time-dependent STN (Pralet and Verfaillie 2013). The new
framework proposed is called InCELL for Invariant-based
Constraint EvaLuation Library.

The paper aims at both presenting InCELL and InCELL at
work on a concrete dynamic P&S problem. We first present
this concrete problem, which is used all along the paper
(Sect. 2). We then introduce the basis of InCELL (Sect. 3)
and extensions for scheduling (Sect. 4). The presentation is
focused on InCELL features that serve to model the case
study. We then explain the way static models of InCELL are
used for dynamic online P&S (Sect. 5). Finally, some exper-
imental results are presented (Sect. 6).

2 Space Mission: a Data Download Problem
As an illustrative example, we use the problem of manage-
ment of data downloads by satellites dedicated to the surveil-
lance of electromagnetic sources at the Earth surface (Ver-
faillie et al. 2011). In this problem, surveillance plans (se-
quences of surveillance activities) are regularly built on the
ground, uploaded to the satellites, and executed by them.
However, the volume of data generated by any surveillance
activity is not known in advance. Only a probability distribu-
tion on the actual volume is available. This distribution may
have a large variance (typically, the actual volume may go
from 1 to 1000). The actual volume of data generated by any
surveillance activity a is only known at the end of a, when
all the data generated by a is recorded in the satellite mass
memory. Data downloads are then possible, but only within
visibility windows of ground reception stations. Downloads
can be performed concurrently with surveillance activities.
The mission success depends on fair sharing among several
entities that use the satellite, and on the so-called age of in-
formation (temporal distance between the realization of an
acquisition and its delivery).

Due to the uncertainty on the volume of data, it becomes
difficult to build data download plans completely off-line on
the ground, as it is usual for many space missions. If max-
imum volumes of data are taken into account to build such
plans, download windows may be under-used and mission
return may be needlessly limited. If expected volumes are
taken into account, some data may be lost due to actual vol-
umes greater than expected. A solution consists in building
data download plans on-line on board as actual volumes of
data are progressively known. More precisely, a download
plan is regularly built on board over a given set of visibil-
ity windows ahead, taking into account actual volumes for
the activities that have been already performed and expected
volumes for the others ; the first downloads in this plan are
executed ; then, a new plan is built over a sliding horizon, at
least when an activity ends and its actual volume is known,
and so on. Another solution would consist in building a data

download policy on the ground, using MDP (Markov De-
cision Process (Puterman 1994)), but the multi-dimensional
continuous state space to be considered (volumes associated
with each activity) together with the non-linear optimization
criterion prevent us from using this approach.

3 InCELL: an Invariant-based Constraint
EvaLuation Library

This section introduces the basis of InCELL, the new generic
local search library which we aim at using for dynamic P&S.

3.1 Atomic and Non Atomic Variables
The first modeling entity of InCELL is the notion of vari-
able. Variables are partitioned into atomic variables, whose
value can be updated by the user, and non atomic variables,
defined as functions of other variables. For P&S, atomic
variables can model both controllable variables (also called
decision variables), whose value is updated by the planner
when searching for good-quality plans, and uncontrollable
variables (also called parameters), whose value is updated
when knowledge on the environment is available. InCELL
handles only complete variable assignments at any step, as
in constraint-based local search, that is every variable x in
the model is always assigned, with value x.val .

We denote as var{T} the type of a variable x taking val-
ues of type T . Type T can be primitive (bool , int , long ,
float , double) or not. Constants of type cst{T} are spe-
cial cases of variables of type var{T}, whose value never
changes. InCELL also offers more complex variable types,
such as type seq{T,N} to represent sequences [e1, . . . , en]
of elements of type T whose size n is bounded by N .

3.2 Invariants
The concept of invariant is central in constraint-based lo-
cal search. In the COMET system (Hentenryck and Michel
2005), it is defined as a one-way constraint x← exp, where
x is a variable and exp is a functional expression of other
variables in the problem, such as x ← sum(i ∈ [1..N]) yi.
Invariants are maintained automatically and incrementally
during local moves. The incremental aspect reduces the
amount of work required to recompute the outputs (left part)
of invariants following small changes in the assignment of
their inputs (right part). On the previous example, in case of
change of yk for some k ∈ [1..N], it suffices to add to x the
difference between the current value of yk and its old value,
instead of recomputing x from scratch. The only condition
required for reevaluating invariants incrementally is that the
set of invariants must be acyclic, so that a variable is not a
function of itself.

The formal definition of invariants used in InCELL is
given below. We make explicit the fact that an invariant can
have several outputs (not necessarily a single variable on the
left-hand side of the invariant). This will be useful to manage
invariants provided later that use STN reasoning techniques.

Definition 1 An invariant is a triple (I,O, f) with I and O
sequences of variables called the input and output variables
respectively, and f a function mapping assignments of I to
assignments of O.

172

A set of invariants ∆ is said to be defined over a set of
atomic variables V iff all inputs of invariants in ∆ belong to
V or to outputs of invariants in ∆, and all outputs of invari-
ants in ∆ are pairwise distinct and do not belong to V .

The directed graph G associated with a set of invariants
∆ over V is a graph containing nodes with input and output
ports. G contains (a) one node per atomic variable v ∈ V ;
this node has no input port and a single output port labeled
by v; (b) one node per invariant (I,O, f) ∈ ∆; this node is
labeled by f and has, for each i ∈ I , one input port labeled
by i, and, for each o ∈ O, one output port labeled by o. In G,
there is an arc from every output port labeled by a variable
x to every input port also labeled by x. The set of invariants
is said to be acyclic iff G is acyclic. In this case, G is called
the DAG of invariants.

Fig. 1 shows the DAG associated with a small set of in-
variants. In this figure, all invariants have a single output.
InCELL offers a catalog of such single-output invariants:
boolean invariants (output of type var{bool}) built using
logical operators (∧, ∨, ¬, →, ↔), comparators (=, 6=, ≤,
<,≥, >), and cardinality constraints; numeric invariants ob-
tained via arithmetic operations (abs, opposite, min, max,
ite, sum, weightedSum, minus, prod, div, ceil, floor, round,
exp, sqrt, pow, sin...); invariants which are called combina-
torial invariants in COMET, such as the element invariant.1

V = { b:var{bool},
x:var{double},
y:var{double},
2:cst{double}}

var{double} z ← ite(b, x, y)
var{double} t← (x− y)
var{bool} u← (z < t)
var{double} v ← (t+ 2)

−ite

< +

yxb

z t
2

vu

Figure 1: Set of invariants and associated DAG (ite(b, x, y)
stands for “if b then x else y”)

Invariants are also available for handling sets of elements.
For example, the invariant in Eq. 1 enforces that sequence s
is a sorted version of the list of elements ei in elts that satisfy
condition bi. Elements are sorted according to vi values in
vals , using comparator�. The invariant in Eq. 2 returns only
the minimal elements. All invariants mentioned previously
are handled in InCELL without dynamic memory allocation.

elts = [e1:T, . . . , eN:T]
conds = [b1:var{bool}, . . . , bN:var{bool}]
vals = [v1:var{T ′}, . . . , vN:var{T ′}]
seq{T,N} s← sort�(elts, conds, vals) (1)
seq{T,N} s′ ← argmin�(elts, conds, vals) (2)

Local Search Local moves can be performed by updating
assignments of atomic variables. To handle invariants in this
context, InCELL uses the same four basic methods as in Lo-
calSolver (Benoist et al. 2011): (1) init(), for initializing the

1The element invariant takes as input a table of elements
tab:var{T}[] and an index idx:var{int}. It has a single out-
put x:var{T} and enforces x.val = tab[idx.val].val.

value of all outputs of invariants; (2) eval(), for reevaluating
outputs in case of change of some inputs; (3) commit(), for
accepting the state of the model as the new current state; (4)
rollback(), for coming back to the state just after the last call
to commit().

In constraint-based local search, the main issue is to
reevaluate all invariants with a minimum computational cost
upon change in the assignment of atomic variables. To do
this, the reevaluation process maintains a priority queue
containing invariants to be reevaluated. This queue is or-
dered following a topological order of the DAG of invari-
ants, which allows each invariant to be reevaluated at most
once. The reevaluation queue initially contains invariants
that are children of atomic variables whose assignment has
changed. When an invariant is reevaluated, all children of
modified outputs are added to the queue (if they were not
already present in the queue). The reevaluation stops when
the reevaluation queue is empty.

3.3 Example
We illustrate the previous elements on the data download
problem. In the following, A denotes the maximum num-
ber of acquisitions that can be handled by the static model,
W the maximum number of visibility windows, S the num-
ber of reception stations, E the number of entities that share
the satellite, and P the number of priority levels associated
with acquisitions. Fig. 2 gives a list of variables introduced
to model the data download problem.

This list first contains parameters hSta and hEnd , defin-
ing the sliding planning horizon. Constant features of the
mission are then introduced: the emission rate of the down-
load antenna (dRate), and the durations of data transfers be-
tween ground stations (tDursij).

The next group of variables corresponds to features of re-
ception station visibility windows w ∈ [1..W], with their
start time, their end time, and the index of the corresponding
reception station (variables wStaw, wEndw, and wStw).

Parameters are then defined for each acquisition a ∈
[1..A]: an entity requesting the acquisition (ena), a prior-
ity degree (pra), a weight within this priority degree (wa),
an end time (aEnda), a delivery deadline after which a has
no value (dlinea), a principal station to which a must be de-
livered (pSta), a volume occupied in mass memory (vla),
and a download duration (dDura). The latter variable is not
atomic: it is defined by the invariant of Eq. 3, as a function
of the volume of a and of the download rate.

The download decision for a is represented by atomic
variable dWina whose value gives the index of the visibility
window in which the download of a is planned (value 0 if
no download). Several non atomic variables can be derived
from dWina, including: (a) variable dPresa, defined by the
invariant of Eq. 4, which expresses that a is downloaded iff
the download window chosen for a is not null; (b) variable
dSta, defined by the invariant of Eq. 5, which expresses that
the station to which a is downloaded is the station associated
with window dWina; Eq. 5 implicitly uses an element in-
variant; (c) variable tDura, defined by the invariant of Eq. 6,
which expresses that the duration required for transferring a
on the ground to its principal station depends on transfer du-

173

Planning horizon
hSta var{double} start time of the horizon
hEnd var{double} end time of the horizon
Mission features
dRate cst{double} download rate
tDursij cst{double} duration for data transfer from i to j,

for stations i, j ∈ [1..S]

Reception station visibility windows w ∈ [1..W]
wStaw var{double} start time of w
wEndw var{double} end time of w
wStw var{int} station associated with w

Acquisitions features a ∈ [1..A]
ena var{int} entity requesting a
pra var{int} priority level of a
wa var{double} weight of a
aEnda var{double} end time of a
dlinea var{double} deadline for delivering a
pSta var{int} principal station for a
vla var{double} volume of a
dDura var{double} duration of the download of a
Download decisions for a ∈ [1..A]
dWina var{int} index of the window chosen for

downloading a
dPresa var{bool} presence of the download of a
dSta var{int} index of the ground station to which

a is downloaded
tDura var{double} transfer duration of a on ground
dStaa var{double} start time of the download of a
dEnda var{double} end time of the download of a
Activations
wActw var{bool} activation status of w ∈ [1..W]
aActa var{bool} activation status of a ∈ [1..A]

Planning algorithm
canda var{bool} candidate status of a ∈ [1..A] for in-

sertion in the plan
bestA seq{int , A} acquisitions of highest priority that

are active and candidate for insertion

Figure 2: Variables for the data download problem

rations tDursij and on the station to which a is downloaded.
Variables dStaa and dEnda in Fig. 2 give the precise start
and end times of the download of a. They will be defined by
more complex invariants given later in the paper.

The next two sets of variables given in Fig. 2, wActw for
every window w ∈ [1..W] and aActa for every acquisition
a ∈ [1..A], will allow us to make acquisitions and visibility
windows active or not in the model depending on whether
they are involved in the current planning horizon. Said dif-
ferently, they will allow us to reason in a dynamic CSP fash-
ion. Activations/inactivations will be useful in the quest for a
static model to handle dynamic problems. Let us also point
out that all features describing download windows and ac-
quisitions are defined as variables and not as constants. This
will allow us to recycle these elements each time the plan-
ning horizon slides (more details in Sect. 5).

Last, for the planning algorithm, special variables canda

are introduced to indicate whether acquisition a is candidate
for insertion in the plan (when the insertion of a fails, it is

marked as non-candidate). The set of acquisitions that are
active, candidate for insertion, and whose priority is max-
imal (bestA) can then be automatically maintained via the
invariant of Eq. 7 (an argmin invariant, as in Eq. 2).

∀a ∈ [1..A], dDura ← vla/dRate (3)
dPresa ← (dWina 6= 0) (4)
dSta ← wStdWina

(5)
tDura ← tDursdSta,pSta (6)

bestA← argmin≤([1, . . . , A] , [aAct1 ∧ cand1, (7)

. . . , aActA ∧ candA] , [pr1, . . . , prA])

3.4 Constraints
Another modeling entity used in constraint-based local
search is the notion of constraint. For InCELL, a constraint is
a particular invariant whose evaluation stops the evaluation
process when the constraint is violated. An invariant enforc-
ing a constraint can have outputs as well as no output at all.
For example, the constraint in Eq. 8 returns an inconsistency
upon evaluation iff variable b takes value false.

constraint(b:var{bool}) (8)

Eq. 9 and 10 are examples of two basic constraints to be
satisfied for the data download problem. The former imposes
that the window chosen for downloading an acquisition a
must be active. The latter imposes a domain constraint on
the variable giving the station used for downloading a.

∀a ∈ [1..A], constraint(dPresa → wActdWina
) (9)

constraint(dSta ∈ [0..S]) (10)

3.5 Criterion / Criteria
Complex criteria can be modeled in InCELL thanks to in-
variants. Minimizing makespan or tardiness is just a possi-
ble option. For the data download mission, the criterion to be
optimized is expressed using the additional invariants given
in Fig. 3. The goal here is not to give a precise description
of this criterion, which tries to combine download efficiency
and fairness between entities, but just to give the intuition.
The criterion first defines agea as the temporal distance be-
tween the end of acquisition a and the delivery date of a to
its principal station. From this age, we compute a corrected
weight wca, by multiplying the weight of a by a factor equal
to 1 if a is delivered immediately after its realization, and
decreased by a factor of 2 every K (a constant) time units.

From corrected weights, it is possible to define up,e the
utility obtained at priority level p for an entity e. This utility
takes into account a past utility uPastp,e obtained in the his-
tory of the satellite. In order to combine utilities over all enti-
ties and obtain an aggregated utility level up at each priority
level p, we use formulas involving a parameter par 6= 0 that
balances the trade-off between utilitarism (case par = 1)
and equity between entities (case par = −∞). At priority
level 3, the formula additionally uses a constant quota Qe as-
sociated with each entity e. As any improvement at priority
level p is preferred to any improvement at level p′ > p, the
objective is then to maximize vector of utilities (u1, u2, u3)
using a lexicographic order.

174

∀a ∈ [1..A]
agea ← ite(dPresa, dEnda + tDura − aEnda, 0)
wca ← wa · ite(dPresa, 2

−agea/K , 0)
∀p ∈ [1..P],∀e ∈ [1..E],
up,e ← ite(bPastp,e ∨ (∨a∈[1..A] | pra=p,ena=e aActa),

uPastp,e +
∑

a∈[1..A] | pra=p,ena=e wca,

1)
u1 ← (1/E ·

∑
e∈[1..E] u

par
1,e)1/par

u2 ← (1/E ·
∑

e∈[1..E] u
par
2,e)1/par

u3 ← (
∑

e∈[1..E] Qe · (u3,e/Qe)
par)1/par

Figure 3: Mission criterion for three priority levels (P = 3)

4 Scheduling Abstractions
Similarly to COMET and to constraint-based schedulers like
ILOG CP Optimizer, InCELL contains higher level P&S ab-
stractions useful for making the modeling task easier.

4.1 Time-points
Type Time is used to represent time-points. A time-point
t : Time is defined by two basic variables of type
var{double} that represent the earliest and the latest real-
ization dates associated with t.

For the data download problem, we can introduce, for
each acquisition a ∈ [1..A], two time-points:
• tsa:Time: floating start time of download for a;
• tea:Time: floating end time of download for a.

4.2 Intervals
Constant Intervals Type ItvConst is used to represent
temporal intervals that have no flexibility on their realiza-
tion dates. An interval itv : ItvConst is defined by three
basic variables: a presence variable pres(itv) : var{bool}, a
start time variable sta(itv) : var{double}, and an end time
variable end(itv) : var{double}. The presence variable is
useful for scheduling problems in which some activities are
optional.

In the data download problem, the constant interval asso-
ciated with each station visibility window w ∈ [1..W] can be
defined as wItvw = (wActw,wStaw,wEndw). The list of
active station visibility windows ordered by increasing start
times can be obtained using the invariant of Eq. 11.

seq{ItvConst,W}wItvSort ← sort≤([wItv1, . . . ,
wItvW] , [wAct1, . . . ,wActW] , [wSta1, . . . ,wStaW])

(11)

Floating Intervals Type Itv is used to represent inter-
vals that have flexibility on their start/end times. An interval
itv : Itv is defined by three elements: a presence variable
pres(itv) : var{bool}, a start time-point sta(itv) : Time,
and an end time-point end(itv) : Time.

The floating interval associated with the download of
acquisition a ∈ [1..A] can be defined as dItva =
(dPresa, tsa, tea). For the data download problem, it is also
possible to define a sequence of floating intervals:
• seq{Itv, A} dSeq : sequence of download intervals (size

bounded by A, the maximum number of acquisitions).

4.3 Unary Temporal Constraints
Type After (resp. Before) is used to represent temporal
constraints over the earliest (resp. latest) realization date of
a time-point. Basically, a constraint c of type After (resp.
Before) is defined by an invariant after(p,x,d) (resp. be-
fore(p,x,d)) that has three inputs:
• a boolean presence variable p:var{bool},
• a reference to a time-point x:var{Time},
• a double variable d:var{double}.
It represents conditional constraint [p.val]x.val ≥ d.val
(resp. [p.val]x.val ≤ d.val), which is satisfied iff x.val ≥
d.val (resp. x.val ≤ d.val) holds whenever p.val is true.
For readability reasons, after(p, x, d) (resp. before(p, x, d))
is also directly written as [p]x ≥ d (resp. [p]x ≤ d).

For the data download problem, such invariants are used
to define temporal constraints c1,a and c2,a in Fig. 4. Con-
straint c1,a imposes that an acquisition cannot be down-
loaded before the end of its realization, before the start of
its associated station visibility window, or before the start of
the planning horizon. The right part of c1,a is actually de-
fined by a hierarchy of invariants which are automatically
reevaluated when required, for instance in case of change of
dWina. Constraint c2,a imposes that an acquisition must be
delivered before its deadline, and that its download must end
before the end of its associated station visibility window and
before the end of the planning horizon.

∀a ∈ [1..A],
After c1,a ← [dPresa] tsa ≥ max(aEnda,

wStadWina , hSta)
Before c2,a ← [dPresa] tea ≤ min(dlinea − tDura,

wEnddWina
, hEnd)

Dist c3,a ← [dPresa] tea − tsa ≤ dDura

Dist c4,a ← [dPresa] tsa − tea ≤ −dDura

Dist[] c5 ← orderedNoOverlap(dSeq)

Figure 4: Temporal constraints on data downloads

4.4 Temporal Distance Constraints
Type Dist is used to represent distance constraints. A dis-
tance constraint is defined by an invariant dist(p,x,y,d) that
has four inputs:
• a boolean presence variable p:var{bool},
• two references to time-points x , y:var{Time},
• a double variable d:var{double} (distance bound).
It represents conditional constraint [p.val] y.val − x.val ≤
d.val, which can be used to model precedence constraints,
precedence constraints with setup times, or duration con-
straints. For readability reasons, dist(p, x, y, d) is also writ-
ten as [p] y − x ≤ d. Note that a distance constraint
[pres(itv)] sta(itv)− end(itv) ≤ 0 is implicitly associated
with each floating interval itv. Also, After/Before con-
straints could be handled as distance constraints with regard
to a reference temporal position. They are treated separately
for computational efficiency.

175

For the data download problem, invariant dist is used to
define temporal constraints c3,a and c4,a in Fig. 4. These
constraints express that the temporal distance between the
start and the end of the download of a must be equal to
duration dDura, which is itself defined by an invariant
(dDura ← vla/dRate).

Distance constraints can also be obtained using the
multiple-output invariant of Eq. 12. Given a sequence of
floating intervals s = [itv1, . . . , itvn] of size bounded by
N , this invariant returns as an output a table of N − 1
distance constraints. The invariant guarantees that the con-
junction of these N − 1 constraints is always equivalent to
∧i∈[1..n−1](end(itv i) ≤ sta(itv i+1)), i.e. to the fact that
intervals in the sequence are temporally ordered and do not
overlap.

Dist[] c← orderedNoOverlap(s:seq{Itv, N}) (12)

For the data download problem, the invariant of Eq. 12 is
used in Fig. 4 for constraint c5, to express that data down-
loads in download sequence dSeq must not overlap.

From a technical point of view, in order to obtain a static
model, the orderedNoOverlap invariant is handled without
dynamic memory allocation, even if the set of real tempo-
ral constraints it induces is dynamic. More precisely, the
invariant maintains a set of N − 1 distance constraints
ci : [pi] yi − xi ≤ 0 with, for every i ∈ [1..N − 1],
pi:var{bool} a boolean variable and xi , yi:var{Time}
two references to time-points. For each interval itv that has
a successor in the sequence, we maintain an index k(itv)
such that ck(itv) corresponds to the temporal constraint be-
tween itv and its successor in the sequence. If an interval
itv ′′ is inserted between itv and itv ′: (1) we update con-
straint ck(itv) : [p] y − x ≤ 0 by setting x.val = sta(itv ′′),
and (2) we get an unused constraint cj (such that pj .val
equals false) and we update cj by setting pj .val = true,
xj .val = sta(itv ′), yj .val = end(itv ′′). Similar operations
are used when an interval is inserted at the beginning or at
the end of the sequence, or when an interval is removed from
the sequence.

4.5 Simple Temporal Network (STN) Invariant
Consistent realization dates for time-points can be obtained
using a so-called STN invariant stnAssignTp , as defined in
Eq. 13. This invariant is parametrized by a table Tp contain-
ing time-points. It takes as input sets of temporal constraints
of type After, Before, and Dist. It returns as an output a
table et of var{double} elements. When it is evaluated, the
invariant checks consistency and ensures that the value of et i
is equal to the earliest time associated with time-point Tpi
in a consistent schedule. These operations are performed in
one shot for all changes in parent temporal constraints.

var{double}[] et ← stnAssignTp((13)

aCtrs:After[], bCtrs:Before[], dCtrs:Dist[])

To model the data download problem, we use an STN
invariant which takes as input all constraints defined in
Fig. 4. The table of time-points considered is Tp =
[ts1, te1, . . . , tsA, teA] (table of floating start and end

times of downloads). Table et returned by the invariant is
[dSta1, dEnd1, . . . , dStaA, dEndA]. This means that ele-
ments dStaa, dEnda given in Fig. 2 are actually defined by
an invariant: they are not atomic variables whose value can
be fixed freely, since they must satisfy temporal constraints.
The values of these variables will be automatically com-
puted using STN reasoning techniques. In particular, given
an acquisition a, if the volume vla of a is changed, the down-
load duration of a will be updated via the invariant defin-
ing dDura, temporal constraints c3,a, c4,a in Fig. 4 will be
reevaluated, and the earliest realization dates for downloads
will be recomputed via invariant stnAssign .

The latter is maintained incrementally using standard
STN techniques (Cervoni, Cesta, and Oddi 1994; Cesta and
Oddi 1996; Gerevini, Perini, and Ricci 1996; Shu, Effin-
ger, and Williams 2005). These techniques allow us to re-
compute feasible bounds of time-points upon strengthening,
weakening, deletion, or removal of constraints. More pre-
cisely, the approach uses constraint propagation, maintains
propagation chains in order to detect negative cycles and to
depropagate constraints incrementally, and it uses a decom-
position of the distance graph of the STN into strongly con-
nected components in order to determine a good constraint
propagation order (Pralet and Verfaillie 2013).

Even if the set of constraints which hold over a time-
point x may be dynamic during search (e.g. due to the
orderedNoOverlap invariant), the stnAssign invariant is
implemented without dynamic memory allocation. Techni-
cally speaking, we use linked list structures that allow dy-
namic STN to be handled using a space complexity linear in
the number of time-points and constraints. All internal data
structures used by the STN invariant are defined as variables,
over which commit() and rollback() operations are used in
case of acceptance or rejection of a local move.

A part of the DAG of invariants obtained for the data
download problem is shown in Fig. 5. In this DAG, it is pos-
sible to see that the STN invariant is an invariant as all other
quantities, and that it has both ancestors and descendants.

4.6 Discussion
Other planning and scheduling abstractions are available in
InCELL, including cumulative resources, energy resources
with production/consumption rates, and a richer class of
temporal constraints, such as those used in time-dependent
scheduling (Cheng, Ding, and Lin 2004; Gawiejnowicz
2008; Pralet and Verfaillie 2013), in which the duration of
an activity may depend on its start time.

With regard to existing works, COMET offers additional
elements for fast prototyping of local search algorithms. It
also has the notion of differential invariants, which is use-
ful to determine how much a constraint is violated. On the
other side, the core of the temporal model of COMET is a
precedence graph, whereas InCELL handles the more gen-
eral class of STN constraints. InCELL also directly and ex-
plicitly includes STN reasoning within the DAG of invari-
ants. This allowed us to define activities whose duration is
a variable, temporal constraints whose features (presences,
time points, and bounds) are given by invariants, and to have
a direct access to earliest download end times, used in the

176

dSta1 dEnd1

element

opp

wSta

dline1 tDur1

−

te1

0

element

opp

ts1

after after

dist

dist

−−

dStaN dEndN

dist

aEnd1

u3u2u1

+ +

hEnd

noOverlapOrd

before

min

element

max

!=

dDur1

dist

−

before

dWin1

min

element

max

!=

dDur1

dist dist

wEnd

dWinA
dlineA

tsA teA

tDurA

stnAssign
tDur1 tDurA

aEndA

hSta

dSeq

Figure 5: Overview of the DAG of invariants; in bold: STN
invariant, and outputs giving vector of utilities (u1, u2, u3)

criterion. Last, InCELL puts the emphasis on the manage-
ment of memory, in order to obtain models whose memory
size remains static during search. As far as we know, such a
guarantee is not offered by COMET.

5 Continuous Autonomous Planning
We now show InCELL at work on the data download prob-
lem. This problem is dynamic for two reasons:

1. the actual volume of acquisitions is known at run-time,
when acquisitions end; if this actual volume is greater
than the estimated volume considered at planning time,
the current plan may become temporally inconsistent; oth-
erwise, there may be some place for plan re-optimization;

2. the satellite must consider new acquisitions and new sta-
tion visibility windows when the planning horizon is
slided forward, or when new acquisition plans are re-
ceived from control ground stations.

The satellite must continuously plan downloads over the
mission horizon, which can range from a few weeks to sev-
eral months or years of continuous and autonomous plan-
ning and scheduling. This mission horizon must not be mis-
taken for the planning horizon used to define the time win-
dow over which the planner reasons to produce decisions.

5.1 Static Models for Dynamic Problems
In the following, we show how it is possible to plan contin-
uously using the invariant-based model defined in the previ-
ous sections, without creating any variable, any constraint,
or any object over the mission horizon.

The basic idea is to reason over a sliding planning horizon
and to recycle objects that become unused over this horizon.
For acquisitions, recycling means reusing old acquisitions,
that are not in the catalog of acquisitions to be downloaded
anymore. The attributes of such acquisitions (priority, entity,
volume...) and the temporal constraints associated with them
can be reused and updated freely. Doing so, an acquisition
i ∈ [1..A] can at some step be associated with entity B and
have priority 2, and later on be recycled and associated with
entity C and have priority 1. Similarly, a visibility window
w ∈ [1..W] can at some step be associated with station 1 in
interval [253, 814], and later on recycled and associated with
station 2 in interval [2460, 2975].

An important point is that objects of the model are not
renumbered when other objects become unused, e.g. win-
dow number 5 may be used while window number 1 is
not. In this case, window number 1 is a candidate for re-
cycling. Avoiding renumbering simplifies invariants reeval-
uations, since for instance changing the index of a visibility
window would also change dWina for every acquisition a
that uses this visibility window, and hence change temporal
constraints and force useless recomputations at the level of
the STN invariant.

To make the recycling of objects easier, InCELL contains
special variables, of type pool{T}, for managing pools
of objects of type T . For the data download problem, we
use one pool containing all acquisition objects, and one
pool containing all station visibility windows objects. For
pools of type T , function addInstance(e:T) is used at ini-
tialization to populate the pool, function newInstance() is
used to return an unused object of type T , and function
freeInstance(e:T) is used to put back an unused object in
the pool. Elements of type pool{T} can also watch boolean
usage variables such as aActa and wActw (see Fig. 2), in
order to automatically maintain the set of unused objects.
Pools of objects can therefore be seen as static memory al-
location managers. Commit and rollback operations can be
performed over pools, as over any other InCELL element.

5.2 Online Planning and Replanning
To reason over the invariant-based constraint model, we use
a Local Search strategy (LS). InCELL is used in LS both for
evaluating the impact of download decisions and for modi-
fying problem data when new information is available. LS
is encapsulated within a deliberative layer which produces
plans and sends them to a reactive layer. The latter is respon-
sible for sending decisions to the executive. It also contains
a simple decision rule to be used when LS does not manage
to produce a first plan before the decision deadline, or when
the size of the dynamic problem becomes temporarily too
large for the static model used within LS.

LS builds and repairs plans over planning horizon
[hSta, hEnd]. It uses Non Chronological Greedy Search
(NCGS). The latter iteratively inserts download activities in
the current plan, until no new insertion is possible. Each it-
eration corresponds to the selection of one candidate acqui-
sition a of highest priority, one visibility window w, and one
position k in the download sequence. Triple (a,w, k) is cho-
sen so as to maximize ratio ∆u/dDura between (1) the vari-

177

ation of utility ∆u obtained by inserting a in window w and
at position k in the download sequence, and (2) the duration
of the download of a (standard knapsack insertion heuris-
tics “value of an object divided by its size”). If no consistent
values w, k are found, a becomes non-candidate.

Replanning/repair occurs (1) when a new acquisition plan
is received from control ground stations, (2) when the hori-
zon slides and covers new download windows, and (3) when
an acquisition ends. In the first two cases, NCGS is used
to refill the current plan. In the third case, when an acqui-
sition ends and its volume changes, InCELL incrementally
recomputes the consistency of the current plan. In case of
consistency, if the real volume is lower than the volume con-
sidered for planning, NCGS is applied again to try and insert
new downloads. In case of inconsistency, a consistent plan
is recovered by removing the download of a, and NCGS is
applied on the obtained plan. Better repair strategies could
be designed, e.g. by analyzing the explanations for temporal
inconsistency. Once the current plan is repaired/reoptimized,
LS sends it to the reactive layer. A deeper replanning is
then performed by reapplying NCGS from an empty plan.
Restarts from such empty plans and randomization in NCGS
can also be used to diversify search.

6 Experiments
Experiments were performed on a one week scenario pro-
vided by CNES. This scenario involves S = 2 ground sta-
tions, E = 2 entities, and P = 3 priority degrees. Over
this horizon, the acquisition plan contains 1484 acquisitions
and 96 station visibility windows. The length of the plan-
ning horizon is set to 30 minutes. The static model created
can simultaneously handle a maximum number of A = 400
acquisitions and W = 7 station visibility windows over the
horizon. Even if A < 1484 and W < 96, the static model
manages to handle the scenario considered thanks to object
recycling. The number of variables and invariants used by
the model with these settings is 16884, and the whole plan-
ner occupies around 18MB of RAM. In the criterion, param-
eter par is set to value −3, which corresponds to a trade-off
between utilitarism and equity between entities.

Local search strategy LS based on InCELL is compared
with on-board approach PB1 defined in (Verfaillie et al.
2011). PB1 uses the same strategy as NCGS (non chronolog-
ical greedy search), with the only difference that when PB1
inserts a new download in the plan, the start and end times
of this download become fixed (no flexibility). This may in-
duce holes between downloads and under-use of downlink
windows. Also, PB1 is not generic (it is optimized for the
mission) and it systematically replans from scratch.

On an Intel i5-520 1.2GHz, 4GBRAM, the mean CPU
time consumed by LS for each plan repair is 6ms, and the
mean CPU time to plan from scratch is 50ms. For PB1, the
mean CPU time to replan from scratch is about 1ms.

For the experiments, we forced LS to systematically re-
plan from scratch, as PB1. Fig. 6 gives the results obtained.
For both methods, all downloadable acquisitions of prior-
ity 1 are downloaded. The proportion of acquisitions down-
loaded decreases with the priority degree, which is not sur-
prising due to the lexicographic ordering on vectors of util-

ities (u1, u2, u3). The comparison of up,e elements also
shows that plans produced are quite fair between entities,
except for priority level 3 for which entity quotas interfere.
Compared to PB1, LS improves on the number of down-
loads, especially for priority 3, and better utilizes download
windows (see tables in the upper and middle parts). This es-
sentially comes from the STN invariant, which allows tem-
poral flexibility to be maintained. Last, as shown by the
graphs at the bottom of Fig. 6, LS improves on the age of
acquisitions for all priority levels.

downloads % window use u1 u2 u3

PB1 1121/1484 95.77% 0.925 0.857 0.608
LS 1188/1484 96.38% 0.929 0.852 0.653

priority entity #a (#i) PB1 LS
#d up,e #d up,e

A 98 (5) 93 0.930 93 0.933
1 B 28 (1) 27 0.940 27 0.943

C 14 (1) 13 0.908 13 0.911
A 294 (16) 247 0.814 248 0.821

2 B 84 (3) 73 0.846 71 0.824
C 42 (2) 40 0.925 40 0.928
A 645 (39) 439 0.608 495 0.686

3 B 183 (10) 126 0.611 112 0.539
C 96 (0) 63 0.607 89 0.867

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10

PB1 prio 1
LS prio 1

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 5 10 15 20 25

PB1 prio 2
LS prio 2

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 10 20 30 40 50

PB1 prio 3
LS prio 3

Figure 6: Comparison between LS and PB1. Upper part:
global results; middle part: detailed results per priority level
and per entity (#a = nb of acquisitions, #i = nb of acquisitions
which end after the end of the last station visibility window
of the scenario, #d = nb of downloads); bottom part: repar-
tition of the age of acquisitions (for each priority level, the
y-axis represents the number of acquisitions whose age is
greater than age limit in hours given on the x-axis)

7 Conclusion and Perspectives
This paper presented a new framework for dynamic P&S.
The contributions are: (1) an integration of existing tech-
niques (constraint-based local search, dynamic constraint
satisfaction, and STN reasoning) for the sake of continu-
ous dynamic P&S using a static model; (2) a reduction of
the gap between generic planning/replanning libraries and
critical embedded software subject to implementation con-
straints concerning static data structures; (3) the treatment of
a real-world application, using some knowledge-engineering
for modeling activities, constraints, and non-standard opti-
mization criteria. In the future, we plan to integrate some
generic meta-heuristics for local search and to interleave
more finely InCELL with the executive layer.

178

References
Alba, E.; Nakib, A.; and Siarry, P., eds. 2012. Metaheuristics
for dynamic optimization. Springer.
Benoist, T.; Estellon, B.; Gardi, F.; Megel, R.; and Nouioua,
K. 2011. Localsolver 1.x: a black-box local-search solver for
0-1 programming. 4OR: A Quarterly Journal of Operations
Research 9(3):299–316.
Bibaı̈, J.; Savéant, P.; Schoenauer, M.; and Vidal, V. 2010.
An evolutionary metaheuristic based on state decomposition
for domain-independent satisficing planning. In Proc. of
ICAPS’10, 18–25.
Cervoni, R.; Cesta, A.; and Oddi, A. 1994. Managing dy-
namic temporal constraint networks. In Proc. of AIPS’94,
13–18.
Cesta, A., and Oddi, A. 1996. Gaining efficiency and flexi-
bility in the simple temporal problem. In Proc. of TIME’96,
45–50.
Cheng, T.; Ding, Q.; and Lin, B. 2004. A concise survey of
scheduling with time-dependent processing times. European
Journal of Operational Research 152:1–13.
Chien, S.; Knight, R.; Stechert, A.; R.Sherwood; and Ra-
bideau, G. 2000. Using iterative repair to improve the
responsiveness of planning and scheduling. In Proc. of
AIPS’00, 300–307.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.
desJardins, M.; Durfee, E.; Ortiz, C.; and Wolverton, M.
1999. A survey of research in distributed continual plan-
ning. AI Magazine 20(4):13–22.
El Sakkout, H., and Wallace, M. 2000. Probe back-
track search for minimal perturbation in dynamic schedul-
ing. Constraints 5(4):359–388.
Elkhyari, A.; Guéret, C.; and Jussien, N. 2002. Conflict-
based repair techniques for solving dynamic scheduling
problems. In Proc. of CP’02, 702–707.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006.
Plan stability: replanning versus plan repair. In Proc. of
ICAPS’06, 212–221.
Gawiejnowicz, S. 2008. Time-dependent scheduling.
Springer.
Gerevini, A.; Perini, A.; and Ricci, F. 1996. Incremental
algorithms for managing temporal constraints. In Proc. of
ICTAI’96, 360–365.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Plan-
ning through stochastic local search and temporal action
graphs in LPG. Journal of Artificial Intelligence Research
20(1):239–290.
Hentenryck, P. V., and Bent, R. 2006. Online stochastic
combinatorial optimization. MIT Press.
Hentenryck, P. V., and Michel, L. 2005. Constraint-based
local search. MIT Press.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.

Lemai, S., and Ingrand, F. 2004. Interleaving temporal
planning and execution in robotics domains. In Proc. of
AAAI’04, 617–622.
Mittal, S., and Falkenhainer, B. 1990. Dynamic constraint
satisfaction problems. In Proc. of AAAI’90, 25–32.
Myers, K. 1999. CPEF: A continuous planning and execu-
tion framework. AI Magazine 20(4):63–69.
Ovacikt, I., and Uzsoy, R. 1994. Rolling horizon algo-
rithms for a single-machine dynamic scheduling problem
with sequence-dependent setup times. International Jour-
nal of Production Research 32(6):1243–1263.
Pollack, M., and Horty, J. 1999. There’s more to life than
making plans: plan management in dynamic multiagent en-
vironments. AI Magazine 20(4):71–83.
Pralet, C., and Verfaillie, G. 2013. Time-dependent sim-
ple temporal networks: properties and algorithms. RAIRO
Operations Research.
Puterman, M. 1994. Markov decision processes, discrete
stochastic dynamic programming. John Wiley & Sons.
Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; and
Govindjee, A. 1999. Iterative repair planning for space-
craft operations using the ASPEN system. In Proc. of i-
SAIRAS’99, 99–106.
Shu, I.; Effinger, R.; and Williams, B. 2005. Enabling fast
flexible planning through incremental temporal reasoning
with conflict extraction. In Proc. of ICAPS’05, 252–261.
Tran, D.; Chien, S.; Rabideau, G.; and Cichy, B. 2004. Flight
software issues in onboard automated planning: lessons
learned on EO-1. In Proc. of IWPSS-04.
Veloso, M.; Pollack, M.; and Cox, M. 1998. Rationale-based
monitoring for planning in dynamic environments. In Proc.
of AIPS’98, 171–179.
Verfaillie, G., and Jussien, N. 2005. Constraint solv-
ing in uncertain and dynamic environments. Constraints
10(3):253–281.
Verfaillie, G.; Infantes, G.; Lemaı̂tre, M.; Théret, N.; and
Natolot, T. 2011. On-board decision-making on data down-
loads. In Proc. of IWPSS-11.

179

