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Abstract

We present a general and detailed development of an al-
gorithm for finite-horizon fitted-Q iteration with an ar-
bitrary number of reward signals and linear value func-
tion approximation using an arbitrary number of state
features (Lizotte, Murphy, and Bowling 2012). This in-
cludes a detailed treatment of the 3-reward function case
using triangulation primitives from computational ge-
ometry and a method for identifying globally dominated
actions. We also present an example of how our meth-
ods can be used to construct a real-world decision aid by
considering symptom reduction, weight gain, and qual-
ity of life in sequential treatments for schizophrenia. Fi-
nally, we discuss future directions in which to take this
work that will further enable our methods to make a
positive impact on the field of evidence-based clinical
decision support.

Motivation
Within the field of personalized medicine, there is increas-
ing interest in investigating the role of sequential deci-
sion making for managing chronic disease. Reinforcement
learning methods are already being used to analyze data
from clinical trials wherein patients are given different treat-
ments in multiple stages over time (Pineau et al. 2007;
Shortreed et al. 2011). The patient data collected during each
stage are very rich and commonly include several contin-
uous variables related to symptoms, side-effects, treatment
adherence, quality of life, and so on. For the ith patient in
the trial, we obtain a trajectory of observations and actions
of the form oi1, a
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sents the action (treatment) at time t, and oit represents mea-
surements made of patient i after action ait−1 and before ac-
tion ait. The first observations oi1 are baseline measurements
made before any actions are taken.

To analyze these data using reinforcement learning meth-
ods, we must define two functions st(o1, a1, ..., ot) and
rt(st, at, ot+1) which map the patient’s current history to a
state representation and a scalar reward signal, respectively.
Applying these functions to the data from the ith patient
gives a trajectory si1, a
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These redefined data are treated as sample trajectories
from a known policy. Once we have these, we will view
ongoing patient care as a Markov decision process (MDP),
and apply batch off-policy reinforcement learning methods
(e.g. see Ernst, Geurts, and Wehenkel 2005) to learn an op-
timal policy that takes a patient state and indicates which
action appears to be best in view of the data available. In
an MDP, both the state transition dynamics and the reward
distributions are assumed to have the Markov property. That
is, given the value st of the current state, the distribution of
next state St+1 and current reward Rt is conditionally inde-
pendent of sj , aj , rj for all j < t.

The interplay between predictive power, tractability, and
interpretability makes the definition of st a challenging
problem. However, the question of how st should be defined
can be answered at least in part by the data themselves to-
gether with expert knowledge and feature/model selection
techniques analogous to those used in supervised learning
settings (Keller, Mannor, and Precup 2006) if we have an
adequate definition of rt. However, a major difficulty with
using trial data in this way is that there is often no obviously
correct way to define rt. Indeed, any definition of rt is an
attempt to answer the question “What is the right quantity
to optimize?”—a question that is driven by the objectives
and preferences of individual decision makers and cannot
be answered by the data alone. There are many reasonable
reward functions one could define, since each patient record
includes a multi-dimensional measurement of that patient’s
overall well-being. Furthermore, these different dimensions
are often optimized by different treatments, and therefore
the choice of which dimension to use as the reward will af-
fect the resulting learned policy. For example, a policy that
minimizes expected symptom level will tend to choose more
aggressive drugs that are very effective but that have a more
severe side-effect profile. On the other hand, a policy that
minimizes expected side-effect measurements will choose
drugs that are less effective but that have milder side-effects.

We consider sets of MDPs that all have the same St, At,
and state transition dynamics, but whose expected reward
functions rt(st, at, δ) have an additional parameter δ that
represents the relative importance assigned to different re-
ward signals. One may think of δ as a special part of state
that: i) does not evolve with time, and ii) does not influence
transition dynamics. Each fixed δ identifies a single MDP by

Proceedings of the Twenty-Third International  Conference on Automated Planning and Scheduling

474



fixing a reward function, which has a corresponding optimal
state-action value function. In order to mathematize the rela-
tionship between preference and δ = (δ[0], δ[1], ..., δ[D−1]),
we define the structure of rt(st, at, δ) to be

rt(st, at, δ) = δ[0]rt[0](st, at) + δ[1]rt[1](st, at) + ...

+ (1−
D−2∑
d=0

δ[d])rt[D−1](st, at).

Rather than eliciting the preference δ and producing a
policy that recommends a single action per state, our ap-
proach is to learn the optimal Q-functionQt(st, at, δ) for all
δ exactly and simultaneously. This allows us for each action
to answer the question, “What range of preferences makes
this action a good choice?” This provides much richer in-
formation about the possible actions at each stage. Further-
more, even if a preference is specified, our methods allow
the maker to immediately see if his or her preferences are
near a “boundary”—that is, whether a small change in pref-
erence can lead to a different recommended action. In this
case, two or more actions perform similarly, and therefore
the final decision could be based on other considerations like
dosing schedule, difference in cost, etc. Finally, we can also
determine if an action is not optimal for any preference.

Approach
We show that the optimal state-action value function
Qt(st, at, δ) is piecewise-linear in the tradeoff parameter
δ. Value backups for fitted Q-learning require two opera-
tions: maximization over actions, and expectation over fu-
ture states. We use an exact piecewise-linear representation
of the functions Qt(st, at, ·) which allows us to perform
these operations to exactly compute value backups for all
δ. We can also identify the set of dominated actions, i.e. the
actions that are not optimal for any (st, δ) pair.

Unlike in POMDP planning, where value is always a con-
vex function of belief state, we show that because our ap-
proach estimates value functions using linear regression,
the Q-functions in our problem are not convex in δ. We
therefore develop alternative methods for representing value
functions based on primitives from computational geometry.

Related Work and Contributions
Early work in this direction (Barrett and Narayanan 2008)
explored the problem of simultaneously computing optimal
policies for a class of reward functions over a small, fi-
nite state space in a framework where the model is known.
Subsequent developments were made that focussed on the
infinite-horizon discounted setting and black-box function
approximation techniques (Castelletti et al. 2010; Vamplew
et al. 2011). Previously, we extended the approach of Bar-
rett and Narayanan (2008) to the setting with real-valued
state features and linear function approximation, which is
a more appropriate framework for analyzing trial data (Li-
zotte, Bowling, and Murphy 2010). We also introduced
an algorithm that is asymptotically more time- and space-
efficient than the Barrett & Narayanan approach, and de-
scribed how it can be directly applied to batch data. Fi-

nally, we gave an algorithm for finding the set of all non-
dominated actions in the single-variable continuous state
setting. This paper builds on previous work by contributing:

• A general and detailed development of finite-horizon
fitted-Q iteration with an arbitrary number of reward sig-
nals and linear approximation using an arbitrary number
of state features

• A detailed treatment of 3-reward function case using tri-
angulation algorithms from computational geometry that
has the same asymptotic time complexity as the 2-reward
function case

• A more concise solution for identifying globally domi-
nated actions under linear function approximation, and
method for solving this problem in higher dimensions

• A real-world decision aid example that considers symp-
tom reduction, weight gain, and quality of life when
choosing treatments for schizophrenia
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